JPS63195205A - Method for charging raw material in bell type blast furnace - Google Patents

Method for charging raw material in bell type blast furnace

Info

Publication number
JPS63195205A
JPS63195205A JP2797087A JP2797087A JPS63195205A JP S63195205 A JPS63195205 A JP S63195205A JP 2797087 A JP2797087 A JP 2797087A JP 2797087 A JP2797087 A JP 2797087A JP S63195205 A JPS63195205 A JP S63195205A
Authority
JP
Japan
Prior art keywords
raw material
furnace
armor plate
blast furnace
armor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2797087A
Other languages
Japanese (ja)
Inventor
Keiichiro Tokuda
徳田 慶一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2797087A priority Critical patent/JPS63195205A/en
Publication of JPS63195205A publication Critical patent/JPS63195205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To enable measuring of dropping curve of raw material into a furnace from a large bell with high accuracy and to improve the furnace operation result by controlling distribution of the raw material in the furnace, by detecting shocking force to an armor plate by the dropped raw material from the large bell in a bell type raw material charging apparatus in the blast furnace. CONSTITUTION:When the raw material 9 in the large bell drops in the blast furnace by descending the large bell 2 of the bell type raw material charging apparatus in the blast furnace, after the raw material collides with the armor plate 11 of a movable armor 1 hung from a hanging tool 12 fitted at an iron shell 19, the raw material layer 8 is formed in the furnace. In this case, an external force at the time, when the raw material collides wit the armor plate 11, gives a shaft 15 through a pushing rod 13 and a lever 14 supporting the movable armor 1 the torsional deformation. This deformation quantity is detected by a detector and then the position, where the raw material collides to the armor plate 11, is detected, and by shifting a driving ring 16, the pushing rod 13 is shifted through the lever 14, to control angle of the armor plate 11, and by suitably controlling the distribution of the raw material in the blast furnace, the furnace condition of the blast furnace is stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベル式炉頂装入装置において、大ベルから落
下する原料のムーバブルアーマプレートへの衝突位置を
精度よく検出することにより、高炉内の原料分布を制御
する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a bell-type furnace top charging device that accurately detects the collision position of raw material falling from a large bell against a movable armor plate. The present invention relates to a method for controlling the distribution of raw materials within a container.

〔従来の技術〕[Conventional technology]

一般にベル式炉頂装入装置においては、原料分布が所望
の形状となるように調節するためにムーバブルアーマが
設置されている。
Generally, in a bell-type furnace top charging device, a movable armor is installed in order to adjust the raw material distribution to a desired shape.

第1図は、このベル式炉頂装入装置の全体図である。大
ベルホッパ内の原料9は大ベル2が開くと同時に炉内に
装入される。炉内への原料落下位置は、原料が衝突する
アーマプレート11をもつムーバブルアーマ1の位置を
任意に変えることにより、調整可能である。このように
アーマプレートlの設定位置は、炉内の原料分布に大き
な影響を与え、炉内ガス分布等高炉操業を左右する。
FIG. 1 is an overall view of this bell-type furnace top charging device. The raw material 9 in the large bell hopper is charged into the furnace at the same time as the large bell 2 is opened. The position at which the raw material falls into the furnace can be adjusted by arbitrarily changing the position of the movable armor 1 having the armor plate 11 against which the raw material collides. As described above, the setting position of the armor plate l has a great influence on the distribution of raw materials in the furnace, and influences the operation of the blast furnace, such as the gas distribution in the furnace.

しかし、従来、大ベルからアーマプレートへの原料の落
下位置は明確に把握されていたとは言い難く、経験的に
アーマプレートの位置を設定し。
However, in the past, it was difficult to say that the position where the raw material fell from the large bell to the armor plate was clearly understood, so the position of the armor plate was determined empirically.

しかるのち、ウェイト懸吊式プロフィール計6等で原料
分布を測定したり、ガスサンプラ7によって、炉内原料
8の分布を推定していた。
Thereafter, the distribution of the raw material was measured using a weight-suspended profile meter 6 or the like, and the distribution of the raw material 8 in the furnace was estimated using the gas sampler 7.

このような問題点を解決するため、1高炉におけるベル
式装入方法」 (特公昭59−41481)が提案され
ている。これは原料を質点として地えた力学の式から大
ベルからの落下曲線式を求め、−これからムーバブルア
ーマの使い方をコントロールしようとするものである。
In order to solve these problems, a bell-type charging method for blast furnaces (Japanese Patent Publication No. 59-41481) has been proposed. This is an attempt to determine the fall curve formula from a large bell from a mechanical formula based on the raw material as a mass point, and to control the use of movable armor from this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、特公昭59−41481においては、落
下曲線式に多くの不確定要因を含んでいるため、長期間
に亘ってこの式から落下曲線を推定することは困難であ
る。
However, in Japanese Patent Publication No. 59-41481, the fall curve formula includes many uncertain factors, so it is difficult to estimate the fall curve from this formula over a long period of time.

具体的には、大ベル2と大ベルホッパ内原料9との摩擦
係数用は、鉱石とコークスで違ってくるし、原料の粒度
構成、さらにはライナー等の摩耗状況によっても変化す
る。さらに原料の初速度voも上記の原因で畠然変化し
てしまう、また、大ベル2の周方向に亘って原料の粒度
1重量偏析があるため、全周に亘って落下曲線を推定す
るには無理がある。
Specifically, the coefficient of friction between the large bell 2 and the raw material 9 in the large bell hopper differs between ore and coke, and also changes depending on the particle size structure of the raw material and the state of wear of the liner and the like. Furthermore, the initial velocity vo of the raw material changes drastically due to the above reasons, and there is particle size 1 weight segregation of the raw material over the circumferential direction of the large bell 2, so it is difficult to estimate the falling curve over the entire circumference. It's impossible.

以上のような原因のため、原料を質点として把えた力学
の式から求めた落下曲線は実際のものとは相違し、これ
を用いた原料分布制御には限界があると言わざるを得な
い。
Due to the above-mentioned causes, the drop curve obtained from the mechanical formula that considers the raw material as a mass point differs from the actual one, and it must be said that there are limits to the raw material distribution control using this.

本発明は、従来推定の城を出なかった大ベルからの落下
曲線を精度よく測定することにより、炉内原料分布を制
御し、ひいては高炉操業fIt&iを向上しようとする
ものである。
The present invention aims to control the raw material distribution in the furnace and improve the blast furnace operation fIt&i by accurately measuring the falling curve from the large bell, which has not exceeded the conventional estimation.

〔問題点を解決するための手段〕[Means for solving problems]

すなりち本発明では大ベルから落下した原料がアーマプ
レートに衝突する際の衝撃力をアーマ駆動部に取り付け
られたトルク計等により検出する。この検出器からの信
号の有無によって、原料のアーマプレートへの衝突の有
無を判定でき、また検出信号の大きさからアーマプレー
トの当り位置を推定することができる。この当りとアー
マ位置から原料の落下曲線を精度よく推定することがで
きる。これらの情報に基づいて、炉内原料分布制御を行
う。
In the present invention, the impact force when the raw material falling from the large bell collides with the armor plate is detected by a torque meter or the like attached to the armor drive section. Depending on the presence or absence of a signal from this detector, it is possible to determine whether or not the raw material has collided with the armor plate, and from the magnitude of the detection signal, it is also possible to estimate the impact position of the armor plate. The falling curve of the raw material can be estimated with high accuracy from this hit and the armour position. Based on this information, the raw material distribution in the furnace is controlled.

〔作用〕[Effect]

以下本発明の具体的内容を作用と共に説明する。第2図
はムーバブルアーマの平面図、第3図はその側面図であ
る。アーマプレート11は吊り金具12に引掛けられて
おり、吊り金具12は鉄皮19に上端を支持され、ブツ
シュロッドL3はピン12aによってアーマプレートの
下端を支持している。アーマプレート11の位置の設定
はブツシュロッド13.レバー14、軸15を介して駆
動リング16を炉周方向に移動することにより行われる
。この移動は、油圧シリンダ等により行われ、またアー
マプレートは炉周方向に亘って多数設置されているため
、駆動リングは数分割して多数の油圧シリンダで数枚の
アーマプレートを同時に動かすことが多い。
The specific content of the present invention will be explained below along with its operation. FIG. 2 is a plan view of the movable armor, and FIG. 3 is a side view thereof. The armor plate 11 is hung on a hanging metal fitting 12, the upper end of the hanging metal fitting 12 is supported by an iron skin 19, and the bushing rod L3 supports the lower end of the armor plate by a pin 12a. The position of the armor plate 11 is set by the bushing rod 13. This is done by moving the drive ring 16 in the furnace circumferential direction via the lever 14 and shaft 15. This movement is performed by hydraulic cylinders, etc., and since many armor plates are installed along the circumference of the furnace, the drive ring can be divided into several parts and multiple hydraulic cylinders can move several armor plates at the same time. many.

大ベルからの原料の落下は、アーマプレート11が静止
の状態、つまり駆動リング16を保持した状態で行われ
る。従って、原料がアーマプレートllに衝突した際の
外力は、ブツシュロッド13からレバー14に伝わり、
軸15にねじり変形を与える。従って、このねじり変形
量を測定できるトルク検出器17を輌15に設け、この
検出信号により、原料のアーマプレートllへの衝突の
有無を知ることができる。
The raw material is dropped from the large bell while the armor plate 11 is stationary, that is, the drive ring 16 is held. Therefore, the external force when the raw material collides with the armor plate ll is transmitted from the bushing rod 13 to the lever 14,
Torsional deformation is applied to the shaft 15. Therefore, a torque detector 17 capable of measuring the amount of torsional deformation is provided in the vehicle 15, and from this detection signal, it is possible to know whether or not the raw material has collided with the armor plate ll.

さらには吊り金具12は上下2点支持された両端ビン1
2a、12b (第1図)支持構造の梁であるため、原
料のアーマプレート11への衝突位置、つまり梁に加わ
る外力の位置によって、ブツシュロッド13に加わる外
力が変わる。故にトルク検出器17の検出量によって、
原料がアーマプレートに当る位置を知ることが可能であ
る。モしてアーマプレートllの位置は、駆動リング1
6の移動量やレバー14の回転角によって容易に測定可
能であるから、衝突位置を求めることができ、これと大
ベル2の下端を2次曲線等の回帰曲線で結ぶことにより
、大ベルからの原料落下曲線を求めることが可能である
Furthermore, the hanging fitting 12 is supported at two points, upper and lower, by the bin 1 at both ends.
2a, 12b (FIG. 1) Since these are beams of the support structure, the external force applied to the bushing rod 13 changes depending on the collision position of the raw material against the armor plate 11, that is, the position of the external force applied to the beam. Therefore, depending on the amount detected by the torque detector 17,
It is possible to know where the raw material hits the armor plate. The position of the armor plate ll is determined by the drive ring 1.
6 and the rotation angle of the lever 14, the collision position can be determined, and by connecting this and the lower end of the large bell 2 with a regression curve such as a quadratic curve, it is possible to determine the collision position from the large bell. It is possible to obtain the raw material fall curve of

〔実施例〕〔Example〕

本発明により測定した最大トルク量とアーマプレート位
置(吊金具角度)との関係を第4図に示す0図中実線は
鉱石、破線はコークスに関するものである0例えば鉱石
の測定値に関して見れば。
The relationship between the maximum torque amount measured by the present invention and the armor plate position (hanging fitting angle) is shown in FIG. 4. The solid line in FIG. 4 is for ore, and the broken line is for coke.

アーマプレート位置が■、■ではトルクは検出されず、
原料はアーマプレートに衝突していないことが容易に分
かる。■の位置で最大トルクを検出しており、アーマプ
レート最下端に衝突しており、以下アーマプレートを炉
内側へ押し出すに従い、トルク量は、はぼ線形関係で減
少している。
Torque is not detected when the armor plate position is ■ or ■.
It is easily seen that the raw material does not collide with the armor plate. The maximum torque is detected at the position (2), where it collides with the lowest end of the armor plate, and as the armor plate is pushed further into the furnace, the torque amount decreases in a more or less linear relationship.

またコークスは、鉱石よりもより炉外側でアーマプレー
トと衝突していることが分かり、鉱石よりも遠方に落下
している。これはコークスの粒度が鉱石よりも大きく、
大ベル上からの初期速度が大きいことと、鉱石よりも大
ベルとの摩擦係数が小さいためと思われる。
It was also found that the coke collided with the armor plate further outside the furnace than the ore, and fell further away than the ore. This is because the coke particle size is larger than the ore.
This seems to be because the initial velocity from the top of the large bell is high and the coefficient of friction with the large bell is smaller than that of the ore.

この測定結果をもとに、原料落下曲線を描いたのが第5
図である。各アーマプレート位置■〜■における原料の
当り位置は次のようにして求めた。最大トルク検出位置
(この例では鉱石で■、コークスで■の位置)でアーマ
プレート吊金具の支点であるブツシュロッドの高さに衝
突しているものと仮矩し、このトルク量をもとに順次筒
中な材料力学計算によってアーマプレートとの衝突位置
を求めることができる。このようにして求めた各アーマ
プレート位置における原料衝突位置を2次の回帰式で推
定したのが、鉱石に関して実線。
Based on this measurement result, the material fall curve was drawn in the fifth step.
It is a diagram. The contact position of the raw material at each armor plate position (■) to (■) was determined as follows. It is assumed that the maximum torque detection position (in this example, the position ■ for ore and the position ■ for coke) is colliding with the height of the bush rod, which is the fulcrum of the armor plate hanging fixture, and the torque is sequentially calculated based on this torque amount. The collision position with the armor plate can be determined by in-cylinder material mechanics calculations. The raw material collision position at each armor plate position obtained in this way was estimated using a quadratic regression equation, and the solid line for ore is shown.

コークスに関して破線である。これからもコークスが鉱
石よりも遠方に飛んでいることが分かる。
Dashed line for coke. From now on, we can see that coke is flying farther than ore.

また周方向に亘って多数のトルク計を付けることにより
、周方向の原料落下分布も推定できた。この情報をもと
に各アーマプレートの押し出し量を調整し、炉内原料の
周方向アンバランスも解消することができた。
Furthermore, by attaching a large number of torque meters along the circumferential direction, it was also possible to estimate the distribution of material fall in the circumferential direction. Based on this information, we were able to adjust the extrusion amount of each armor plate and eliminate the circumferential unbalance of the raw materials in the furnace.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明により、大ベルからの原料落下位置
を精度よく推定することができるようになり、ムーバブ
ルアーマの制御効果が明確となり、高炉内の原料分布制
御が容易となった。これにより、炉内ガス流れ等高炉操
業を容易にコントロールできるようになり、ガス利用率
の向上、燃料費の低減等多大の成果を上げることができ
た。
As described above, according to the present invention, it has become possible to accurately estimate the position where the raw material falls from the large bell, the control effect of the movable armor has become clear, and the raw material distribution control in the blast furnace has become easier. This has made it possible to easily control blast furnace operations such as the flow of gas inside the furnace, resulting in significant results such as improved gas utilization and reduced fuel costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベル式炉頂装入装置全体図、第2図はムーバブ
ルアーマ全体平面図、第3図はムーバブルアーマ全体側
面図、第4図はトルク検出例を示すグラフ、第5図は大
ベルからの落下曲線を表わす説明図である。 1・・・ムーバブルアーマ 2・・・大ベル6・・・プ
ロフィール計  7・・・ガスサンプラ8・・・炉内原
料 9・・・大ベルホッパ内原料 11・・・アーマプレー)  12・・・吊金具13・
・・ブツシュロッド
Figure 1 is an overall view of the bell-type furnace top charging device, Figure 2 is a plan view of the entire movable armor, Figure 3 is a side view of the entire movable armor, Figure 4 is a graph showing an example of torque detection, and Figure 5 is a large It is an explanatory view showing a falling curve from a bell. 1... Movable armor 2... Large bell 6... Profile meter 7... Gas sampler 8... Raw material in the furnace 9... Raw material in the large bell hopper 11... Armor play) 12... Hanging Metal fittings 13・
・Butschrod

Claims (1)

【特許請求の範囲】 1、高炉の炉口部に設置されたリンク機構を有するムー
バブルアーマを使用して炉内に大ベルから原料を装入す
るに際し、アーマプレートに加わる外力を測定し、該測
定信号から アーマプレートへの原料衝突の有無を検出すると共に、
アーマプレートの当り位置を検出して大ベルからの落下
曲線を推定し、該検出および推定に基づいて高炉内の原
料分布を制御することを特徴とするベル式高炉における
原料装入方法。
[Claims] 1. When charging raw materials into the furnace from a large bell using a movable armor having a link mechanism installed at the mouth of the blast furnace, the external force applied to the armor plate is measured, and the external force applied to the armor plate is measured. In addition to detecting the presence or absence of material collision with the armor plate from the measurement signal,
A method for charging raw materials in a bell-type blast furnace, characterized by detecting the contact position of an armor plate, estimating a falling curve from a large bell, and controlling the distribution of raw materials in the blast furnace based on the detection and estimation.
JP2797087A 1987-02-09 1987-02-09 Method for charging raw material in bell type blast furnace Pending JPS63195205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2797087A JPS63195205A (en) 1987-02-09 1987-02-09 Method for charging raw material in bell type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2797087A JPS63195205A (en) 1987-02-09 1987-02-09 Method for charging raw material in bell type blast furnace

Publications (1)

Publication Number Publication Date
JPS63195205A true JPS63195205A (en) 1988-08-12

Family

ID=12235740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2797087A Pending JPS63195205A (en) 1987-02-09 1987-02-09 Method for charging raw material in bell type blast furnace

Country Status (1)

Country Link
JP (1) JPS63195205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005196A1 (en) 1996-08-01 1998-02-12 M & M Laboratory Co., Ltd. Water-holding carrier for plants
US6427378B1 (en) 1995-09-05 2002-08-06 Yasuhiro Obonai Support for cultivating plant and method of growing plant
JP2020015935A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method of measuring drop position of blast furnace burden, method of charging blast furnace burden, and charging system for blast furnace burden

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427378B1 (en) 1995-09-05 2002-08-06 Yasuhiro Obonai Support for cultivating plant and method of growing plant
WO1998005196A1 (en) 1996-08-01 1998-02-12 M & M Laboratory Co., Ltd. Water-holding carrier for plants
US6286254B1 (en) 1996-08-01 2001-09-11 Mebiol Inc. Water-holding carrier for plants
JP2020015935A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method of measuring drop position of blast furnace burden, method of charging blast furnace burden, and charging system for blast furnace burden

Similar Documents

Publication Publication Date Title
US4470292A (en) Shot peening intensity detector
Powell The effect of liner design on the motion of the outer grinding elements in a rotary mill
Bolshakov et al. Study of the Flow of Burden Materials and their Distribution on the Furnace Top of a Modern Blast Furnace.
Chen et al. A review of burden distribution models of blast furnace
JPS63195205A (en) Method for charging raw material in bell type blast furnace
CN107024254B (en) A kind of full-automatic intelligent fuzzy controller storage measuring device
KR20100076394A (en) Apparatus for measuring level of blast furnace bucket material
JP2727563B2 (en) Blast furnace operation method
CN106111932B (en) A kind of molten steel weighing mechanism
Cheng et al. Blast furnace chute visual detection based on mechanism model: Part 1: Analysis of chute wear based on discrete element method
Matsui et al. Stabilizing burden trajectory into blast furnace top under high ore to coke ratio operation
JPH0339477Y2 (en)
Steyls et al. Measurement of the material trajectories in bell-less top charging
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
JP2783006B2 (en) Method of measuring raw material charging time in bellless blast furnace charging equipment
JPH0586446B2 (en)
US3184952A (en) Method and apparatus for determining coke strength
JPS5931562B2 (en) Raw material distribution control device in blast furnace
JPH06271916A (en) Method for measuring slag level in blast furnace
JP2703682B2 (en) Calculation method of raw material behavior torque on distribution chute in bellless blast furnace
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JPS6421009A (en) Method for charging raw material in blast furnace
JP3063996B2 (en) Operating method of flash furnace
KR100232300B1 (en) Method and apparatus for charging bell-less top furnace
JPS6191307A (en) Detection of descending of charge in blast furnace