JPS63203978A - Four way type valve for refrigerating cycle - Google Patents

Four way type valve for refrigerating cycle

Info

Publication number
JPS63203978A
JPS63203978A JP62038490A JP3849087A JPS63203978A JP S63203978 A JPS63203978 A JP S63203978A JP 62038490 A JP62038490 A JP 62038490A JP 3849087 A JP3849087 A JP 3849087A JP S63203978 A JPS63203978 A JP S63203978A
Authority
JP
Japan
Prior art keywords
valve
port
cylinder
slider
slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62038490A
Other languages
Japanese (ja)
Inventor
Tokinori Araki
荒木 時則
Masaharu Asada
朝田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP62038490A priority Critical patent/JPS63203978A/en
Publication of JPS63203978A publication Critical patent/JPS63203978A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PURPOSE:To substantially reduce selecting force of a slide valve, by providing a slider, which constitutes a tunnel-shaped flow path, to be arranged between valve seats and moving the slider in the axial direction of a cylinder. CONSTITUTION:A slider 28, which constitutes a tunnel-shaped flow path housing a pair of slide valves 24, 25 urged by a leaf spring 29 to valve seats 19, 20, is provided to be arranged between the valve seats 19, 20. While moving the slider 28 in the axial direction of a cylinder 16, the second communication port 19b or the third or fourth communication ports 20b, 20c are selectively switched. By this constitution, the slide valves 24, 25, decreasing their pressure receiving surface, enable the selecting force to be small reduced.

Description

【発明の詳細な説明】 産業上の利用分野 弁に関するものである。[Detailed description of the invention] Industrial applications It concerns valves.

従来の技術 近年、冷凍サイクル用四方弁は、空調機のヒートポンプ
化が進むにつれ、その需要は急増しており、低コスト化
、信頼性向上、小型化等の要求が強くなっている。
BACKGROUND OF THE INVENTION In recent years, the demand for four-way valves for refrigeration cycles has rapidly increased as air conditioners increasingly use heat pumps, and demands for lower costs, improved reliability, and smaller sizes have become stronger.

以下図面を参照しながら、上述した従来の冷凍サイクル
用四方弁の一例について説明する。
An example of the conventional four-way valve for a refrigeration cycle described above will be described below with reference to the drawings.

第6図は従来の冷凍サイクル用四方弁の断面内を示すも
のである。1は密閉された円筒状弁本体。
FIG. 6 shows a cross-sectional view of a conventional four-way valve for a refrigeration cycle. 1 is a sealed cylindrical valve body.

2.3は前記弁本体の周面の両側に反対方向に接続され
た吐出管と吸入管である。4,6は、前記吸入管3を中
央にして両側に設けられた。第一。
Reference numeral 2.3 denotes a discharge pipe and a suction pipe connected in opposite directions to both sides of the circumferential surface of the valve body. 4 and 6 were provided on both sides with the suction pipe 3 in the center. first.

第二の導管である。この第一の導管4は室内側熱交換器
(以下室内器)(図示せず)に接続され。
This is the second conduit. This first conduit 4 is connected to an indoor heat exchanger (hereinafter referred to as an indoor unit) (not shown).

第二の導管6は室外側熱交換器(以下室外器)(図示せ
ず)に接続されている。上記4本の接続管2,3,4.
5はそれぞれ弁本体1内に開口しており、並設したら接
続管2,4.5の開口端は弁本体1の軸方向に面一にシ
ート6で弁本体1に固定されている。7は、前記弁本体
1の内部にあって、前記シート6面を軸方向に摺動する
摺動弁であり前記吸入管3と第一の導管4.又は吸入管
3と第二の導管6を択一的に連通せしめる凹面7&を有
している。8,9は前記摺動弁7の両側に連結板10で
連結されて配設され微小孔8a、9aを有するピストン
体である。11.12は前記弁本体1の端面を密封する
蓋である。13.14は前記蓋11.12の間の空間R
1,R2に開口し、電磁式パイロットバルブ16の通電
操作により前記吸入管3と択一的に切換連通して低圧ガ
ス導入する抽気管である。
The second conduit 6 is connected to an outdoor heat exchanger (hereinafter referred to as an outdoor unit) (not shown). The above four connecting pipes 2, 3, 4.
5 open into the valve body 1, and when arranged side by side, the open ends of the connecting pipes 2, 4.5 are fixed to the valve body 1 by a seat 6 flush with the axial direction of the valve body 1. Reference numeral 7 denotes a slide valve that is located inside the valve body 1 and slides in the axial direction on the surface of the seat 6, and is connected to the suction pipe 3 and the first conduit 4. Alternatively, it has a concave surface 7& that allows the suction pipe 3 and the second conduit 6 to communicate with each other alternatively. Numerals 8 and 9 are piston bodies that are connected to both sides of the slide valve 7 by a connecting plate 10 and have minute holes 8a and 9a. Reference numerals 11 and 12 are lids that seal the end surfaces of the valve body 1. 13.14 is the space R between the lids 11.12
1, R2, and is a bleed pipe that selectively communicates with the suction pipe 3 by energizing the electromagnetic pilot valve 16 to introduce low-pressure gas.

以上のように構成された冷凍サイクル用四方弁について
その動作を説明する。
The operation of the four-way valve for the refrigeration cycle constructed as above will be explained.

電磁式パイロットバルブ16の通電操作により抽気管1
3.14を介して空間R1あるいは空間R2と吸入管3
を択一的に連通して空間内圧力を低下させると共にピス
トン体8,9の微小孔8a。
The bleed pipe 1 is opened by energizing the electromagnetic pilot valve 16.
3. Space R1 or space R2 and suction pipe 3 via 14
The micro holes 8a of the piston bodies 8 and 9 selectively communicate with each other to reduce the pressure in the space.

9aを介して弁本体1内の吐出側圧力を反対側の空間に
導入して高圧とすることにより、雨空間の高低圧力差で
ピストン体8,9に連結する摺動弁7を移動させ、吐出
管2より導入される高圧冷媒を第二の導管6と連通させ
しめて室内器を凝縮器として用いて室内を暖房し、又は
高圧冷媒を第一の導管4と連通せしめて室外器を凝縮器
に室内器を蒸発器として室内器を冷房するものである。
By introducing the pressure on the discharge side in the valve body 1 into the space on the opposite side through 9a and making it high pressure, the sliding valve 7 connected to the piston bodies 8 and 9 is moved by the difference in high and low pressures in the rain space, The high-pressure refrigerant introduced from the discharge pipe 2 is communicated with the second conduit 6 to use the indoor unit as a condenser to heat the room, or the high-pressure refrigerant is communicated with the first conduit 4 to use the outdoor unit as a condenser. The indoor unit is used as an evaporator to cool the indoor unit.

発明が解決しようとする問題点 しかしながら、上記のような構成では電磁式パイロット
バルブ15の作動により高低圧の圧力変換を行い、その
圧力差によって弁を切換えているためパイロットバルブ
そのものの付帯が不可欠であり、コストが非常に高くな
り構造が複雑であった。また電磁式パイロットバルブ1
6と弁本体1が抽気管13.14で接続されているため
、接続箇所が多く、コスト高とガス洩れの恐れを招いて
いた。また弁の作動は圧力差によって切換わるものでめ
るため圧力差のない状態では作動不可となり、bる一定
の圧力差を必要とするため、空調機等が運転しなければ
切換えができず切換始めにおける運転ロスを生じるとい
う問題点を生じていた。
Problems to be Solved by the Invention However, in the above configuration, pressure is converted between high and low pressure by operating the electromagnetic pilot valve 15, and the valve is switched based on the pressure difference, so the pilot valve itself is indispensable. However, the cost was very high and the structure was complicated. Also, electromagnetic pilot valve 1
6 and the valve body 1 are connected by air bleed pipes 13 and 14, there are many connection points, resulting in high costs and the risk of gas leakage. In addition, since the operation of the valve depends on the pressure difference, it cannot operate when there is no pressure difference.Since the valve requires a certain pressure difference, it cannot be switched unless the air conditioner etc. is running. This has caused a problem in that there is a driving loss at the beginning.

又、弁本体1の内部は摺動弁7内を除いて高温高圧の圧
縮機吐出ガスで充満されるため、その表面は高温となり
放熱が大きく熱損失となり特に暖房時能力の低下をきた
していた。
In addition, since the inside of the valve body 1, except for the inside of the sliding valve 7, is filled with high-temperature, high-pressure compressor discharge gas, its surface becomes high in temperature, and heat radiation is large, resulting in heat loss and a reduction in performance, especially during heating. .

本発明は上記問題点に鑑み、構造を簡素化し。In view of the above problems, the present invention simplifies the structure.

組立作業性を向上させ、低コスト化を行うとともに切換
作動の信頼性を向上させ熱損を小さくした冷凍サイクル
用四方弁を提供するものである。
The present invention provides a four-way valve for a refrigeration cycle that improves assembly workability, reduces costs, improves reliability of switching operation, and reduces heat loss.

問題点を解決するだめの手段 上記問題点を解決するために本発明の冷凍サイクル用四
方弁は、弁本体を形成し第一の通口を有するシリンダと
、前記シリンダ内壁にシート面を平行に対向させて固定
した第二の通口及び前記シリンダの軸方向に並設した第
三、第四の通口を有する一対のバルブシートと、一端を
前記バルブシートに当接して内外をシールする一対のス
ライドバルブと、前記スライドバルブを両端に収納して
トンネル状流路を構成し前記シリンダ内を軸方向に移動
して前記第二の通口と第三あるいは第四の通ロ金択−的
に連通させる円筒状のスライダと。
Means for Solving the Problems In order to solve the above problems, the four-way valve for a refrigeration cycle of the present invention includes a cylinder that forms the valve body and has a first port, and a seat surface parallel to the inner wall of the cylinder. a pair of valve seats having a second port fixedly opposed to each other and third and fourth ports arranged in parallel in the axial direction of the cylinder; and a pair of valve seats having one end in contact with the valve seat to seal the inside and outside. a slide valve, and the slide valve is housed at both ends to form a tunnel-like passage, and the slide valve is moved in the axial direction within the cylinder to selectively connect the second passage and the third or fourth passage. and a cylindrical slider that communicates with the.

前記スライダを往復動させるンレノイドとを備え。and a renoid that reciprocates the slider.

前記第一の通口を圧縮機吸入側に、第二の通口を圧縮機
吐出側に、そして第三、第四の通口を各々室内コイル、
室外コイルに接続して構成したものである。
The first port is connected to the compressor suction side, the second port is connected to the compressor discharge side, and the third and fourth ports are connected to the indoor coil, respectively.
It is configured by connecting to an outdoor coil.

作用 本発明は上記構成によってシステムの高低圧力差が一対
のスライドバルブ及びスライダより成るトンネル状流路
の内外に加わってもスライドバルブの圧力受圧面を微小
に構成可能でありスライドバルブのバルブシート面との
当接面の作動抗力(摩擦係数×作用力)は小さくシリン
ダ軸方向に移動するために要する切換力が大幅に低減で
きる。
Effect of the Invention With the above configuration, the present invention allows the pressure-receiving surface of the slide valve to be configured to be minute even when a high-low pressure difference in the system is applied to the inside and outside of the tunnel-like channel consisting of a pair of slide valves and a slider. The operating resistance (friction coefficient x acting force) on the contact surface is small, and the switching force required to move in the cylinder axial direction can be significantly reduced.

また、弁本体の内部はトンネル状流路内を除いて低圧低
温の圧縮機吸入ガスで充満されるため、その表面は低温
となるため放熱がなく、四方弁における熱損失を小さく
抑えることができる。
In addition, since the inside of the valve body is filled with low-pressure, low-temperature compressor suction gas, except for the tunnel-shaped flow path, the surface is at a low temperature, so there is no heat radiation, and heat loss in the four-way valve can be kept small. .

実施例 以下本発明の一実施例の冷凍サイクル用四方弁について
図面を参照しながら説明する。第1図から第3図は1本
発明の一実施例における冷凍サイクル用四方弁の非通電
時の断面図を示すものである。16は弁本体を形成する
シリンダで側面に圧縮機101の吸入側101aに接続
される吸入パイプ17への導出口でるる第一の通口f7
aが開口している。18は前記シリンダ16の一端に嵌
合溶接された蓋である。19.20は前記シリンダ1e
の内壁にシート面19a、20aを互いに平行に対向さ
せて固定した第一、第二のバルブシートであり、第一の
バルブシート19aには圧縮機101の吐出側101b
に接続される吐出パイプ21への導入口である第二の通
口19bが開口している。又、第二のバルブシート20
には、各々凝縮器又は蒸発器として可逆的に機能する室
内コイル102.室外コイル103に接続される第一、
第二の接続パイプ22.23が開口される第三、第四の
通口20b 、20cがシリンダ16の軸方向に並設開
口されている。24.25は、前記バルブシー)19a
、20aに当接してシールする摺動性のすぐれた例えば
PTFE(四フッ化エチレン樹脂)等のフッ素樹脂より
なるスライドシートリング26.27を一端の円形溝部
24a。
EXAMPLE Hereinafter, a four-way valve for a refrigeration cycle according to an example of the present invention will be described with reference to the drawings. FIGS. 1 to 3 are cross-sectional views of a four-way valve for a refrigeration cycle in a non-energized state according to an embodiment of the present invention. Reference numeral 16 denotes a cylinder forming the valve body, and a first port f7 is provided on the side thereof as an outlet to the suction pipe 17 connected to the suction side 101a of the compressor 101.
a is open. Reference numeral 18 denotes a lid that is fitted and welded to one end of the cylinder 16. 19.20 is the cylinder 1e
First and second valve seats are fixed to the inner wall of the compressor 101 with seat surfaces 19a and 20a facing each other in parallel, and the first valve seat 19a has a discharge side 101b of the compressor 101.
A second passage 19b, which is an inlet to the discharge pipe 21 connected to the discharge pipe 21, is open. Also, the second valve seat 20
includes indoor coils 102. each functioning reversibly as a condenser or evaporator. a first connected to the outdoor coil 103;
Third and fourth ports 20b and 20c, through which the second connecting pipes 22 and 23 are opened, are opened side by side in the axial direction of the cylinder 16. 24.25 is the valve seat) 19a
, 20a, and is made of a fluororesin having excellent sliding properties such as PTFE (polytetrafluoroethylene resin).

25aに収納し、その溝部両壁24b、24c。25a, and both groove walls 24b, 24c.

25b 、25cを溝側へ変形させて前記スライドシー
トリング26.27を加締固定した一対のスライドバル
ブである。28は、前記スライドバルブ24.25を両
端に収納してトンネル状流路を構成するスライダである
。29は前記スライダ28内にあって前記スライドバル
ブ24.25の間に介在して前記一対のスライドバルブ
24.25を前記バルブシート19.20に付勢し、前
記スライドシートリング28.27を前記バルブシート
19.20に圧接して内外をシールする板バネである。
This is a pair of slide valves in which the slide seat rings 26 and 27 are crimped and fixed by deforming the slide valves 25b and 25c toward the groove side. Reference numeral 28 denotes a slider that accommodates the slide valves 24 and 25 at both ends to form a tunnel-like flow path. 29 is inside the slider 28 and is interposed between the slide valves 24.25 to bias the pair of slide valves 24.25 against the valve seat 19.20, and to push the slide seat ring 28.27 against the valve seat 19.20. This is a leaf spring that presses against the valve seat 19, 20 to seal the inside and outside.

30.31は前記スライドバルブ24.25の外周中央
部に収納され前記スライダ間をシールするV字形シール
リングである。32は前記シリンダ16の他端を閉塞す
る蓋である。33−は前記蓋32の中央に固定的に取り
付けられた操作用ンレノイドでめり、固定鉄心34.電
磁コイル35゜復帰バネ36.そして前記スライダ28
と連結されたプランジャ37より構成されており、電磁
コイル35への通電制御により前記スライダ28が前記
シリンダ16内を軸方向に摺動する。そしてスライダ2
8の両端に収納されたスライドバルブ24.25の端部
に固定されたスライドシートリング26.27の位置は
、第1図、第3図図示のスライダ28第一の位置(電磁
コイル36無通電)において前記第二の通口(導入口)
19bと第三の通口20bを連通させ、電磁コイル35
0通電によりプランジャ37及びスライダ28を吸引し
た第2の位置(第3図)において前記第二の通口(導入
口)19bと第四の通口20cを連通させる如く設計さ
れている。
30.31 is a V-shaped seal ring that is housed in the center of the outer periphery of the slide valve 24.25 and seals between the sliders. 32 is a lid that closes the other end of the cylinder 16. 33- is an operating lens fixedly attached to the center of the lid 32, and the fixed iron core 34. Electromagnetic coil 35° return spring 36. and the slider 28
The slider 28 is composed of a plunger 37 connected to the cylinder 16, and the slider 28 slides in the axial direction within the cylinder 16 by controlling the energization of the electromagnetic coil 35. and slider 2
The position of the slide seat rings 26 and 27 fixed to the ends of the slide valves 24 and 25 housed at both ends of the slide valve 8 is the first position of the slider 28 shown in FIGS. ) in the second port (inlet)
19b and the third port 20b, and the electromagnetic coil 35
It is designed so that the second port (introduction port) 19b and the fourth port 20c communicate with each other at the second position (FIG. 3) where the plunger 37 and the slider 28 are attracted by zero energization.

以上の様に構成された冷凍サイクル用四方弁について以
下第1図〜第4図を用いてその動作を説明する。第1図
、第3図は電磁コイル36に非通電時の態様を示したも
のでプランジャ37は復帰バネ36の作用により図の下
方に附勢されてスライダ28が蓋18に当接して止まる
。この結果。
The operation of the four-way valve for the refrigeration cycle constructed as described above will be explained below with reference to FIGS. 1 to 4. 1 and 3 show the state when the electromagnetic coil 36 is not energized, and the plunger 37 is urged downward in the figure by the action of the return spring 36, and the slider 28 comes into contact with the lid 18 and stops. As a result.

スライダ28及びその両端に収納されたスライドパル7
”2.F、25により形成されるトンネル状流路により
第二の通口(導入口)19bと第三の通口20bが連通
されるとともに、第一の通口(導出口)17aと第四の
通口20cもシリンダ16の内部を通して連通される。
Slider 28 and slide pals 7 housed at both ends thereof
"2. The tunnel-shaped channel formed by F, 25 communicates the second port (inlet) 19b and the third port 20b, and also connects the first port (outlet) 17a and the third port 17a. The fourth port 20c is also communicated through the inside of the cylinder 16.

従って冷媒ガスは。Therefore, the refrigerant gas is.

圧縮機101→吐出パイプ21→第一の接続パイプ22
→室外コイルf03→膨張弁104→室内コイル102
→第二の接続パイプ23→吸入パイプ17→圧縮機の冷
房サイクル回路となる。
Compressor 101 → discharge pipe 21 → first connection pipe 22
→ Outdoor coil f03 → Expansion valve 104 → Indoor coil 102
→Second connection pipe 23→Suction pipe 17→Compressor cooling cycle circuit.

次に電磁コイル35を通電状態にすると(第4図)プラ
ンジャ37は固定鉄心34に吸着され。
Next, when the electromagnetic coil 35 is energized (FIG. 4), the plunger 37 is attracted to the fixed iron core 34.

当接して当たる。この結果、スライダ28及びその両端
に収納されたスライドバルブ24.25により形成され
るトンネル状流路により第二の通口(導入口)19bと
第四の通口20cが連通されると共に、第一の通口(導
出口)17aと第三の通口20bもシリンダ16の内部
を通して連通される。従って冷媒ガスは、圧縮機101
→吐出パイプ21→第二の接続パイプ23→室内コイル
102→膨張弁104→室外コイル103→第一の接続
バイブ22→吸入パイプ17→圧縮機の暖房サイクル回
路となる。
Touch and hit. As a result, the second passage (inlet) 19b and the fourth passage 20c are communicated with each other by the tunnel-like flow path formed by the slider 28 and the slide valves 24.25 housed at both ends thereof. The first port (outlet) 17a and the third port 20b are also communicated through the inside of the cylinder 16. Therefore, the refrigerant gas is
→Discharge pipe 21→Second connection pipe 23→Indoor coil 102→Expansion valve 104→Outdoor coil 103→First connection vibe 22→Suction pipe 17→Compressor heating cycle circuit.

以上のように本実施例によれば、弁本体を形成し、圧縮
機吸入側への導出口である第一の通口17aを有するシ
リンダ16内にそのシート面19a、20aを平行に固
定し、圧縮機吐出側からの導出口である第二の通口19
b及び室内コイル、室外コイルと各々接続される第三、
第四の通口20b 、200を有する一対のバルブシー
ト19.20を有し、一端を前記バルブシート19゜2
oに当接して内外をシールするフッ素樹脂よりなるスラ
イドシートリング26.27を端部に加締固着し、板バ
ネ29によって前記バルブシート19.20に付勢され
た一対のスライドバルブ24.25を両端に収納してト
ンネル状流路を構成するスライダ28を前記パルプシー
)19.20間に配設し、そのスライダ28をシリンダ
16の軸方向に移動することにより、第二の通口19b
と連通される第三あるいは第四の通口を選択し。
As described above, according to this embodiment, the seat surfaces 19a and 20a are fixed in parallel within the cylinder 16 that forms the valve body and has the first port 17a that is the outlet to the compressor suction side. , a second port 19 which is an outlet from the compressor discharge side.
b, and a third connected to the indoor coil and the outdoor coil, respectively.
The fourth passage 20b has a pair of valve seats 19.20 with 200, one end of which is connected to the valve seat 19.20.
A pair of slide valves 24 and 25 are crimped and fixed to the ends of the slide seat rings 26 and 27 made of fluororesin, which abut against the o and seal the inside and outside, and are biased against the valve seats 19 and 20 by leaf springs 29. A slider 28, which is housed at both ends to form a tunnel-like flow path, is disposed between the pulp seams 19 and 20, and by moving the slider 28 in the axial direction of the cylinder 16, the second passage 19b
Select the third or fourth doorway that communicates with the

冷媒通路を切換える様構成したことにより、システムの
高低圧力差が一対のスライドバルブ24゜25及びスラ
イダ28により成るトンネル状流路の内外に加わっても
スライドバルブ24.25の受圧面が小さいためスライ
ドバルブ24.25のバルブシート面19a、20aと
のシート面であるスライドシートリング26.27の作
動抗力(摩擦係数×作用力)は小さくシリンダ16軸方
向に移動するために要する切換力が大幅に低減できる。
By configuring the refrigerant passage to be switched, even if a high-low pressure difference in the system is applied to the inside and outside of the tunnel-shaped channel formed by the pair of slide valves 24 and 25 and the slider 28, the pressure-receiving surface of the slide valves 24 and 25 is small, so it will not slide. The operating resistance (friction coefficient x acting force) of the slide seat ring 26.27, which is the seat surface between the valve seat surfaces 19a and 20a of the valves 24.25, is small and the switching force required to move the cylinder 16 in the axial direction is large. Can be reduced.

また弁本体の内部はトンネル状流路内を除いて低圧低温
の圧縮機吸入ガスで充満されるため。
Also, the inside of the valve body is filled with low-pressure, low-temperature compressor suction gas, except for the tunnel-shaped flow path.

その表面は低温となるため放熱がなく四方弁における熱
損失を小さく抑えることができる。
Since its surface is at a low temperature, there is no heat radiation and heat loss in the four-way valve can be suppressed.

発明の効果 以上のように本発明は、弁本体を形成し第一の通口を有
するシリンダと、前記シリンダ内壁にシート面を平行に
対向させて固定した第二の通口及び前記シリンダの軸方
向に並設した第三、第四の通口を有する一対のバルブシ
ートと、一端を前記バルブシートに当接して内外をシー
ルする一対のスライドバルブと、前記スライドバルブを
両端に収納してトンネル状流路を構成し前記シリンダ内
を軸方向に移動して前記第二の通口と第三あるいは第四
の通口を択一的に連通させる円筒上のスライダと、前記
スライダを往復動させるソレノイドとを備え、前記第一
の通口を圧縮機吸入側に、第二の通口を圧縮機吐出側に
、そして第三、第四の通口を各々室内コイル、室外コイ
ルに接続して構成することにより、システムの高低圧力
差が一対のスライドバルブ及びスライダより成るトンネ
ル状流路の内外に加わってもスライドバルブの圧力受圧
面を微小に構成可能でありスライドバルブのバルブシー
ト面との当接面の作動抗力(摩擦係数×作用力)は小さ
くシリンダ軸方向に移動するために要する切換力が大幅
に低減でき、弁切換を従来の如くパイロットパルプを用
いなくても可能となり、大幅なコストダウン、小型化1
作動信頼性向上が図れる。更に、弁本体表面が低温とな
り弁本体からの放熱をなくせることから、四方弁におけ
る熱損失を小さく抑えることができ、暖房時能力をより
大きく引き出すことができるものである。
Effects of the Invention As described above, the present invention comprises a cylinder forming a valve body and having a first port, a second port fixed to the inner wall of the cylinder with its seat surface facing parallel to the cylinder, and an axis of the cylinder. A pair of valve seats having third and fourth ports arranged in parallel in the direction, a pair of slide valves whose one end is in contact with the valve seat to seal the inside and outside, and a tunnel with the slide valves housed at both ends. a cylindrical slider that forms a flow path and moves in the axial direction within the cylinder to selectively communicate the second port with the third or fourth port; and the slider is reciprocated. a solenoid, the first port is connected to the compressor suction side, the second port is connected to the compressor discharge side, and the third and fourth ports are connected to the indoor coil and the outdoor coil, respectively. By configuring this structure, even if a high-low pressure difference in the system is applied to the inside and outside of the tunnel-like flow path consisting of a pair of slide valves and a slider, the pressure receiving surface of the slide valve can be configured to be minute, and the pressure-receiving surface of the slide valve can be configured to have a small contact with the valve seat surface of the slide valve. The operating resistance (friction coefficient x acting force) on the contact surface is small, and the switching force required to move the cylinder in the axial direction can be significantly reduced, making it possible to switch the valve without using a pilot pulp as in the past, and greatly reducing Cost reduction, miniaturization 1
Operational reliability can be improved. Furthermore, since the surface of the valve body becomes low temperature and heat radiation from the valve body can be eliminated, heat loss in the four-way valve can be suppressed to a low level, and the heating capacity can be maximized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における冷凍サイクル用四方
弁の冷房状態を示す断面図、第2図は第1図の要部拡大
断面図、第3図は第1図のX−X/方向の部分断面図、
第4図は第1図の暖房状態を示す断面図、第6図は従来
の冷凍サイクル用四方弁の断面図である。 1e・・・・・・シリンダ、17a・・・・・・第一の
通口。 19.20・・・・・・バルブシート、19b・・・・
・・第二の通0.20b、20c・・・・・・第三、第
四の通口。 24.25・・・・・・スライドバルブ、28・・・・
・・スライダ、33・・・・・・ソレノイド。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l6
−シリング 16−シリング′ 19.20−’バルブシート +9J−オーの1口 μ、alk−オ三、オロの通口 24.25−スライドバルブ 第4図       a−スライグ 33−ソレノイド
FIG. 1 is a sectional view showing the cooling state of a four-way valve for a refrigeration cycle in an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG. Partial cross-section of the direction,
FIG. 4 is a sectional view showing the heating state of FIG. 1, and FIG. 6 is a sectional view of a conventional four-way valve for a refrigeration cycle. 1e...Cylinder, 17a...First port. 19.20... Valve seat, 19b...
...Second entrance 0.20b, 20c...Third and fourth entrance. 24.25...Slide valve, 28...
...Slider, 33...Solenoid. Name of agent: Patent attorney Toshio Nakao and 1 other person16
- Schilling 16- Schilling'19.20-' Valve seat + 9J-O 1 port μ, alk-O 3, Oro ports 24.25-Slide valve Fig. 4 a-Slig 33-Solenoid

Claims (1)

【特許請求の範囲】[Claims] 弁本体を形成し第一の通口を有するシリンダと、前記シ
リンダ内壁にシート面を平行に対向させて固定した第二
の通口及び前記シリンダの軸方向に並設した第三、第四
の通口を有する一対のバルブシートと、一端を前記バル
ブシートに当接して内外をシールする一対のスライドバ
ルブと、前記スライドバルブを両端に収納してトンネル
状流路を構成し前記シリンダ内を軸方向に移動して前記
第二の通口と第三あるいは第四の通口を択一的に連通さ
せる円筒状のスライダと、前記スライダを往復動させる
ソレノイドとを備え、前記第一の通口を圧縮機吸入側に
、第二の通口を圧縮機吐出側に、そして第三、第四の通
口を各々室内コイル、室外コイルに接続したことを特徴
とする冷凍サイクル用四方弁。
A cylinder forming a valve body and having a first port, a second port fixed to the inner wall of the cylinder with its seat surfaces facing parallel to each other, and third and fourth ports arranged in parallel in the axial direction of the cylinder. A pair of valve seats having a port, a pair of slide valves whose one end is in contact with the valve seat to seal the inside and outside, and the slide valves are housed at both ends to form a tunnel-like flow path, and the inside of the cylinder is arranged as an axis. a cylindrical slider that moves in a direction to selectively communicate the second or third or fourth port; and a solenoid that reciprocates the slider; A four-way valve for a refrigeration cycle, characterized in that a second port is connected to a compressor suction side, a second port is connected to a compressor discharge side, and third and fourth ports are connected to an indoor coil and an outdoor coil, respectively.
JP62038490A 1987-02-20 1987-02-20 Four way type valve for refrigerating cycle Pending JPS63203978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038490A JPS63203978A (en) 1987-02-20 1987-02-20 Four way type valve for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038490A JPS63203978A (en) 1987-02-20 1987-02-20 Four way type valve for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPS63203978A true JPS63203978A (en) 1988-08-23

Family

ID=12526704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038490A Pending JPS63203978A (en) 1987-02-20 1987-02-20 Four way type valve for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS63203978A (en)

Similar Documents

Publication Publication Date Title
CN106369193B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
JP2011241870A (en) Flow path switching valve
KR920008025B1 (en) Slide valve
JPS63203978A (en) Four way type valve for refrigerating cycle
JP2001208224A (en) Four-way control valve
JPH01155163A (en) Four-way valve for refrigeration cycle
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JPS63180779A (en) Four-way valve for refrigerating cycle
JPS62180184A (en) Four-way valve for refrigerating cycle
JPS63285380A (en) Four-way valve for refrigerating cycle
JPH0718491B2 (en) Four-way valve for refrigeration cycle
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS62177374A (en) Four-way valve for regrigerating cycle
JPS63210478A (en) Four-way valve for refrigeration cycle
JPS63203979A (en) Four way type valve for refrigerating cycle
JPS62101977A (en) Four way type valve for refrigerating cycle
JPS6372974A (en) Four-way valve
JPS62184288A (en) Four way valve for refrigerating cycle
JP4446628B2 (en) Bypass valve and air conditioner using the same
JPH02120581A (en) Four-way valve for refrigerating cycle
JPS6367472A (en) Four-way valve for refrigerating cycle
JPS62124368A (en) Four-way valve for refrigerating cycle
JPH02133763A (en) Four-way valve for freezing cycle
JPS63180780A (en) Four-way valve for refrigerating cycle
JPH0715313B2 (en) Four-way valve for refrigeration cycle