JPS6319265A - Charging method - Google Patents

Charging method

Info

Publication number
JPS6319265A
JPS6319265A JP61162079A JP16207986A JPS6319265A JP S6319265 A JPS6319265 A JP S6319265A JP 61162079 A JP61162079 A JP 61162079A JP 16207986 A JP16207986 A JP 16207986A JP S6319265 A JPS6319265 A JP S6319265A
Authority
JP
Japan
Prior art keywords
electron beam
electrodes
electrode
electron
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162079A
Other languages
Japanese (ja)
Inventor
Naoji Hayakawa
早川 直司
Masanori Takenouchi
竹之内 雅典
Fumitaka Kan
簡 文隆
Kenji Nakamura
憲司 中村
Yasuo Agari
上里 泰生
Isao Hakamata
袴田 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61162079A priority Critical patent/JPS6319265A/en
Publication of JPS6319265A publication Critical patent/JPS6319265A/en
Priority to US07/183,517 priority patent/US4858062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/308Semiconductor cathodes, e.g. cathodes with PN junction layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/321Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image
    • G03G15/323Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image by modulating charged particles through holes or a slit

Abstract

PURPOSE:To obtain ultrahigh preciseness arbitrary charged pattern, by providing many sets of electrodes constituting an electron lens to a solid electron beam generating means and changing voltages applied to said electrodes independently. CONSTITUTION:Voltage Vc generating electron avalanche multiplying action is applied between X-electrodes EX1, EX2, EX3... and a Y-electrode EY at the P-N junctions of electron beam sources EB1, EB2, EB3... and voltage Vp (Vp>Vc) having certain magnitude is applied to lead-out electrodes PE1a, PE1b; PE2a, PE2b; PE3a, PE3b;... and each X-electrode and each Y-electrode are respectively selected to take out electrons from arbitrary electron beam sources EB1, EB2, EB3.... A lead-out electrodes PE constitute an electron lens and, by providing a potential gradient to a pair of the electrodes of each of the sets of electrodes PE1a and PE1b; PE2a and PE2b; PE3a and PE3b;..., the electron beam flowing from each electron beam source EB in a circular form is converged to an almost one point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、帯電方法、特に、固体電子線発生装置を用い
た帯電方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charging method, particularly to a charging method using a solid-state electron beam generator.

(従来の技術) 従来、この袖の固体電子線発生装置は、例えば、特公昭
54−30274号公報、特開昭54−111272号
公報(米国特許第4゜259.678号明細書)、特開
昭56−15529号公報(米国特許第4,303.9
30号明細書)、あるいは、特開昭57−38528号
公報等に開示されている。
(Prior Art) Conventionally, this solid-state electron beam generator has been disclosed in, for example, Japanese Patent Publication No. 54-30274, Japanese Unexamined Patent Publication No. 54-111272 (U.S. Pat. No. 4,259,678), Publication No. 56-15529 (U.S. Patent No. 4,303.9)
30) or Japanese Patent Application Laid-Open No. 57-38528.

また、この種の帯電方法として、従来、例えば電子写真
法等において広く実用化されている方法は、コロナ帯電
器を利用する帯電方法であり、電子写真プロセスにおい
ては、例えば感光体等の再帯電部材に−様な表面電位を
与えるような帯電方法が一般的であった。
Furthermore, as a charging method of this type, a method that has been widely put into practical use in the past, for example, in electrophotography, is a charging method that uses a corona charger. A charging method that gives a -like surface potential to a member has been common.

また、例えば米国特許第4.155.093号明細占に
開示されている帯電方法は、放電を利用した帯′北方法
を用いて、可帯電部材表面に、遊択的に帯電する方法で
あった。
Further, for example, the charging method disclosed in U.S. Pat. Ta.

(発明が解決しようとする問題点) しかしながら、上記のような従来の帯電方法にあっては
、例えば、前記第1例のコロナ帯電器を利用する方法は
、再帯電部材上に−様な表面電位を与えることはできる
が、任意の帯電パターンを形成することができず、また
、面記第2例の放電を利用する帯電方法は、帯電装置の
特性上から、可帯電部材表面の複数の部位に、同■2f
に異なる表面電位を付与することは不可「)シであった
(Problems to be Solved by the Invention) However, in the conventional charging method as described above, for example, in the method using the corona charger of the first example, a surface like Although it is possible to apply a potential, it is not possible to form an arbitrary charging pattern, and due to the characteristics of the charging device, the charging method using the discharge described in the second example of the charging method is Same part ■2f
It was impossible to apply a different surface potential to the surface.

本発明は、以上のような局面にかんがみてなされたもの
で、従来にはなかった全く新しい機能を備えた帯電方法
を提供することにより、超高粒細な任意の帯電パターン
が1:すられると共に、各ドツト毎に帯電量を制御可能
とすることを目的としている。
The present invention has been made in view of the above-mentioned situation, and by providing a charging method with a completely new function not previously available, an arbitrary charging pattern with ultra-high grains and fineness can be 1: rubbed. At the same time, the purpose is to make it possible to control the amount of charge for each dot.

〔問題点を解決−「るための手段〕[Solving the problem - “Means for solving the problem”]

このため、本発明においては、複数個の電子線源を備え
た固体電子線発生手段より流出した電子線を、可帯電部
材表面に照射して帯電する帯°1゛ニ方法において、前
記固体電子線発生手段が、電子レンズを構成する複数組
の電極を設け、これら電極に印加する電圧をそれぞれ独
立に変化させるようにすることにより、前記目的を達成
しようとするものである。
Therefore, in the present invention, in a charging method in which the surface of a chargeable member is charged by irradiating an electron beam flowing out from a solid-state electron beam generating means equipped with a plurality of electron beam sources, the solid-state electron The above object is achieved by providing the ray generating means with a plurality of sets of electrodes constituting the electron lens and independently changing the voltages applied to these electrodes.

〔作用〕[Effect]

以上のような帯電方法によれば、再帯電部材上の任意の
帯電パターンを形成することができ、また、ドツト単位
で帯電量の制御が可能となる。
According to the charging method described above, it is possible to form an arbitrary charging pattern on the recharging member, and it is also possible to control the amount of charging on a dot-by-dot basis.

(実施例〕 以下に、本発明を実施例に基づいて説明する。(Example〕 The present invention will be explained below based on examples.

第1図ないし第4図は、本発明の実施例に使用した帯電
装置を示すもので、本発明の実施例に使用した帯電装置
を示すもので、第1図は、基板の平面図、第2図は表面
板の平面図、第3図および第4図はそれぞれ第1図のX
−X線およびY−Y線断面矢視図である。
1 to 4 show a charging device used in an embodiment of the present invention. FIG. 1 is a plan view of a substrate, Figure 2 is a plan view of the surface plate, Figures 3 and 4 are the X in Figure 1, respectively.
- It is a cross-sectional view along the X-ray line and Y-Y line.

(構成) 第1〜4図において、SUは、各電子線源EBI、EB
2.EB3.・・・・・・の本体である基板であり、本
実施例においては、n形のシリコン基板を用いてイル。
(Configuration) In Figs. 1 to 4, SU represents each electron beam source EBI, EB
2. EB3. . . . In this example, an n-type silicon substrate is used.

%X1.EX2.EX3. ・−−−−−は、X方向の
選択を行う各X電極であり、これら各X電極は、それぞ
れ、高ドープn影領域HDI、HD2.HD3. ・・
・・・・に接続されている。また、EYは電極であり、
各X電極と同様、そわぞれ接点領域を介して、高トープ
p形通路PPに接続されている。各X電極EXI。
%X1. EX2. EX3. ----- are respective X electrodes that perform selection in the X direction, and these X electrodes are respectively connected to highly doped n shadow regions HDI, HD2 . HD3.・・・
····It is connected to the. Also, EY is an electrode,
Like each X-electrode, each is connected via a contact area to a high-tope p-type path PP. Each X electrode EXI.

EX2.EX3.・・・・・・とY電極EYとは、X−
Yマトリックスを構成しており、その各交点に各電子線
源EBI、EB2.EB3.・・・・・・が形成されて
いる。
EX2. EX3. ...and Y electrode EY means X-
A Y matrix is formed, and each electron beam source EBI, EB2 . EB3. ... is formed.

基板SU上には、絶縁層ILを介して引出し電J!PE
1a、PE1b;PE2a、PE2b;PE3a、PE
3b;・・・・・・が配設されている。また、基板SU
と相対向し、所定の厚さのスペーサを介して、薄板であ
る表面板FPが配設ざね、表面板FP上には、各加速電
極AEが配設されると共に、各電子線源EBI、EB2
.EB3.・・・・・・より流出した電子e−(第3図
)が照射される部位は、電子透過性部材が用いられて、
いわゆる“電子窓”を形成している。電子窓の材料とし
ては、Ni等の金属薄膜や、BN、SiCのフィルムが
適当である。
On the substrate SU, a lead-out voltage J! is connected via an insulating layer IL. P.E.
1a, PE1b; PE2a, PE2b; PE3a, PE
3b;... are arranged. In addition, the board SU
A thin front plate FP is disposed facing each other through a spacer of a predetermined thickness, and each acceleration electrode AE is disposed on the front plate FP, and each electron beam source EBI, EB2
.. EB3. An electron-transmissive member is used for the area to which the electrons e- (Fig. 3) that flow out from ...... are irradiated.
It forms a so-called "electronic window." Suitable materials for the electronic window include metal thin films such as Ni, BN, and SiC films.

基板SUと表面板FPとの間の空間は、電子を所望のエ
ネルギーに加速するために真空とする必要があるが、こ
の圧力は、通常10−S〜10−9Torr程度である
ことが望ましい。このような圧力を維持し得るよう、基
板SUと表面板FPとを気密封止すると共に、通常、電
子管は使用されるバリウムゲッタを封入すると、さらに
真空気密性が向上する。
The space between the substrate SU and the front plate FP needs to be made into a vacuum in order to accelerate the electrons to a desired energy, and this pressure is usually preferably about 10<->S to 10<-9> Torr. To maintain such a pressure, the substrate SU and the front plate FP are hermetically sealed, and a barium getter, which is normally used in an electron tube, is sealed, thereby further improving the vacuum tightness.

(動作) つぎに、以上のような構成において、各X電極EX1.
EX2.EX3.−−−・−と、Y電極EYとの間に、
各電子線源EBI、EB2.EB3.−・・・・・のp
−n接合部で、電子なだれ増倍作用(アバランシェ・マ
ルチプリケーション)が生ずるような電圧VCを印加し
、引出し電極PE 1 a。
(Operation) Next, in the above configuration, each of the X electrodes EX1.
EX2. EX3. Between ---・- and Y electrode EY,
Each electron beam source EBI, EB2. EB3. - p of...
A voltage VC that causes an electron avalanche multiplication effect (avalanche multiplication) is applied at the -n junction, and the extraction electrode PE 1 a is connected to the extraction electrode PE 1 a.

PEI b’; PE2a、PE2b ; PE3a。PEI b'; PE2a, PE2b; PE3a.

P E 3 b ;−−−−−−ニ、ある大きさく7)
 ??E圧V、(ただしVp>Vc)を与えることによ
り、各電子線源。
P E 3 b ;-------d, certain size 7)
? ? Each electron beam source by applying an E pressure V, (where Vp>Vc).

EBI、EB2.EB3.・・・・・・と各Y電極EY
とはX−Yマトリックスを構成しているため、上記各X
電極と各Y電極とを、それぞt′L適当に選択すること
により、任意の電子線源EB1.EB2゜EB3.・・
・・・・より電子を取出すことができる。
EBI, EB2. EB3. ...and each Y electrode EY
constitutes an X-Y matrix, so each of the above
By appropriately selecting the electrode and each Y electrode t'L, any electron beam source EB1. EB2゜EB3.・・・
...more electrons can be extracted.

例えば、X電極EXとY電極EYとの間に電圧VCを印
加すれば、電子線源EB2より電子が流出する。つぎに
、加速電極AEに所定の電圧を印加しておくことにより
、各電子線源EBより流出した電子は、所望のエネルギ
ーまで加速され、表面板FPの各′ζ電子窓透過する。
For example, if a voltage VC is applied between the X electrode EX and the Y electrode EY, electrons flow out from the electron beam source EB2. Next, by applying a predetermined voltage to the accelerating electrode AE, the electrons flowing out from each electron beam source EB are accelerated to a desired energy and transmitted through each 'ζ electron window of the front plate FP.

例えば、電子窓として、厚さlμlのSiCを用いた場
合、各加速電極AEに25kvの電圧を印加することに
より、90%の電子をこの帯電装置の外に取出すことが
できる。
For example, when SiC with a thickness of 1 μl is used as the electron window, 90% of the electrons can be taken out of the charging device by applying a voltage of 25 kV to each accelerating electrode AE.

本実施例においては、引出し電極Pεが、電子レンズを
構成している。すなわち、各引出し電極PE1aとPE
1b;PE2aとPE2b:PE3aとPE3b、・・
・・・・は、それぞれ対を成しており、各組の対の7に
極に電位勾配を持たせることにより、各゛電子線fiE
Bより円形状に流出する電子線を、ある範囲内で歪ませ
たり、偏向させたり、あるいはそれらの双方を行い、所
望通りに、はぼ−点に収束させることができる。
In this embodiment, the extraction electrode Pε constitutes an electron lens. That is, each extraction electrode PE1a and PE
1b; PE2a and PE2b: PE3a and PE3b,...
. . . form a pair, and by providing a potential gradient at the pole of the pair 7 of each set, each electron beam fiE
The electron beam flowing out from B in a circular shape can be distorted or deflected within a certain range, or both, and can be made to converge to a point as desired.

第5図は、上述のような各引出し電極PE対のレンズ作
用を、模式的に示した説明図である。引出し電極PE1
aに印加する電圧を■P l +電極PE1bに印加す
る電圧を(■2.+△V)とすると、△v=Ovの場合
は、(八)図に示すように、電子線源FBIより流出す
る電子線は、はぼ平行となる。また、△■の値を適当に
設定することにより、CB)図に示すように、誘電体ド
ラムDR(後述第6図)上の実質的に一点に収束させる
ことができる。すなわち、△■の値を変えることにより
、ドラムDR上に照射される電子線のスポット径が変る
ので、ドラムDR上の表面電荷密度を制御することがで
きる。
FIG. 5 is an explanatory diagram schematically showing the lens action of each pair of extraction electrodes PE as described above. Extracting electrode PE1
If the voltage applied to a is ■P l + the voltage applied to electrode PE1b is (■2.+△V), when △v=Ov, (8) As shown in the figure, from the electron beam source FBI The outflowing electron beams are almost parallel. Furthermore, by appropriately setting the value of Δ■, it is possible to substantially converge the light to one point on the dielectric drum DR (see FIG. 6, which will be described later), as shown in Figure CB). That is, by changing the value of Δ■, the spot diameter of the electron beam irradiated onto the drum DR is changed, so that the surface charge density on the drum DR can be controlled.

(応用例) 第6図に、前述の帯電装置MEBを、AIの円筒E D
上に、例え4’zpET(ポリエチレンテレフタート)
等の誘電体層を積層した誘電体ドラムDRに、X方向軸
を円筒釉線に平行にドラムDRに対向して配設して、ド
ラムDR表面を帯電させる場合の、例えば電子写真プロ
セス応用の斜視図を示す。
(Application example) In Fig. 6, the above-mentioned charging device MEB is connected to an AI cylinder E D
Above, for example, 4'zpET (polyethylene tereftate)
For example, when the surface of the drum DR is charged by disposing a dielectric drum DR in which dielectric layers such as the A perspective view is shown.

誘電体ドラムDRを回転させながら、各X電極EXI、
EX2.EX3.−−・−・を、任意に選択することに
より、ドラムD、R上に所望の帯電パターンを形成する
ことができる。また、各電子線源EBごとに、各引出し
電iPEに印加する電圧を設定するための:し制御手段
を設けて、ドツト単位で帯電量を制御することができる
While rotating the dielectric drum DR, each X electrode EXI,
EX2. EX3. By arbitrarily selecting --.--, a desired charging pattern can be formed on the drums D and R. Further, by providing a control means for setting the voltage applied to each extraction charge iPE for each electron beam source EB, it is possible to control the amount of charge on a dot-by-dot basis.

(他の実施例) 前記実施例においては、電子線源EBとして、p−n接
合の電子なだれ増倍作用を利用する形式の素子を用いた
か、本発明原理においては、電子流出機構自体は本質的
なものではなく、したがって、電子線源として、他の公
知のp−n接合の負仕事関数(ネガティブ・ワーク・フ
ァンクション)を用いたものや電界放出(フィールド・
エミッション)形等の固体電子線源を用いても、同様の
効果が1:ンらねる。
(Other Embodiments) In the above embodiments, an element that utilizes the electron avalanche multiplication effect of a p-n junction was used as the electron beam source EB. Therefore, as an electron beam source, other well-known electron beam sources using a negative work function of a p-n junction or field emission (field emission)
A similar effect can be obtained even if a solid-state electron beam source such as an emission type electron beam source is used.

また、面記実施例において用いた帯電装置は、各引出し
電極PEにレンズ機能を持たせているが、各加速電極A
Eに電子レンズの機能を持たせても、本発明原理の帯電
方法を実現することができる。
In addition, in the charging device used in the embodiment described above, each extraction electrode PE has a lens function, but each accelerating electrode A
Even if E is given the function of an electron lens, the charging method according to the principles of the present invention can be realized.

(実施例の効果) 以上の各実施例による帯電方法においては、再帯電部材
上に任意の帯電パターンを形成することができ、また、
このように形成された帯電パターンを電子写真プロセス
における静電潜像とし、トナー等の現像剤を融着させる
ことによって調色し、占通紙に転写することによりハー
ドコピーも可能となる。また、特に、ドツト単位で帯電
量の制御が可能なため、理想的な画像階調記録が得られ
る。
(Effects of Examples) In the charging method according to each of the above examples, an arbitrary charging pattern can be formed on the recharging member, and
The charged pattern formed in this way is used as an electrostatic latent image in an electrophotographic process, the color is adjusted by fusing a developer such as toner, and a hard copy can be made by transferring it to paper. Moreover, in particular, since the amount of charge can be controlled on a dot-by-dot basis, ideal image gradation recording can be obtained.

さらにまた、各実施例の固定電子線発生装置は、いわゆ
る半導体プロセスによって製造されるので、各電子線源
を高密度に集積することができるため、電子写真プロセ
スに応用すれば、従来にない超高精密記録が実現できる
Furthermore, since the fixed electron beam generator of each embodiment is manufactured by a so-called semiconductor process, each electron beam source can be integrated at a high density. High precision recording can be achieved.

(発明の効果) 以上、説明してきたように、本発明の帯電方法によれば
、再帯電部材上に、任意の帯電パターンを形成すること
ができ、かつ、ドツト単位で帯電量のルJ御が可能とな
った。
(Effects of the Invention) As described above, according to the charging method of the present invention, any charging pattern can be formed on the recharging member, and the amount of charging can be controlled in dot units. became possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は、本発明の実施例に使用した帯電装置に係
り、第1図は基板の平面図、第2図は表面板の平面図、
第3図および第4図は、それぞれ第1図のX−X線およ
びY−Y線断面矢視図、第5図(A) 、 CB)は、
本実施例の引出し電極のレンズ作用説明図、第6図は、
本発明の一実施形悪斜視図である。 su :2!板 EBI、CB2.CB3.−=・=:電子線源EXI、
EX2.EX3.−−−・−: x電極EY:Y電極 PEfa、PEl’b;PE2a、PE2b;PE3a
、PE3b :−−−−:引出し電極AE=加速電極 FP:表面板(8板) DR:誘電体ドラム(再帯電部材χ 第 2 図 Aε 埠1国のX−X!!断面処視図 第3図 第4図
1 to 4 relate to the charging device used in the embodiment of the present invention, in which FIG. 1 is a plan view of the substrate, FIG. 2 is a plan view of the top plate,
Figures 3 and 4 are cross-sectional views taken along line X-X and Y-Y in Figure 1, respectively, and Figures 5 (A) and CB) are
FIG. 6 is an explanatory diagram of the lens action of the extraction electrode of this example.
FIG. 1 is a perspective view of an embodiment of the present invention. su:2! Board EBI, CB2. CB3. −=・=: Electron beam source EXI,
EX2. EX3. ---・-: x electrode EY: Y electrode PEfa, PEl'b; PE2a, PE2b; PE3a
, PE3b:----: Extraction electrode AE=acceleration electrode FP: Surface plate (8 plates) DR: Dielectric drum (recharging member Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の電子線源を備えた固体電子線発生手段よ
り流出する電子線を、可帯電部材表面に照射して該表面
を帯電する帯電方法であって、前記固体電子線発生手段
が、電子レンズを構成する複数組の電極を備え、該複数
組の電極に印加する電圧をそれぞれ独立に変化させるこ
とにより、前記可帯電部材表面に付与される電荷を制御
することを特徴とする帯電方法。
(1) A charging method in which the surface of a chargeable member is charged by irradiating the surface of a chargeable member with an electron beam flowing out from a solid-state electron beam generating means provided with a plurality of electron beam sources, wherein the solid-state electron beam generating means , a charging device comprising a plurality of sets of electrodes constituting an electron lens, and controlling the charge applied to the surface of the chargeable member by independently changing the voltage applied to the plurality of sets of electrodes. Method.
(2)前記固体電子線発生手段は、複数個の電子線源を
その上に配設した基板と対向して所定間隔で薄板を設け
、かつ、該薄板と前記基板との間の空間が実質的に真空
となるよう封止された固体電子線発生手段であって、前
記薄板の一部を電子透過性部材により構成すると共に、
該薄板上に電極を配設し、前記電子線源と該電極間に所
定値の電圧を印加し、該電子線源より流出した電子を加
速して前記固体電子線発生装置外に取出すようにしたも
のであることを特徴とする特許請求の範囲第1項記載の
帯電方法。
(2) The solid-state electron beam generating means includes a thin plate provided at a predetermined interval opposite to a substrate on which a plurality of electron beam sources are disposed, and the space between the thin plate and the substrate is substantially A solid-state electron beam generating means sealed to create a vacuum, wherein a part of the thin plate is made of an electron-transparent member, and
An electrode is disposed on the thin plate, a voltage of a predetermined value is applied between the electron beam source and the electrode, and the electrons flowing out from the electron beam source are accelerated and taken out of the solid-state electron beam generator. 2. A charging method according to claim 1, characterized in that:
JP61162079A 1986-06-04 1986-07-11 Charging method Pending JPS6319265A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61162079A JPS6319265A (en) 1986-07-11 1986-07-11 Charging method
US07/183,517 US4858062A (en) 1986-06-04 1988-04-14 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162079A JPS6319265A (en) 1986-07-11 1986-07-11 Charging method

Publications (1)

Publication Number Publication Date
JPS6319265A true JPS6319265A (en) 1988-01-27

Family

ID=15747685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162079A Pending JPS6319265A (en) 1986-06-04 1986-07-11 Charging method

Country Status (1)

Country Link
JP (1) JPS6319265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279722A (en) * 2006-04-06 2007-10-25 Xerox Corp Direct charging device provided with nano-structure within metal coated pore matrix

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615529A (en) * 1979-07-13 1981-02-14 Philips Nv Semiconductor device and method of fabricating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615529A (en) * 1979-07-13 1981-02-14 Philips Nv Semiconductor device and method of fabricating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279722A (en) * 2006-04-06 2007-10-25 Xerox Corp Direct charging device provided with nano-structure within metal coated pore matrix
JP4699416B2 (en) * 2006-04-06 2011-06-08 ゼロックス コーポレイション Direct charging device with nanostructures in a porous matrix with metal coating

Similar Documents

Publication Publication Date Title
US5633507A (en) Electron beam lithography system with low brightness
EP0184868B1 (en) Electron-beam device and semiconducteur device for use in such an electron-beam device
JP2001168018A (en) Device and method for exposing charged corpuscular beam, determining method for exposure correction data and method for producing device by applying the same method
US3619608A (en) Multiple imaging charged particle beam exposure system
JPH10106926A (en) Charged particle radiation lithography device, its evaluation method and pattern forming method
US3757351A (en) High speed electostatic printing tube using a microchannel plate
JPH05508527A (en) High resolution image source
KR100262991B1 (en) Magnetically focused field emitter element for use in flat-panel display
JPS6319265A (en) Charging method
US4858062A (en) Charging device
US2837689A (en) Post acceleration grid devices
JP3073575B2 (en) Device for writing and erasing according to images
JP2004055166A (en) Multi-charged particle beam lens, charged particle beam exposure system using it, and device manufacturing method
Carroll Pattern generators for reflective electron-beam lithography (REBL)
JPS6319264A (en) Charging method
US3935455A (en) Method and apparatus for producing electrostatic charge patterns
PL164619B1 (en) Method for electrophotographic making of tv picture tube luminescence screen and a device therefor
US3714439A (en) Image comparison device and method
US3990038A (en) Electron beam source of narrow energy distribution
US4496641A (en) Method of manufacturing a colour television display tube and tube manufactured according to this method
JPH0715603B2 (en) Charging method
US3932751A (en) Formation of electrostatic charge patterns
Roelofs et al. Feasibility of multi-beam electron lithography
JPS6319266A (en) Charging apparatus
Dalglish et al. A new concept for improved ion and electron lenses—Aberration corrected systems of planar electrostatic deflection elements