JPH0586446B2 - - Google Patents

Info

Publication number
JPH0586446B2
JPH0586446B2 JP7881086A JP7881086A JPH0586446B2 JP H0586446 B2 JPH0586446 B2 JP H0586446B2 JP 7881086 A JP7881086 A JP 7881086A JP 7881086 A JP7881086 A JP 7881086A JP H0586446 B2 JPH0586446 B2 JP H0586446B2
Authority
JP
Japan
Prior art keywords
furnace
charge
reactor
surface layer
descent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7881086A
Other languages
Japanese (ja)
Other versions
JPS62235404A (en
Inventor
Ryuichi Hori
Reiji Ono
Mitsutoshi Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7881086A priority Critical patent/JPS62235404A/en
Publication of JPS62235404A publication Critical patent/JPS62235404A/en
Publication of JPH0586446B2 publication Critical patent/JPH0586446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、堅型炉内の装入物の挙動、特に表層
部のなだれ状況を正確に検出する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for accurately detecting the behavior of a charge in a vertical furnace, particularly the avalanche situation in the surface layer.

[従来の技術] 堅型炉、例えば高炉には、鉱石類とコークスが
交互に装入され、下方より上昇する高温還元ガス
によつて酸化鉄の還元が行なわれる。生成した鉄
及びスラグは夫々溶融して炉底部に滴下し、断続
的又は連続的に炉外へ取り出される。従つて装入
された鉱石類等の装入物は前記還元反応の進行に
応じて徐々に降下し、その降下に対応して新しい
装入物が装入される。
[Prior Art] In a vertical furnace, such as a blast furnace, ores and coke are alternately charged, and iron oxide is reduced by high-temperature reducing gas rising from below. The produced iron and slag are respectively melted and dripped onto the bottom of the furnace, and are taken out of the furnace intermittently or continuously. Therefore, the charged materials such as ores are gradually lowered as the reduction reaction progresses, and new materials are introduced in response to the lowering.

この様な炉内装入物降下状況及び新規装入状況
は当然ながら装入物の層厚分布を左右するが、こ
れらの層厚分布と操炉状況との間には顕著な相関
が認められ、ガス流の状況や軟化融着帯の形状等
にも大きな影響を与えることが分かつている。そ
の為装入物が現在どの様な状態で堆積されている
かを知ることは、新規装入物の装入落下位置制御
を適切に実施する為にも重要なことであり、これ
によつて適正堆積状態の維持並びに操炉制御の安
定を図ることが可能となるのである。尚装入物の
落下位置制御方法としてはベル式装入におけるア
ーマープレートの調整方法、或はベルレス式装入
における回転シユートの調整方法等が実施されて
いる。しかし例えばベル式装入におけるアーマー
プレートの操作と装入物堆積状況との関係はモデ
ル実験的に知られているのみであり、実炉操業下
における堆積状況がこれだけでコントロールでき
ている訳ではなく、実炉における堆積状況の正確
な検出は、装入制御の高精度化を図る上でもぜひ
必要なこととされている。
Naturally, the condition of the falling charge in the furnace and the condition of new charging affect the layer thickness distribution of the charge, but there is a remarkable correlation between the layer thickness distribution and the condition of the furnace operation. It is known that it has a great influence on the gas flow conditions and the shape of the softened cohesive zone. Therefore, it is important to know in what state the charges are currently being deposited in order to properly control the position of the new charges. This makes it possible to maintain the deposition state and stabilize reactor operation control. As a method for controlling the falling position of the charge, methods such as adjusting an armor plate in bell-type charging, or adjusting a rotary chute in bellless-type charging have been implemented. However, for example, the relationship between the operation of the armor plate in bell-type charging and the charge deposition situation is only known from model experiments, and this does not mean that the deposition situation in actual reactor operation can be controlled by this alone. Accurate detection of the deposition status in actual reactors is considered essential for achieving high accuracy in charging control.

この様なところから、炉内の装入物積層状況を
具体的に且つ正しく承知する為の手段として、特
公昭58−18433号公報や特公昭58−18591号公報に
記載される様な炉内装入物の表層位置測定装置
(以下プロフイールメーターということがある)
が提案されている。第2図は該装置及びこれによ
る炉内状況検出方法を示す為の概略説明図で、図
示部分は高炉々頂部を表わしている。第2図にお
いて鉄皮1の内面には耐火材2が内張されると共
に大ベル3から落下する装入物は、装入物の落下
位置を調整するアーマープレート8によつて規制
されながら落下し原料層4を形成する。尚アーマ
ープレート8は図面の左右方向に移動し、炉心に
近づけると原料層4の表面は炉心側で高い堆積状
態となり、炉心から遠ざけると炉壁側で高い堆積
状態が得られる。一方プロフイールメーターは、
鉄皮1の貫通孔10にランス9を進退自在に取付
けてなり、ランス9からは先端に重錘7を設けた
ワイヤ6が複数本垂下されている。そしてワイヤ
6の後端は夫々ドラム(図示せず)に巻付けら
れ、且つワイヤ6単独の重量よりはやや強いが、
ワイヤ6と重錘7を合わせた総重力よりも弱いバ
ツクテンシヨンが与えられている。従つて各重錘
7が原料層4の上に着床するとワイヤ6の繰り出
しが停止され、ワイヤ6にたるみを生じることは
ない。そして高炉還元反応の進行によつて原料層
が徐々に降下しはじめると、重錘7は各々自重に
よつてそれに追従し、ワイヤ6にたるみを生じな
い状況を維持しつつ降下しワイヤ6が繰り出され
ていく。従つてこの追従速さあるいは追従降下量
を、上記ドラムの回転周速度や回転角等によつて
検知すれば、原料層4の降下状況を知ることがで
き、こうして得た検知結果を総合すれば装入物の
積層状況の変化を把握することができ、操業条件
のコントロールに利用することができる。ベルレ
ス装入方式においても実質的に同じ様に操業され
ている。
From this point of view, as a means to concretely and correctly understand the charge stacking situation in the furnace, the furnace interior as described in Japanese Patent Publication No. 18433/1983 and No. 18591/1983 is recommended. Device for measuring the surface position of containers (hereinafter sometimes referred to as profile meter)
is proposed. FIG. 2 is a schematic explanatory diagram showing the apparatus and the method for detecting the condition inside the furnace using the apparatus, and the illustrated part represents the top of the blast furnaces. In Figure 2, the inner surface of the steel shell 1 is lined with a refractory material 2, and the charge falling from the large bell 3 is regulated by an armor plate 8 that adjusts the falling position of the charge. Then, a raw material layer 4 is formed. It should be noted that the armor plate 8 moves in the left-right direction in the drawing, and as it approaches the reactor core, the surface of the raw material layer 4 becomes highly deposited on the core side, and as it moves away from the reactor core, a highly deposited state is obtained on the reactor wall side. On the other hand, Profilemeter is
A lance 9 is attached to a through hole 10 of a steel shell 1 so as to be movable forward and backward, and a plurality of wires 6 each having a weight 7 at the tip are suspended from the lance 9. The rear ends of the wires 6 are each wound around a drum (not shown), and are slightly stronger than the weight of the wires 6 alone.
A back tension weaker than the total gravity of the wire 6 and the weight 7 is applied. Therefore, when each weight 7 lands on the raw material layer 4, the feeding of the wire 6 is stopped, and the wire 6 does not become slack. As the raw material layer gradually begins to fall as the blast furnace reduction reaction progresses, the weights 7 follow it due to their own weight, and descend while maintaining the wire 6 without slack, allowing the wire 6 to pay out. It goes down. Therefore, by detecting this follow-up speed or follow-up drop amount based on the rotational circumferential speed, rotation angle, etc. of the drum, it is possible to know the descending status of the raw material layer 4, and by integrating the detection results obtained in this way, It is possible to grasp changes in the stacking status of charges, which can be used to control operating conditions. Bellless charging systems operate in substantially the same manner.

[発明が解決しようとする問題点] しかるに炉内の原料層降下状況は想像されてい
る以上に複雑であり、装入物の降下が還元反応の
進行による自然降下だけで説明される程に単純な
ものであるならば、上記炉内状況検出方法だけで
も十分適切な対応が可能なはずであるが、実情で
は必ずしも炉内状況を正確に把握できているとは
言えず上記検出に従つた制御を行なつていても操
炉状態が悪化することがしばしば経験された。本
発明者等はこうした自体に鑑みその原因を明らか
にすべく色々なモデル実験を行なつた。その結果
によると、大ベル3(回転シユートの場合を含
む、以下同じ)から落下・堆積した原料層4のう
ち、炉壁側装入物が表層なだれ状の現象を引き起
こして炉心部側へ流れ込む現象が起こつており、
これが炉内状況の正確な把握を困難にしているこ
とが分かつた。即ち上述した様な従来の炉内状況
検出方法では、このなだれ現象等の影響が全く考
慮されておらず、重錘7がなだれに伴つて偏位し
た状態とまつすぐ下に降下した状態を区別するこ
とをしていない。即ち検出結果は実情を正しく反
映しているとはいえず、検出結果をそのまま信頼
することは極めて危険であることが判明した。
[Problems to be solved by the invention] However, the situation in which the material layer descends inside the furnace is more complex than expected, and is so simple that the descent of the charge can be explained only by natural descent due to the progress of the reduction reaction. If this is the case, then the method for detecting the situation inside the reactor should be enough to take appropriate measures, but in reality, it cannot be said that the situation inside the reactor is always accurately grasped, and the control according to the above detection is necessary. It was often experienced that the operating condition of the reactor deteriorated even after carrying out these measures. In view of this fact, the present inventors conducted various model experiments in order to clarify the cause. According to the results, among the raw material layer 4 that fell and accumulated from the large bell 3 (including the case of a rotating chute, the same applies hereinafter), the charge on the furnace wall causes an avalanche-like phenomenon on the surface layer and flows into the core side. A phenomenon is occurring,
It was found that this made it difficult to accurately grasp the situation inside the reactor. In other words, in the conventional method for detecting the situation inside the reactor as described above, the influence of this avalanche phenomenon is not taken into account at all, and it is difficult to distinguish between the state in which the weight 7 has deviated due to the avalanche and the state in which it has descended directly below the eyelid. I'm not doing what I'm supposed to do. In other words, it has been found that the detection results do not accurately reflect the actual situation, and that it is extremely dangerous to rely on the detection results as they are.

本発明はこうした事情に着目してなされたもの
であつて、なだれの発生等を含めた炉内状況の変
化を正確に把握することができる様な炉内状況検
出方法を提供することにより、適正な装入物堆積
状態を維持し、効率の高い操炉状態の保持に寄与
しようとするものである。
The present invention has been made with attention to these circumstances, and by providing a method for detecting the situation inside the reactor that can accurately grasp changes in the situation inside the reactor, including the occurrence of avalanches, etc. This aims to maintain a stable charge accumulation state and contribute to maintaining highly efficient furnace operation.

[問題点を解決する為の手段] しかして上記目的を達成した本発明方法は、重
錘懸吊型ワイヤを用いて炉内装入物の表層を検知
するに当たり、炉内装入物表層上に重錘を置いた
まま装入物表層の変化に応じて重錘を追従させる
ことにより装入物表層の見掛けの降下速度を検出
すると共に、接触又は非接触型レベル計を用いて
装入物表層の実際の降下速度を求め、見掛けの降
下速度と実際の降下速度から装入物表層の挙動を
検出する点に要旨を有するものである。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, detects the surface layer of the furnace charge using a weight-suspended wire. By keeping the weight in place and making it follow the change in the surface layer of the charge, the apparent rate of descent of the surface layer of the charge can be detected, and the surface layer of the charge can be detected using a contact or non-contact level meter. The purpose of this method is to obtain the actual descending speed and detect the behavior of the surface layer of the charge from the apparent descending speed and the actual descending speed.

[作用] 従来のプロフイールメーターによる原料層追従
降下量の測定は、重錘を原料層の降下に追従降下
させていくものである。かかる降下量測定中に前
述のなだれが発生すると重錘は装入物と共に流さ
れて炉心側へ移行する。その結果測定値は原料層
の降下量となだれによる移行(以下流れ込みとい
う)量を加えた値となり、目的とする原料層の降
下量を測定できないだけでなく、流れ込み量につ
いても把握できない。
[Operation] In measuring the amount of descent following the raw material layer using a conventional profile meter, a weight is lowered to follow the descent of the raw material layer. If the aforementioned avalanche occurs during the measurement of the amount of descent, the weight is swept away together with the charge and moved toward the core side. As a result, the measured value is the sum of the amount of descent of the raw material layer and the amount of migration due to avalanches (hereinafter referred to as inflow), which not only makes it impossible to measure the desired amount of descent of the raw material layer, but also makes it impossible to grasp the amount of inflow.

そこで本発明においては、上記の如く装入物表
層部にプロフイールメーターの重錘を載せ装入物
の動きに追従させることによつて流れ込みを含ん
だ測定値A(見掛け上の降下量)を検出する一方、
該追従測定とは別に接触又は非接触型レベル計を
用いて上記追従測定期間の開始時と終了時の装入
物積層高さの差即ち実際の原料層降下速度を求め
て測定値Bとする。尚測定値Bを求める為のレベ
ル計のうち接触型のものとしては例えば上記と同
様のプロフイールメーターを挙げることができ
る。即ちこの場合にはプロフイールメーターの重
錘を追従測定開始時に原料層表層へ着床させて表
層位置を検出した後、一旦重錘を引き上げて待機
しておき、追従測定終了時に再び原料層表層へ垂
直に着床させてそのときの表層位置を検出する。
こうして得た表層位置の差と測定時刻の差から実
際の原料層降下速度Bを求める。こうして実際の
原料層降下速度を求めた場合、重錘は表層に一時
的に着床するだけですぐに引き上げるのでなだれ
があつても重錘が流されるといつた影響は受けず
実際の原料層降下速度Bを得ることができる。尚
非接触型レベル計としては上記以外にレーザ光線
やマイクロ波の反射等を利用した公知のレベル計
を例示することができる。
Therefore, in the present invention, as described above, the weight of the profile meter is placed on the surface layer of the charge to follow the movement of the charge, thereby detecting the measured value A (apparent drop amount) including the inflow. On the other hand,
Separately from the follow-up measurement, use a contact or non-contact level meter to determine the difference in charge stack height at the start and end of the follow-up measurement period, that is, the actual material layer descending speed, and use it as the measurement value B. . An example of a contact type level meter for determining the measured value B is a profile meter similar to the one described above. In other words, in this case, the weight of the profile meter is placed on the surface layer of the raw material layer at the start of tracking measurement to detect the surface layer position, and then the weight is pulled up once and placed on standby, and then returned to the surface layer of the material layer at the end of tracking measurement. The surface layer position at that time is detected by placing it vertically on the ground.
The actual material layer descending speed B is determined from the difference in surface layer position obtained in this manner and the difference in measurement time. When calculating the actual descending speed of the raw material layer in this way, the weight only temporarily lands on the surface layer and is immediately pulled up, so even if an avalanche occurs, the weight will not be affected by being washed away and the actual raw material layer will fall. A descending speed B can be obtained. In addition to the above, examples of non-contact level meters include known level meters that utilize reflection of laser beams and microwaves.

こうして得た見掛けの降下速度Aと実際の降下
速度Bの対比から装入物の炉心方向への流れ込み
量を知ることができる。即ち実際の降下速度Bに
対して見掛けの降下速度Aが大きいほど流れ込み
量が大きく、反対にその差が小さいほど流れ込み
量は小さいことになる。尚上記では見掛けの降下
速度Aと実際の降下速度Bの測定期間を同期させ
ているが、実際の降下速度を別のチヤージの相当
する時期に測定してもよい。
From the comparison between the apparent descent speed A obtained in this way and the actual descent speed B, the amount of the charge flowing toward the core can be determined. That is, the larger the apparent descending speed A is relative to the actual descending speed B, the larger the amount of inflow, and conversely, the smaller the difference, the smaller the amount of inflow. In the above, the measurement period of the apparent descent speed A and the actual descent speed B is synchronized, but the actual descent speed may be measured at a corresponding time of another charge.

[実施例] 以下本発明の実施例方法を第1図と参照しなが
ら説明する。
[Example] An example method of the present invention will be described below with reference to FIG. 1.

第1図aは、大ベル3上に装入物5を貯留して
いる状態を示しており、この状態から第1図bに
示す如く大ベル3を降下させると、装入物5は落
下し、アーマープレート8に当たつて規制されな
がら原料層4上に落下する。こうして1バツチ分
の装入が完了すると第1図cに示す如く炉内にラ
ンス9を装入して先端に重錘7を有するワイヤ6
をセンス9から垂下させ、原料層4上に着床させ
る。
Fig. 1a shows a state in which the charge 5 is stored on the large bell 3, and when the large bell 3 is lowered from this state as shown in Fig. 1b, the charge 5 falls. Then, it hits the armor plate 8 and falls onto the raw material layer 4 while being regulated. When charging for one batch is completed in this way, a lance 9 is inserted into the furnace as shown in FIG.
is suspended from the sense 9 and is deposited on the raw material layer 4.

この状態から見掛けの降下速度Aを測定(追従
測定)するに当たつては、原料層4上に重錘7を
載せたまま一定時間原料層4の動きに追従させ
る。この間に装入物のなだれが発生すると重錘7
は第1図dに示す様に流される。そして一定時間
後のワイヤ繰出し量を求めると見掛けの降下量が
分かり、測定時間を勘案して降下速度Aを得るこ
とができる。
When measuring the apparent descending speed A from this state (following measurement), the weight 7 is placed on the raw material layer 4 and is made to follow the movement of the raw material layer 4 for a certain period of time. If an avalanche of the charge occurs during this time, the weight 7
is caused to flow as shown in Figure 1d. Then, by calculating the wire payout amount after a certain period of time, the apparent amount of descent can be found, and the descent speed A can be obtained by taking the measurement time into consideration.

一方実際の降下速度Bを測定するに当たつて
は、第1図cの状態から一旦重錘を引き上げ、必
要によりランス9も後退させ一定時間待機する。
そして待機中に第1図eに示す如く炉内でなだれ
が発生した後、所定の時刻に第1図fで示す如
く、再びランス9を進出させ且つ重錘7を垂下さ
せて原料層4の表層に着床させ、そのときの表層
位置を測定する。そして第1図cの表層位置と第
1図fの表層位置の差及び測定時刻の差から実際
の降下速度Bを求める。
On the other hand, when measuring the actual descending speed B, the weight is once lifted from the state shown in FIG.
After an avalanche occurs in the furnace during standby as shown in FIG. Place it on the surface layer and measure the surface layer position at that time. Then, the actual descent speed B is determined from the difference between the surface layer position in FIG. 1c and the surface layer position in FIG. 1f, and the difference in measurement time.

こうして得た見掛けの降下速度Aと実際の降下
速度Bの差を装入物表層の炉心方向への流れ込み
速度とする。
The difference between the apparent descent speed A obtained in this way and the actual descent speed B is defined as the flow speed of the charge surface layer toward the core.

ところで操炉状態を示す指標の1つとして炉口
がス温度分布があり、炉口ガス温度分布が第3図
に実線で示す如く炉心部近傍でかなりの高温を示
し炉心から少しはずれると急激に温度が低下する
様な分布を示す場合には、炉心部のガスの流れ所
謂中心流が強く操炉状態は一般に良好となる。こ
れに対し第3図に破線で示す如く炉心部近傍の炉
口ガス温度がそれ程高温ではなく炉壁側との温度
差が少ない分布を示す場合には中心流が緩やかで
操炉状態は一般に悪い。
By the way, one of the indicators of reactor operation status is the gas temperature distribution at the reactor mouth. As shown by the solid line in Figure 3, the temperature distribution at the reactor mouth is quite high near the reactor core, and as it moves slightly away from the reactor core, the temperature suddenly increases. When the temperature shows a decreasing distribution, the gas flow in the reactor core, the so-called central flow, is strong and the operating condition of the reactor is generally good. On the other hand, as shown by the broken line in Figure 3, when the furnace mouth gas temperature near the reactor core is not so high and the temperature difference between it and the reactor wall side is small, the central flow is slow and the reactor operation condition is generally poor. .

この様に操炉状態の良否は炉口ガス温度分布に
よつて知ることができるが、操炉状態と炉内装入
物積層状態の関係は必ずしも明らかではなかつ
た。そこで操炉状態が良好な場合(中心流が鋭い
場合)と操炉状態が悪い場合(中心流が緩やかな
場合)について夫々本発明方法による炉内状況検
出を行なつたところ第4図a,bに示す結果が得
られた。尚実験は重錘が8個の多点型プロフイー
ルメーターを使用して行なつた。第4図aに示す
様に中心流が鋭い場合には、見掛けの降下速度A
と実際の降下速度Bの差即ち流れ込み速度は小さ
く、しかも炉心側と炉壁側でその値はほぼ一定で
あつた。これに対し第4図bに示す様に中心流が
緩やかな場合には見掛けの降下速度Aと実際の降
下速度Bの差は大きく炉心側に近づく程その値は
大きくなつている。即ち流れ込み速度が大きい場
合に中心流が緩やかとなつて操炉状態の悪化をま
ねいている。
As described above, the quality of the operating condition of the furnace can be determined by the gas temperature distribution at the furnace mouth, but the relationship between the operating condition of the furnace and the stacking condition of the contents inside the furnace is not always clear. Therefore, we used the method of the present invention to detect the condition inside the reactor when the reactor operating condition was good (when the center flow was sharp) and when the reactor operating condition was poor (when the center flow was gentle), and the results showed the results shown in Figure 4a. The results shown in b were obtained. The experiment was conducted using a multi-point profile meter with eight weights. When the central flow is sharp as shown in Figure 4a, the apparent rate of descent A
The difference between the actual descending speed B, that is, the inflow speed, was small, and its value was almost constant between the core side and the reactor wall side. On the other hand, as shown in FIG. 4b, when the central flow is gentle, the difference between the apparent descending speed A and the actual descending speed B is large, and the value increases as it approaches the core side. That is, when the inflow velocity is high, the central flow becomes gentle, leading to deterioration of furnace operating conditions.

又本発明方法によつて検出される流れ込み速度
と炉口ガス温度の定量的関係は、炉心部において
第5図に示す通りであつた。即ち炉心部流れ込み
速度が1〜2m/hrのときには炉心部炉口ガス温
度は約650℃と高く、第3図からも理解される様
に中心流が鋭い状態を示している。しかるに炉心
部流れ込み速度が増加するにつれて炉心の炉口ガ
ス温度は増加し流れ込み速度がおよそ10m/Hr
以上になると250℃まで低下し以降同温度で推移
している。
Furthermore, the quantitative relationship between the inflow velocity and the furnace mouth gas temperature detected by the method of the present invention was as shown in FIG. 5 in the reactor core. That is, when the core flow rate is 1 to 2 m/hr, the core mouth gas temperature is as high as about 650 DEG C., and as can be seen from FIG. 3, the center flow is sharp. However, as the inflow velocity into the reactor core increases, the gas temperature at the mouth of the reactor increases, and the inflow velocity reaches approximately 10 m/Hr.
When the temperature exceeds that level, the temperature drops to 250℃ and has remained at the same temperature ever since.

以上の様に炉内装入物の流れ込み速度と炉口ガ
ス温度即ち炉内ガス流れの間には密接な関係が認
められる。尚炉内ガス流れに変化を与える要因と
しては流れ込み現象以外にも例えば軟化融着帯形
状の変化、炉心コークスの変化等があり、炉内ガ
ス流れが中心流の緩やかな流れになつたとしても
その原因が何であるかによつて対処の仕方が変わ
つてくる。しかるに本発明方法により炉内状況を
検出すると装入物のなだれについてはこれを確実
に把握することができるので、炉況の悪化がなだ
れによるものかどうかを知ることができ、結局装
入状況の変更により炉況を改善することができ
る。
As described above, there is a close relationship between the flow rate of the contents in the furnace and the gas temperature at the furnace mouth, that is, the gas flow in the furnace. In addition to the inflow phenomenon, there are other factors that change the gas flow in the furnace, such as changes in the shape of the softened cohesive zone and changes in core coke, so even if the gas flow in the furnace becomes a gentle central flow, The way to deal with it will depend on what the cause is. However, by detecting the situation inside the furnace using the method of the present invention, it is possible to reliably know about the avalanche of the charging material, so it is possible to know whether the deterioration of the furnace condition is due to the avalanche, and ultimately the charging situation can be determined. Changes can improve furnace conditions.

尚上記の説明はベル装入方式を中心として進め
てきたが、ベルレス装入方式の場合であつても同
様に適用し得ることは言うまでもない。
Although the above explanation has focused on the bell charging method, it goes without saying that the same applies to the bellless charging method as well.

[発明の効果] 本発明は以上の様に構成されており、以下要約
する効果を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1) 見掛けの降下速度と実際の降下速度の差によ
り、炉壁側から炉心側へ向かう装入物の流れ込
み速度を定量的に検出することができる。
(1) The velocity of the charge flowing from the reactor wall side to the reactor core side can be quantitatively detected by the difference between the apparent descending speed and the actual descending speed.

(2) 上記装入物の流れ込み速度は炉内ガスの流れ
と密接な関係があり、流れ込み速度が大きくな
るほど中心流は緩やかとなり操炉状態が悪化す
る。そこで炉内ガス流れが悪化した場合に本発
明方法により流れ込み速度を測定することによ
りガス流れ悪化の原因が流れ込みによるものか
どうかを判定することができる。
(2) The flow rate of the above-mentioned charges is closely related to the flow of gas in the furnace, and the higher the flow rate, the slower the central flow and the worse the furnace operation condition. Therefore, when the gas flow in the furnace deteriorates, by measuring the inflow velocity using the method of the present invention, it is possible to determine whether or not the cause of the gas flow deterioration is due to inflow.

(3) 上記判定によつて流れ込みが主原因であると
認められると、アーマープレート等を操作して
装入状況を変更することにより流れ込みの緩和
をはかる等の対処を施せば、操炉状態を改善す
ることも可能となる。
(3) If the above judgment confirms that the inflow is the main cause, the operating condition of the reactor can be improved by taking measures such as manipulating the armor plate, etc. to change the charging situation to alleviate the inflow. It is also possible to make improvements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例方法を説明する為のフ
ロー図、第2図は従来の炉内状況検出方法を説明
する為の模式図、第3図は操炉状態が良好である
場合と悪化した場合の炉口ガス温度分布を示すグ
ラフ、第4図aは中心流が鋭い場合の見掛けの降
下速度Aと実際の降下速度Bの分布を示すグラ
フ、第4図bは中心流が緩やかな場合の分布を示
すグラフ、第5図は炉心部における流れ込み速度
と炉口ガス温度の定量的関係を示すグラフであ
る。 1……鉄皮、2……耐火材、3……大ベル、4
……原料層、5……装入物、6……ワイヤ、7…
…重錘、8……アーマープレート、9……ラン
ス、10……貫通孔。
Fig. 1 is a flow diagram for explaining the method according to the embodiment of the present invention, Fig. 2 is a schematic diagram for explaining the conventional method for detecting the condition inside the reactor, and Fig. 3 shows the case when the reactor is in good operating condition. Graph showing the furnace mouth gas temperature distribution in the case of deterioration. Figure 4a is a graph showing the distribution of the apparent rate of descent A and actual rate of descent B when the central flow is sharp. Figure 4b is the graph showing the distribution of the apparent rate of descent A and the actual rate of descent B when the central flow is gentle. FIG. 5 is a graph showing the quantitative relationship between the inflow velocity in the reactor core and the reactor mouth gas temperature. 1...Iron skin, 2...Fireproof material, 3...Large bell, 4
... Raw material layer, 5 ... Charge, 6 ... Wire, 7 ...
...Weight, 8...Armor plate, 9...Lance, 10...Through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 重錘懸吊型ワイヤを用いて炉内装入物の表層
を検知するに当たり、炉内装入物表層上に重錘を
置いたまま装入物表層の変化に応じて重錘を追従
させることにより装入物表層の見掛けの降下速度
を検出すると共に、接触又は非接触型レベル計を
用いて装入物表層の実際の降下速度を求め、見掛
けの降下速度と実際の降下速度から装入物表層の
挙動を検出することを特徴とする竪型炉内装入物
の挙動検出方法。
1. When detecting the surface layer of the charge material using a suspended weight wire, the weight is placed on the surface layer of the charge material and is moved to follow changes in the surface layer of the charge material. The apparent rate of descent of the surface layer of the charge is detected, and the actual rate of descent of the surface layer of the charge is determined using a contact or non-contact level meter. 1. A method for detecting the behavior of an inclusion in a vertical furnace, the method comprising detecting the behavior of a vertical furnace.
JP7881086A 1986-04-05 1986-04-05 Detection of behavior of charge in vertical type furnace Granted JPS62235404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7881086A JPS62235404A (en) 1986-04-05 1986-04-05 Detection of behavior of charge in vertical type furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7881086A JPS62235404A (en) 1986-04-05 1986-04-05 Detection of behavior of charge in vertical type furnace

Publications (2)

Publication Number Publication Date
JPS62235404A JPS62235404A (en) 1987-10-15
JPH0586446B2 true JPH0586446B2 (en) 1993-12-13

Family

ID=13672198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7881086A Granted JPS62235404A (en) 1986-04-05 1986-04-05 Detection of behavior of charge in vertical type furnace

Country Status (1)

Country Link
JP (1) JPS62235404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050941A1 (en) 2002-11-30 2004-06-17 Sms Demag Aktiengesellschaft Device and method for hot-dip coating a metal strand

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265647A (en) * 2005-03-24 2006-10-05 Nippon Steel Corp Method for determining distribution state of charged material in blast furnace
JP5610824B2 (en) * 2009-04-21 2014-10-22 新日鐵住金株式会社 SOUNDING DEVICE CONTROL METHOD AND SOUNDING DEVICE CONTROL DEVICE
JP5655798B2 (en) * 2012-02-01 2015-01-21 新日鐵住金株式会社 Method for measuring thickness distribution of blast furnace charge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050941A1 (en) 2002-11-30 2004-06-17 Sms Demag Aktiengesellschaft Device and method for hot-dip coating a metal strand

Also Published As

Publication number Publication date
JPS62235404A (en) 1987-10-15

Similar Documents

Publication Publication Date Title
SE447997B (en) SET TO REGULATE THE BATTLE EDUCATION IN AN LD CONVERTER
JPH0586446B2 (en)
EP1029931A1 (en) Method of operating blast furnace
US20190136334A1 (en) Device and method for sensing a conveying rate of a liquid material
JPH11281467A (en) Surface level measuring device for molten metal
JPS58727B2 (en) Estimation method of cohesive zone shape in blast furnace
JPH0424404B2 (en)
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JP3794211B2 (en) Method for evaluating mud material at blast furnace outlet and opening method for outlet
JP2012214830A (en) Method for measuring falling locus of charging object in blast furnace and metering rod
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPS599115A (en) Detection of descending behavior and heaped structure of charge in blast furnace
JPS6038446B2 (en) Method for detecting burden deposition distribution in blast furnace
JPH0623407B2 (en) Bellless Blast Furnace Raw Material Input Position Measurement Method
JPH0598324A (en) Method for counting charging time of raw material in bell-less blast furnace charging device
JPS6136564B2 (en)
JPS6191307A (en) Detection of descending of charge in blast furnace
JPS63195205A (en) Method for charging raw material in bell type blast furnace
JPS61201711A (en) Operating method for blast furnace
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
JPS63238205A (en) Method for deciding changing timing of bell liner in blast furnace
JPS5848605B2 (en) Method for measuring the layer thickness distribution, descending rate distribution, and boundary surface shape of the contents in the reduction melting furnace