JPH02133763A - Four-way valve for freezing cycle - Google Patents

Four-way valve for freezing cycle

Info

Publication number
JPH02133763A
JPH02133763A JP63286187A JP28618788A JPH02133763A JP H02133763 A JPH02133763 A JP H02133763A JP 63286187 A JP63286187 A JP 63286187A JP 28618788 A JP28618788 A JP 28618788A JP H02133763 A JPH02133763 A JP H02133763A
Authority
JP
Japan
Prior art keywords
port
suction
holder
cylinder
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63286187A
Other languages
Japanese (ja)
Inventor
Ryuzo Fujimoto
藤本 龍三
Tokinori Araki
荒木 時則
Masaharu Asada
朝田 正治
Shuji Nishida
修二 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63286187A priority Critical patent/JPH02133763A/en
Publication of JPH02133763A publication Critical patent/JPH02133763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PURPOSE:To simplify a structure and improve a cooling or a heating capability by a method wherein a holder storing sliders at both ends for use in providing an alternative communication between a discharging port and a suction port with a first port and a second port under a sliding action within a cylinder so as to constitute a tunnel- like flow passage and a solenoid for reciprocating the holder are provided. CONSTITUTION:When an electromagnetic coil 36 is deenergized, a plunger 30 of a solenoid 31 is biased downwardly by a spring 35, the holder 26 abuts against a lid 18 and stops. A suction port 16c and a first port 16d are communicated by a tunnel-like flow passage 19a formed by the sliders 22 and 23 stored in a holder 26 and by the holder 26. A discharging port 16g and a second port 16e' are communicated through an interior of the cylinder 16. Accordingly, refrigerant gas runs through a cooling cycle circuit comprising a compressor 101, a discharging pipe 19, a connection pipe 20, an outdoor unit 103, an expansion valve, an indoor unit 102, a connection pipe 21, a suction pipe 19 and a compressor 101. Then, when the electro-magnetic coil 36 is energized, the suction port 16c and the second port 16e are communicated to each other and also the discharging port 16g and the first port 16d are communicated through an interior of the cylinder 16. Accordingly, it becomes a heating cycle circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍サイクル、特にヒートポンプ型の空調機の
冷房・暖房の切換に用いる冷凍ザイクル用四方弁に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle, particularly to a four-way valve for a refrigeration cycle used for switching between cooling and heating in a heat pump type air conditioner.

従来の技術 近年、冷凍サイクル用四方弁は、空調機のヒトポンプ化
が進むにつれ、その需要は急増しており、低コスト化、
信頼性向−L、小型化等の要求が強くなっている。
Conventional technology In recent years, the demand for four-way valves for refrigeration cycles has rapidly increased as air conditioners increasingly use human pumps.
Demand for reliability, downsizing, etc. is increasing.

従来の技術としては、例えば特公昭35−12689号
公報に示されている休な冷凍サイクル用四方弁がある。
As a conventional technique, for example, there is a four-way valve for a closed refrigeration cycle as disclosed in Japanese Patent Publication No. 35-12689.

以下図面を参照しながら、上述した従来の冷凍サイクル
用四方弁の一例について説明する。
An example of the conventional four-way valve for a refrigeration cycle described above will be described below with reference to the drawings.

第7図は従来の冷凍ザイクル用四方弁の断面図を示すも
のである。1は密閉された円筒状弁本体、2.3は前i
己弁本体の周面の両側に反対方向に接3 ・\−・ 枕された圧縮機101の吐出管と吸入管である。
FIG. 7 shows a sectional view of a conventional four-way valve for freezing cycles. 1 is a sealed cylindrical valve body, 2.3 is the front i
The discharge pipe and the suction pipe of the compressor 101 are connected to both sides of the circumferential surface of the self-valve body in opposite directions.

4.5は前記吸入管3を中央にして両側に設けらた第一
、第二の導管である。この第一の導管4は室内側熱交換
器(以下室内器)1o2に接続され、第二の導管5は室
外側熱交換器(以下室外器)103に接続されている。
4.5 are first and second conduit pipes provided on both sides of the suction pipe 3; The first conduit 4 is connected to an indoor heat exchanger (hereinafter referred to as an indoor unit) 1o2, and the second conduit 5 is connected to an outdoor heat exchanger (hereinafter referred to as an outdoor unit) 103.

」三水4本の接続管2゜3.4.[5はそれぞれ弁本体
1内に開口しており、並設した接続管3,4.5の開口
端は弁本体1のim+方向に而−にシート6で弁本体1
に固定されている。7はiiJ記弁水弁本体1部にあっ
て、前記シトロ面を軸方向に摺動する摺@升であり前記
吸入管3と第一の導管4、又は吸入管3と第二の導管5
を択一的に連通せしめる四面了aを有している。8,9
は前記摺動弁の両側に連結板1Qで連結されて配設され
微小孔8a、9aを有するビス1−ン体である。11.
12は1σ記弁本体1の端面を密封する盆である。13
.14は前記蓋11゜12の間の空間R1,R2に開口
し、電磁式パイロットバルブ15の通電操作によりII
Jjj記吸入管3と択一的に切換連通して低圧ガス導入
する抽気管である。
”Sansui 4 connecting pipes 2゜3.4. [5 are each opened in the valve body 1, and the open ends of the connecting pipes 3, 4.5 arranged in parallel are connected to the valve body 1 at the seat 6 in the im+ direction of the valve body 1.
is fixed. Reference numeral 7 is a slide @ box which is located in the first part of the water valve main body and slides on the citro surface in the axial direction, and is connected to the suction pipe 3 and the first conduit 4, or the suction pipe 3 and the second conduit 5.
It has a four-sided ridge that selectively communicates with each other. 8,9
is a screw 1 body which is connected to both sides of the sliding valve by a connecting plate 1Q and has minute holes 8a and 9a. 11.
12 is a tray that seals the end face of the 1σ valve body 1. 13
.. 14 opens into the spaces R1 and R2 between the lids 11 and 12, and when the electromagnetic pilot valve 15 is energized, the II
This is a bleed pipe that selectively communicates with the suction pipe 3 shown in Jjj to introduce low pressure gas.

以上のように構成された冷凍サイクル用四方弁について
その動作を説明する。
The operation of the four-way valve for the refrigeration cycle constructed as above will be explained.

電磁式パイロットバルブ15の通電操作により抽気管1
3,14を介して空間R1あるいは14λ四R2と吸入
管3を択一的に連通して空間内圧力を低下させると共に
ビス・トン体8,9の微小孔8a。
The bleed pipe 1 is opened by energizing the electromagnetic pilot valve 15.
The suction pipe 3 is selectively communicated with the space R1 or 14λ4R2 via the holes 3 and 14 to reduce the pressure in the space, and the micro holes 8a of the screw-ton bodies 8 and 9.

9aを介して弁本体1内の吐出側圧力を反対1則の空間
に導入して高圧とすることにより、雨空間の高低圧力差
でピストン体8,9に連結する摺動弁7を移動させ、吐
出管2より導入される高圧冷媒を第二の導管6と連通さ
せしめて室内3H102を凝縮器として用いて室内を暖
房し、又は高圧冷媒を第一の導管4と連通せしめて室外
器103を凝縮器に室内器102を蒸発dgとして室内
器を冷房するものである。
By introducing the discharge side pressure in the valve body 1 into the space with the opposite law through 9a and making it high pressure, the sliding valve 7 connected to the piston bodies 8 and 9 is moved by the difference in high and low pressures in the rain space. , the high-pressure refrigerant introduced from the discharge pipe 2 is communicated with the second conduit 6 to heat the room using the indoor 3H102 as a condenser, or the high-pressure refrigerant is communicated with the first conduit 4 to heat the outdoor unit 103. The indoor unit is cooled by using the indoor unit 102 as an evaporator DG in the condenser.

発明が解決しようとする課題 しかしながら、上記のような構成では電磁式パイロット
バルブ15の作動により高低圧の圧力変換を行い、その
圧力差によって弁を切換えている5 、 タメバイロ、/l−バルブそのものの伺帯が不可欠であ
り、コストが非常に高くなり構造が覆雑であった。丑た
電磁式パイロットバルブ16と弁本体1が抽気管13.
14で接続されているため、接続箇所が多く、コスト高
とガス洩れの恐れが招いていた。丑だ弁の作動は圧力差
によって切換わるものであるためLトカ差のない状態で
は作動不可となり、ある一定の圧力差を心安とするため
、空調根管が運転しなければ切換えができず切換始めに
おける運転ロスを生じるという課題を生じていた。
Problems to be Solved by the Invention However, in the above configuration, high and low pressures are converted by operating the electromagnetic pilot valve 15, and the valve is switched depending on the pressure difference. A support belt was essential, making the cost extremely high and the structure complicated. The solenoid pilot valve 16 and the valve body 1 are connected to the bleed pipe 13.
14, there are many connection points, leading to high costs and the risk of gas leakage. Since the operation of the Ushida valve is switched depending on the pressure difference, it will not be able to operate when there is no L torque difference.In order to feel safe with a certain pressure difference, it cannot be switched unless the air conditioning root canal is operating, so it cannot be switched. This has caused a problem of operational loss at the beginning.

また、暖房時に第二の導管5から導入され、もしくは冷
房時には第一の導管4から導入された低圧ガスは摺動弁
7を通過する際に、方向が1800転侠されるので圧損
が大きくシステム全体の効率を損うといった欠点を有し
ていた。
In addition, the low pressure gas introduced from the second conduit 5 during heating or from the first conduit 4 during cooling is changed direction by 1800 degrees when passing through the sliding valve 7, resulting in a large pressure loss in the system. It had the disadvantage of impairing overall efficiency.

本発明は上記課題に鑑み、構造を簡素化して組立作業性
を同上させ、低コス1−化を行うとともに、圧損を小さ
くしてシステム効率を高めて冷暖房能力を向上させる冷
凍サイクル用西方弁を提供するものである。
In view of the above-mentioned problems, the present invention provides a western valve for a refrigeration cycle that simplifies the structure, improves assembly workability, reduces cost, and improves air conditioning capacity by reducing pressure loss and increasing system efficiency. This is what we provide.

課題を解決するだめの手段 −J二足課題を解決するために本発明の冷凍サイクル用
四方弁は、圧縮機の吐出側に接続される吸入口を有する
第一のバルブシートと、室外側熱交換器に接続される第
一の導口及び室内側慈父換器に接続される第二の導口全
軸方向に並設する第二のバルブシートとを内面に平行し
て形成すると共に、圧縮機の吸入側等へ接続される吐出
口を刹゛シ則記両バルブシートに挟まれた側壁とか本体
を形成するシリンダと、MiI記吐出口と圧縮機の吸入
側等を接続する吸入パイプと、前記シリンダ内を摺動し
前記吐出口と前記第一の導口、前記吸入I」と第二の導
口または前記吐出口と前記第二の導口、前記吸入口と第
一の導口を切換えて連通させるスライダを両端に収納し
トンネル状流路を1再成するホルダと、前記ホルダを往
復動させるンレノイドとを餉え、前記吸入パイプの吐出
口側先端面の位(自′は前記側壁の内面と同−而に対し
て前記押]壁の外面方向にずれている体傅成したもので
ある。
Alternative Means for Solving the Problems - JTwo Foot In order to solve the problems, the four-way valve for a refrigeration cycle of the present invention has a first valve seat having an inlet connected to the discharge side of the compressor, and a first valve seat having an inlet connected to the discharge side of the compressor, A first inlet connected to the exchanger, a second inlet connected to the indoor ventilation exchanger, and a second valve seat arranged in parallel in the entire axial direction are formed parallel to the inner surface, The discharge port connected to the suction side of the compressor is defined as the side wall sandwiched between the two valve seats or the cylinder that forms the main body, and the suction pipe connects the MiI discharge port and the suction side of the compressor. , the discharge port and the first inlet, the suction I' and the second inlet, or the discharge port and the second inlet, and the suction port and the first inlet. A holder that regenerates a tunnel-like flow path by storing sliders at both ends to switch the openings for communication, and a renoid that reciprocates the holder, and The inner surface of the side wall is the same as the inner surface of the side wall.

作  用 T7、−2゜ 本発明は上記した構成によってシステムの高低圧j)差
が一対のスライダ及びホルダより成るトンネル状流路の
内側に加わってもスライダの圧力受川面を微小に1前成
可能なためスライダの先端に設けられたスライダシート
リングの作動抗力(摩擦係数×作用力)は小さく、シリ
ンダ軸方向に移動するために要する切換力が大幅に低減
できる6、丑/こ低圧ガスがシリンダ内から吐出口を通
過する際に、ガスの流れが直接吸入パイプの先端部に当
たらず吐出日内へ流入することができる−4−に、流れ
が急激に絞られることが人いので、圧力損失は小さく、
システム効率の低下は小さくなる。
Effect T7, -2゜The present invention has the above-described configuration, so that even if a difference between high and low pressures in the system is applied to the inside of the tunnel-like flow path made up of a pair of sliders and a holder, the pressure receiving surface of the slider can be slightly preformed. Because of this, the operating resistance (friction coefficient x acting force) of the slider seat ring provided at the tip of the slider is small, and the switching force required to move in the cylinder axial direction can be significantly reduced6. When passing through the discharge port from inside the cylinder, the gas flow does not directly hit the tip of the suction pipe and can flow into the discharge port. The loss is small;
The reduction in system efficiency will be smaller.

実施例 以下本発明の一実施例の冷凍サイクル用四方弁について
図面を参照しながら説明する。なお、冷却システムは従
来と同一構成であるため同一符号を付してその説明を省
略する。
EXAMPLE Hereinafter, a four-way valve for a refrigeration cycle according to an example of the present invention will be described with reference to the drawings. Note that since the cooling system has the same configuration as the conventional one, the same reference numerals are given and the explanation thereof will be omitted.

第1図から第4図は、本発明の一実施例における冷凍サ
イクル用四方弁の非通電時のP町面図を示すものである
1、16は弁本体を形成するシリンダで、16a、16
bは前記シリンダ16の内壁に互いに平行に対向させて
軸方向に形成した第一第二のバルブシートであり、第一
のバルブシート16aには圧縮機101の吐出側に接続
される吐出パイプ19からの吸入口16cが開口してい
る。
FIGS. 1 to 4 are diagrams of a four-way valve for a refrigeration cycle in an embodiment of the present invention when the current is not energized. Reference numerals 1 and 16 are cylinders forming the valve body;
First and second valve seats b are formed in the axial direction on the inner wall of the cylinder 16 so as to face each other in parallel, and the first valve seat 16a has a discharge pipe 19 connected to the discharge side of the compressor 101. The suction port 16c from the inside is open.

又、第二のバルブシー1−16bには、一方を各々凝縮
器又は蒸発器として可逆的に機能する室外側熱交換器1
03(以下、室外器)、室内側熱交換イg102(以下
、室内器)に接続される第一、第二の接続パイプ20.
21が接続される第一、第二の導口1sd、16eがシ
リンダ16の軸方向に直線上に開口されている3、また
16fは前記第一(D /< /l/)゛シー )16
aとII N己第二のバルフ゛シート16bに挟まれた
側壁であって圧縮機101の吸入側へ接続される吸入パ
イプ17が接続される吐出口16gが開口している。か
つ吸入パイプ17の吐出口側先端面17aの位1フイt
)−11111壁の内面17bと同−而から側壁の外面
17c方向にずれている1、また前記シリンダ16の一
開ロ端16hには蓋18が嵌合されている。
Further, the second valve seat 1-16b is provided with an outdoor heat exchanger 1, one of which functions reversibly as a condenser or an evaporator.
03 (hereinafter referred to as the outdoor unit), and the first and second connection pipes 20 connected to the indoor heat exchanger 102 (hereinafter referred to as the indoor unit).
The first and second inlets 1sd and 16e to which 21 is connected are opened in a straight line in the axial direction of the cylinder 16, and 16f is the first (D /< /l/)゛C) 16.
A discharge port 16g, which is a side wall sandwiched between a and IIN and the second valve sheet 16b, is open to which a suction pipe 17 connected to the suction side of the compressor 101 is connected. and one fit on the distal end surface 17a of the suction pipe 17 on the discharge port side.
)-11111 1 which is offset from the inner surface 17b of the wall in the direction of the outer surface 17c of the side wall, and a lid 18 is fitted to the open bottom end 16h of the cylinder 16.

91、−2 22.23は前記バルブシート16a、16bに当接し
てシールする摺動性のすぐれた例えばPTFE (四フ
ッ化エチレン樹脂)等のフッ素樹脂よりなるスライドシ
ートリング24.25を一端の円形溝部22a 、23
aに収納し、その溝部両壁221)、22C,23b、
23Cを溝側へ変形させて目ilN己スライドシートリ
ング24.25を加え繕つけて固定した一対の中空状ス
ライダである。また前記スライダ22.23の各々内室
23)には低熱伝導性の優れた、例えば樹脂で形成1〜
だブツシュ23h 、23 iを収納している。26は
前記スライダ22.23を両端に収納してトンネル状流
路19&を構成するホルダである。27は前記ホルダ2
θ内にあって前Meスライダ22 、23のfIrJに
介在して前記一対のスライダ22.23を+iiJ記シ
リフシリンダ16ブシー川−16c、16dに伺努し、
t]iJ g己スライドシー1−リング24 、25を
m記バルブシー1−16G、16dに圧接して内外シー
ルするスプリングである。28.29は前記スライダ2
2.23の外周中央四部に収納され10、、 。
91, -2 22.23 is a slide seat ring 24.25 made of a fluororesin such as PTFE (polytetrafluoroethylene resin) with excellent sliding properties, which contacts and seals the valve seats 16a and 16b. Circular grooves 22a, 23
a, and both groove walls 221), 22C, 23b,
These are a pair of hollow sliders made by deforming 23C to the groove side, adding self-sliding seat rings 24 and 25, and fixing them. In addition, each of the inner chambers 23) of the sliders 22 and 23 is made of a material having excellent low thermal conductivity, such as resin.
It stores 23h and 23i. Reference numeral 26 denotes a holder that accommodates the sliders 22 and 23 at both ends to form a tunnel-like flow path 19&. 27 is the holder 2
θ, the pair of sliders 22 and 23 are interposed between the fIrJ of the front Me sliders 22 and 23, and
It is a spring that presses the sliding seals 1-rings 24 and 25 to the m valve seats 1-16G and 16d to seal the inside and outside. 28.29 is the slider 2
It is stored in the four central parts of the outer circumference of 2.23.

前記ホルダ26間をシールするv文形シールリングであ
る。3oはA11記ホルダ26とJ土詰され、前記シリ
ンダ16の開口側より突出する電磁ソレノイド31のプ
ランジャである。このプランジャ3゜の中心部には、ガ
スオイル等の流体がプランジャ30の移動に伴って流動
体となるためバイパス孔30aが形成されている。32
は前記シリンダ16の外方においてjrff 記プラン
ジャ30の外周を覆う非磁性体よりなる筒であり、この
筒32を備えた蓋33により前記シリンダ16の開口を
覆っている。
This is a v-shaped seal ring that seals between the holders 26. 3o is a plunger of an electromagnetic solenoid 31 which is connected to the holder 26 A11 and protrudes from the opening side of the cylinder 16. A bypass hole 30a is formed in the center of the plunger 3° so that a fluid such as gas oil becomes a fluid as the plunger 30 moves. 32
is a cylinder made of a non-magnetic material that covers the outer periphery of the plunger 30 on the outside of the cylinder 16, and the opening of the cylinder 16 is covered by a lid 33 provided with this cylinder 32.

34a 、s4bは前記筒32の先端開口端32aに固
着された固定鉄心であり34cはアルニコ磁石である。
34a and s4b are fixed iron cores fixed to the open end 32a of the cylinder 32, and 34c is an alnico magnet.

前記プランジャ3oと固定鉄心34aの闇には榎帰バネ
35を介在している。36は前記筒32の外側に固定的
に取り伺けられた電磁コイルであり、この電磁コイル3
6への通電制御により前記ホルダ26が1]1J記ノリ
ンダ16内を軸り向に摺動する。
A return spring 35 is interposed between the plunger 3o and the fixed iron core 34a. 36 is an electromagnetic coil fixedly installed outside the cylinder 32, and this electromagnetic coil 3
The holder 26 slides in the axial direction within the norinda 16 by controlling the energization to the holder 6.

そしてホルダ26の両端に収納されたスライダ11 . 22.23の端部に固定されたスライドシートリング2
4.25の位置は、第1図、第3図図示のホルダ26第
一の位置(電磁コイ/I/36無通電)において前記吸
入口16eと第一の導口1efを連通させ、電磁コイル
36の通電によりプランジャ30及びホルダ26を吸引
した第2の位置(第5図、第6図)において目IJ記吸
入口16aと第二の導口16gを連通させる如く設計さ
れている。
Sliders 11 . 22. Slide seat ring 2 fixed to the end of 23
4.25 position communicates the suction port 16e with the first inlet 1ef in the first position of the holder 26 shown in FIGS. 1 and 3 (electromagnetic coil/I/36 non-energized), and the electromagnetic coil In the second position (FIGS. 5 and 6) where the plunger 30 and the holder 26 are attracted by energization of the inlet 36, the suction port 16a and the second inlet 16g are designed to communicate with each other.

以上の様に構成された冷凍サイクル用の四方弁について
以外第1図〜第6図を用いてその動作を説明する。第1
図、第3図は電磁コイル36に非通電時の態様を示した
ものでプランジャ30は復帰バネ35の作用により図の
下方に付勢されてホルダ26が蓋18に当接して止まる
。この結果、ホルダ26及びその両端に収納されたスラ
イダ22゜23により形成されるトンネル状流路19a
により吸入口16eと第一の導口16fが連通されると
ともに、吐出口16aと第二の導口16(iもシリンダ
16の内部を通して連通される。従って冷媒ガスは、圧
縮機101−吐出パイプ19−第一の接続パイプ20−
室外器103−膨張弁−室内器1Q2→第二の接続バイ
ブ21−1−吸入バイブ1フ→圧縮機101の冷房ザイ
クル回路となる。
The operation of the four-way valve for the refrigeration cycle constructed as described above will be explained with reference to FIGS. 1 to 6. 1st
3 shows the condition when the electromagnetic coil 36 is not energized, and the plunger 30 is urged downward in the figure by the action of the return spring 35, and the holder 26 comes into contact with the lid 18 and stops. As a result, a tunnel-like flow path 19a formed by the holder 26 and the sliders 22 and 23 housed at both ends thereof.
The suction port 16e and the first inlet 16f are communicated with each other, and the discharge port 16a and the second inlet 16 (i) are also communicated through the inside of the cylinder 16.Therefore, the refrigerant gas is transferred from the compressor 101 to the discharge pipe. 19-First connection pipe 20-
Outdoor unit 103-expansion valve-indoor unit 1Q2→second connection vibe 21-1-suction vibe 1F→compressor 101 cooling cycle circuit.

次に電磁コイ/l/36を通電状態にするとプランジャ
30は固定鉄心34に吸着され、当接してL−まる。こ
の結果、ホルダ26及びその両端に収納されたスライダ
22.23により形成されるトンネル伏流路により吸入
口16cと第二の導口16gが連通されると共に、吐出
口16gと第一の専1」16dもシリンダ16の内部を
通して連通される。
Next, when the electromagnetic coil/l/36 is energized, the plunger 30 is attracted to the fixed iron core 34, comes into contact with it, and becomes L-shaped. As a result, the suction port 16c and the second inlet port 16g are communicated with each other by the tunnel underground passage formed by the holder 26 and the sliders 22.23 housed at both ends thereof, and the discharge port 16g and the first dedicated port 16g are communicated with each other. 16d is also communicated through the inside of the cylinder 16.

従って冷媒ガスは、圧縮機101−吐出バイブ19→第
二の接続パイプ21→室内器102→膨張弁−室外器1
03−第一の接続パイプ2o→吸入パイフ17−圧縮機
101の暖房ザイクル回路となる。
Therefore, the refrigerant gas is compressor 101 - discharge vibrator 19 -> second connection pipe 21 -> indoor unit 102 -> expansion valve - outdoor unit 1
03-first connection pipe 2o→suction pipe 17-becomes a heating cycle circuit of the compressor 101.

まだ、冷媒ガスが第一の接続バイブ2〇−吸入パイプ1
7の5経路上で、特にシリンダ16内から吐出口16g
を通過する際は、側壁の内面17bと同一面上の位置で
は吸入パイプ17の吐出口側先端面17aに当たること
なく、かっこの位置で13 、 流路面積は吸入パイプ17の内径面積より広い吐出口1
6gの開口面積と同一となるので、ずれた位置にある吐
出口側先端までの流れはゆるやかに絞られる。
The refrigerant gas is still connected to the first connection vibe 20 - suction pipe 1
7, especially from inside the cylinder 16 to the discharge port 16g.
When passing through 13, the flow path area is larger than the inner diameter area of the suction pipe 17 without hitting the tip surface 17a on the discharge port side of the suction pipe 17 at a position flush with the inner surface 17b of the side wall. Exit 1
Since the opening area is the same as that of 6g, the flow to the distal end on the discharge port side located at a shifted position is gently constricted.

以J二の様に本実施例によれば圧縮機の吐出側に接続さ
れる吸入口を有する第一のバルブシートと、室外側熱交
換器に接続される第一の導口及び室内側熱交換器に接続
される第二の導口を軸方向に並設する第二のバルブシー
トとを内面に平行して形成すると共に、圧縮機の吸入側
等へ接続される吐出口を有し前記両バルブシートに挟ま
れた側壁とから弁本体を形成するシリンダと、前記吐出
口と圧縮機の吸入側等を接続する吸入パイプと、前記シ
リンダ内を摺動し前v1シ吐出口と前記第一の導口、M
iI記吸入口と第二の導口または前記吐出口と前記第二
の導口、前記吸入口と第一の導口を切換えて連JIIJ
させるスライダを両端に収納し1−ンネル状流路を・連
成するホルダと、前記ホルダを往復動させるソレノイド
とを備え、前i己吸入パイプの吐出口11111先端間
の位1dは前記側壁の内面と同−而に対して前記側壁の
外面方向にずれている様構成したことにより、冷媒通路
を切換える様構成したことにより、システムの高低圧力
差が一対のスライダ22゜23及びホルダ26より成る
トンネル状流路の内外に加わってもスライダ22.23
の先端に設けたスライドシートリング24.25の作動
抗力(摩擦係数×作用力)は小さく、シリンダ16軸方
向に移動するために要する切換力は大幅に低減できる。
As shown in J2 below, according to this embodiment, there is a first valve seat having an inlet connected to the discharge side of the compressor, a first inlet connected to the outdoor heat exchanger, and an indoor heat exchanger. A second valve seat in which a second inlet connected to the exchanger is arranged in parallel in the axial direction is formed parallel to the inner surface, and a discharge port connected to the suction side of the compressor, etc. A cylinder that forms a valve body from side walls sandwiched between both valve seats, a suction pipe that connects the discharge port and the suction side of the compressor, and a cylinder that slides inside the cylinder and connects the front V1 discharge port and the First entrance, M
iI The inlet and the second inlet, the outlet and the second inlet, the inlet and the first inlet are switched and connected.
It is equipped with a holder that accommodates sliders at both ends to connect a channel-shaped flow path, and a solenoid that reciprocates the holder. By configuring the side wall to be offset in the direction of the outer surface with respect to the inner surface, and by configuring the refrigerant passage to be switched, the difference between the high and low pressures of the system can be reduced by the pair of sliders 22 and 23 and the holder 26. Slider 22.23 even if applied to the inside and outside of the tunnel-shaped flow path
The operating resistance (friction coefficient x acting force) of the slide seat rings 24 and 25 provided at the tips of the slide seat rings 24 and 25 is small, and the switching force required to move the cylinder 16 in the axial direction can be significantly reduced.

また低圧ガスがシリンダ16内から吐出口16qを通過
する際に、ガスの流れが直接、吸入パイプの先端部17
aに当たらずに吐出口内に流入することができるうえに
、流れが急激に1咬られることがないので圧力損失は小
さい。
Furthermore, when low-pressure gas passes through the discharge port 16q from inside the cylinder 16, the gas flow directly reaches the tip 17 of the suction pipe.
The pressure loss is small because the flow can flow into the discharge port without hitting the point a, and the flow is not suddenly interrupted.

発明の効果 以上の様に本発明は圧縮機の吐出側に接続される吸入口
を有する第一のバルブシー1−と、室外側慈父換器に接
続される第一の導口及び室内側X、!シ交換器に接続さ
れる第二の導口を軸方向に並設する第二のバルブシート
とを内面に平行して形成すると共に、圧縮機の吸入側寺
−\」妥絖される吐出口を15 、 有し前記両バノ;・ブンートに挟まれたiur+壁とか
ら弁本体を形成するシリンダと、前記吐出口と圧扁機の
吸入側等を接続する吸入パイプと、前記シリンダ内を摺
動し前記吐出口と前記第一の導り、前記吸入口と第二の
導口または前記吐出口と前記第二の導口、前記吸入口と
第一の導口を切換えて連通させるスライダを両端に収納
しトンネル状流路を2175輩成するホルダと、1)1
ノ記ホルダを往復動させるンレノイドとを(!fiiえ
、1)4I記吸入パイプの吐出[1側先端而の位置d、
前記側壁の内面と同−而に対して前記側壁の外面力面に
ずれている様に構成したことにより、システムの高低圧
力差が一対のスライダ及びホル・ダより成るl・ンネル
状流路内外に加わってもスライダの圧力受圧面を微小に
構成可能なためスライダ先端に設けたスライドシートリ
ングの作を助抗力(摩擦係=dx作用力)は小さく、シ
リンダ軸方向に+8動するために要する切換力が大幅に
低減でき、弁交換を従来の如くパイロ、トバルブを用い
なくとも可能となり大巾な低コスト化、小型化2作動信
頼性向上が図れる。
Effects of the Invention As described above, the present invention provides a first valve seat 1- having a suction port connected to the discharge side of a compressor, a first valve seat 1- having a suction port connected to an outdoor side ventilation exchanger, and an indoor side X ,! A second inlet connected to the exchanger is formed parallel to the inner surface of the second valve seat, which is arranged in parallel with the second valve seat in the axial direction, and a discharge port is arranged on the suction side of the compressor. 15, having both the vanes; - a cylinder forming a valve body from the iur + wall sandwiched between the vanes; a suction pipe connecting the discharge port and the suction side of the compressing machine; A slider that slides to switch and communicate the discharge port and the first guide, the suction port and the second guide, or the discharge port and the second guide, and the suction port and the first guide. A holder that stores 2175 channels at both ends and forms 2175 tunnel-like channels;
(1) The discharge of the suction pipe [1 side tip position d,
By configuring the outer force surface of the side wall to be offset from the same as the inner surface of the side wall, the difference between high and low pressures in the system can be created between the inside and outside of the tunnel-shaped flow path made up of a pair of sliders and holders. Since the pressure-receiving surface of the slider can be made very small even when the pressure is applied to the slider, the auxiliary force (coefficient of friction = dx acting force) is small, and it is necessary to move +8 in the cylinder axial direction. The switching force can be significantly reduced, and valve replacement can be done without using a pyro-valve as in the past, resulting in significant cost reduction, miniaturization, and improved operational reliability.

丑だ、低圧ガスがシリンダから吐出口を通過する際に、
ガスの流れが直接吸入パイプの先端面に当たらずに吐出
口内に流入することができるうえに流れが急激に絞られ
ることがないので圧力損失は小さく、従ってシステム効
率低下の少ない冷凍サイクル用四方弁を提供できるもの
である。
Unfortunately, when low-pressure gas passes from the cylinder to the discharge port,
A four-way valve for refrigeration cycles that allows the gas flow to flow into the discharge port without directly hitting the tip of the suction pipe, and the flow is not suddenly constricted, resulting in small pressure loss and less system efficiency loss. It is possible to provide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における冷凍ザイクル用四カ
弁の冷房1べ態を示す断面図、第2図は第1図の要部拡
大断面図、第3図は第1図の弁切換機構を示す要部側視
図、第4図は第1図のX −X/方向の部分断面図、第
6図は第1図の暖房状態を示す断面図、第6図は第6図
のY−Y/力方向部分断面図、第7図は従来の冷凍サイ
クル用四方弁の断面図である。 16・・・・・・シリング゛、16g・・・・・・吐出
口、16a。 16b・・・・・・第[二のパルプシー1−116c・
・・・・・吸入口、1ed、16e・・・・・・第一、
第二の導口、16f・・・・・・側壁、17・・・・・
・吸入パイプ、17a・・・・・・吐出口側先端面、1
01・・・・・・圧縮機。 (N
FIG. 1 is a cross-sectional view showing one cooling unit of a four-valve cooling cycle according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the main part of FIG. 1, and FIG. 4 is a partial sectional view in the X-X/direction of FIG. 1; FIG. 6 is a sectional view showing the heating state of FIG. 1; FIG. FIG. 7 is a sectional view of a conventional four-way valve for a refrigeration cycle. 16... Schilling, 16g... Discharge port, 16a. 16b... No. 2 Pulp Sea 1-116c.
...Intake port, 1ed, 16e...First,
Second inlet, 16f...Side wall, 17...
・Suction pipe, 17a...Discharge port side tip surface, 1
01... Compressor. (N

Claims (1)

【特許請求の範囲】[Claims] 圧縮機の吐出側に接続される吸入口を有する第一のバル
ブシートと、室外側熱交換器に接続される第一の導口及
び室内側熱交換器に接続される第二の導口を軸方向に並
設する第二のバルブシートとを内面に平行して形成する
と共に、圧縮機の吸入側等へ接続される吐出口を有し前
記両バルブシートに挟まれた側壁とから弁本体を形成す
るシリンダと、前記吐出口と圧縮機の吸入側等を接続す
る吸入パイプと、前記シリンダ内を摺動し前記吐出口と
前記第一の導口、前記吸入口と第二の導口または前記吐
出口と前記第二の導口、前記吸入口と第一の導口を切換
えて連通させるスライダを両端に収納しトンネル状流路
を構成するホルダと、前記ホルダを往復動させるソレノ
イドとを備え、前記吸入パイプの吐出口側先端面の位置
は前記側壁の内面と同一面に対して前記側壁の外面方向
にずれていることを特徴とする冷凍サイクル用四方弁。
A first valve seat having an inlet connected to the discharge side of the compressor, a first inlet connected to an outdoor heat exchanger, and a second inlet connected to an indoor heat exchanger. A valve main body is formed from a side wall sandwiched between the two valve seats, and has a discharge port connected to the suction side of the compressor, etc. a suction pipe that connects the discharge port and the suction side of the compressor, and a suction pipe that slides within the cylinder and connects the discharge port and the first inlet, and the suction port and the second inlet. or a holder configured to form a tunnel-like flow path by housing sliders at both ends to switch and communicate the discharge port and the second guide port, and the suction port and the first guide port, and a solenoid that reciprocates the holder; A four-way valve for a refrigeration cycle, characterized in that the position of the distal end surface of the suction pipe on the discharge port side is shifted toward the outer surface of the side wall with respect to the same surface as the inner surface of the side wall.
JP63286187A 1988-11-11 1988-11-11 Four-way valve for freezing cycle Pending JPH02133763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286187A JPH02133763A (en) 1988-11-11 1988-11-11 Four-way valve for freezing cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286187A JPH02133763A (en) 1988-11-11 1988-11-11 Four-way valve for freezing cycle

Publications (1)

Publication Number Publication Date
JPH02133763A true JPH02133763A (en) 1990-05-22

Family

ID=17701075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286187A Pending JPH02133763A (en) 1988-11-11 1988-11-11 Four-way valve for freezing cycle

Country Status (1)

Country Link
JP (1) JPH02133763A (en)

Similar Documents

Publication Publication Date Title
WO2006118052A1 (en) Selector valve
KR920008025B1 (en) Slide valve
AU623069B2 (en) Four-way slide valve
JPH02133763A (en) Four-way valve for freezing cycle
JPH01155163A (en) Four-way valve for refrigeration cycle
JP2001208224A (en) Four-way control valve
JPS62196475A (en) Four-way valve for refrigerating cycle
JPS63210478A (en) Four-way valve for refrigeration cycle
CN114704670B (en) Electromagnetic reversing valve and main valve thereof
JPH028566A (en) Four-way valve for refrigerating cycle
JPS63285380A (en) Four-way valve for refrigerating cycle
JPH02120581A (en) Four-way valve for refrigerating cycle
JPH0132389B2 (en)
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS62177374A (en) Four-way valve for regrigerating cycle
JPS63203978A (en) Four way type valve for refrigerating cycle
JPS62180184A (en) Four-way valve for refrigerating cycle
JPS6372974A (en) Four-way valve
JPS63145879A (en) Four-way valve for refrigeration cycle
JPH0297783A (en) Four-way valve for refrigerating cycle
JPS62101977A (en) Four way type valve for refrigerating cycle
JPS63180779A (en) Four-way valve for refrigerating cycle
JPS62124368A (en) Four-way valve for refrigerating cycle
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS62184288A (en) Four way valve for refrigerating cycle