JPS63188442A - Resin coating sand grain for shell mold - Google Patents

Resin coating sand grain for shell mold

Info

Publication number
JPS63188442A
JPS63188442A JP2067987A JP2067987A JPS63188442A JP S63188442 A JPS63188442 A JP S63188442A JP 2067987 A JP2067987 A JP 2067987A JP 2067987 A JP2067987 A JP 2067987A JP S63188442 A JPS63188442 A JP S63188442A
Authority
JP
Japan
Prior art keywords
resin
sand grains
coated sand
phenol resin
aminophenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2067987A
Other languages
Japanese (ja)
Other versions
JPH0824992B2 (en
Inventor
Masaharu Kato
正治 加藤
Eiji Nakai
英治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP62020679A priority Critical patent/JPH0824992B2/en
Publication of JPS63188442A publication Critical patent/JPS63188442A/en
Publication of JPH0824992B2 publication Critical patent/JPH0824992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To obtain shell mold sand having low odor, quick setting velocity and excellent strength at room temp. by containing at least one kind of aminophenol class to a thermo setting phenol resin binder. CONSTITUTION:At least one kind of a monoaminophenol and a diaminophenol is contained to the thermo setting phenol resin binder of resin coating sand grain for the shell mold. Especially, it is desirable to use a metaminophenol or 3,5-diaminophenol. In this way, as a hexamethylenetetramine or formaldehyde source is not necessary to use as the curing agent, at the time of kneading, molding and pouring, the generation of ammonia or formaldehyde is a little and sand having low odor is obtd. Further, the good fluidity is obtd. by action of the aminophenol class and the coating sand having high bending strength at room temp. is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、シェルモールド用樹脂被覆砂粒に関するもの
で、特に混練時、鋳型造型時または注湯時の悪臭ガスの
発生の少ない低臭気なシェルモールド用樹脂被覆砂粒に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to resin-coated sand grains for shell molds, and particularly to low-odor shells that generate less malodorous gas during kneading, mold making, or pouring. This invention relates to resin-coated sand grains for molds.

[従来の技術] 従来、混練時、鋳型造型時または、注湯時の悪臭ガス発
生の少ない低臭気なシェルモールド用樹脂被覆砂粒とし
て、アンモニアを主体とした固形アンモニアレゾール型
フェノール樹脂を用いたもの(特公昭52−12658
号公報)、アンモニアレゾール型フェノール樹脂にレゾ
ルシン、カテコールなと、または1価および2価金属の
塩化物、硝酸塩などの塩類および有機酸から選ばれた硬
化促進剤を添加したもの(特公昭51−27406号公
報)、アミン触媒とアルカリ金属触媒を併用した固形ア
ンモニアレゾール型フェノール樹脂、  を用いたもの
(特公昭57−3447号公報)または固形アンモニア
レゾール型フェノール樹脂に尿素を添加したもの(特開
昭61−172648号公報)などがある。
[Prior Art] Conventionally, a solid ammonia resol type phenolic resin containing ammonia as a main component has been used as resin-coated sand grains for low-odor shell molds that generate little foul-smelling gas during kneading, mold making, or pouring. (Tokuko Sho 52-12658
Publication No. 1), an ammonia resol type phenolic resin with a curing accelerator selected from resorcinol, catechol, salts such as chlorides and nitrates of monovalent and divalent metals, and organic acids (Japanese Patent Publication No. 1973- 27406), a solid ammonia resol type phenol resin using a combination of an amine catalyst and an alkali metal catalyst (Japanese Patent Publication No. 57-3447), or a solid ammonia resol type phenol resin with urea added (Japanese Patent Publication No. 3447/1983). Publication No. 172648/1982).

[発明が解決しようとする問題点] しかし上記のシェルモールド用樹脂被覆砂粒は、悪臭ガ
スの発生は少なく、低臭気であるが、鋳型の常温強度な
どや、鋳型造型時に必要な温間強度(硬化速度)が不十
分であり、一層の改善が望まれていた。
[Problems to be Solved by the Invention] However, although the resin-coated sand grains for shell molding described above generate less malodorous gas and have a low odor, they do not have sufficient room-temperature strength of the mold or warm strength required during mold making. Curing speed) was insufficient, and further improvement was desired.

特に上記レゾルシン、1価および2価の金属塩、または
有機酸の添加は硬化速度が改善されるが、常温強度が低
くなるという問題点があり、またカテコールは硬化速度
、常温強度は満足がいくものの樹脂被覆砂粒の融着点が
低くなる欠点があり、樹脂被覆砂粒がブロッキングを起
しやすくなる問題点がある。アミン触媒とアルカリ金属
触媒を併用することにより、メチロール基を増加させ硬
化速度は改善できるが、常温強度の低下および樹脂のブ
ロッキング性の悪化などの問題点がある。一方尿素の添
加は、常温強度は改善できるが、樹脂被覆砂粒の融着点
が低下し、また吸湿による樹脂被覆砂粒のブロッキング
を起しやすくなる問題点がある。
In particular, the addition of the above-mentioned resorcinol, monovalent and divalent metal salts, or organic acids improves the curing speed, but there is a problem in that the strength at room temperature decreases, while the curing speed and strength at room temperature of catechol are satisfactory. However, there is a drawback that the melting point of the resin-coated sand grains is low, and there is a problem that the resin-coated sand grains tend to cause blocking. By using an amine catalyst and an alkali metal catalyst in combination, the curing speed can be improved by increasing the number of methylol groups, but there are problems such as a decrease in room temperature strength and a deterioration in the blocking property of the resin. On the other hand, the addition of urea can improve the strength at room temperature, but has the problem of lowering the fusion point of the resin-coated sand grains and making the resin-coated sand grains more likely to block due to moisture absorption.

本発明は、上記問題点を克服するものであり、低臭気で
、硬化速度が速く、かつ常温強度に優れたシェルモール
ド用樹脂被覆砂粒を提供することを目的とする。
The present invention has been made to overcome the above-mentioned problems, and aims to provide resin-coated sand grains for shell molds that have low odor, a fast curing speed, and excellent room-temperature strength.

[問題点を解決するための手段] 本発明のシェルモールド用樹脂被覆砂粒は、鋳物砂と該
鋳物砂の表面に被覆された熱硬化性フェノール樹脂結合
剤とからなり、該熱硬化性フェノール樹脂結合剤にモノ
アミノフェノール、およびジアミノフェノール(以下ア
ミノフェノール類という)の少なくとも1種を含むこと
を特徴とす ′る。
[Means for Solving the Problems] The resin-coated sand grains for shell molds of the present invention consist of foundry sand and a thermosetting phenolic resin binder coated on the surface of the foundry sand, and the thermosetting phenolic resin It is characterized in that the binder contains at least one of monoaminophenol and diaminophenol (hereinafter referred to as aminophenols).

本発明のシェルモールド用樹脂被覆砂粒に使用する鋳物
砂は、造型前は流動性に富み、注湯時に鋳込、みに耐え
得る耐熱性を持つ、通常用いられているものを用いるこ
とができる。鋳物砂の種類としては、珪砂、オリビンサ
ンド、ジルコンサンド、溶融石英粒などが適しており、
その粒径は70μ〜1000μ程度がよい。
The molding sand used for the resin-coated sand grains for the shell mold of the present invention can be any commonly used molding sand that is highly fluid before molding and has heat resistance that can withstand pouring and molding during pouring. . Suitable types of foundry sand include silica sand, olivine sand, zircon sand, and fused quartz grains.
The particle size is preferably about 70μ to 1000μ.

本発明のシェルモールド用樹脂被覆砂粒に使用する、鋳
物砂の表面に被覆する熱硬化性フェノール樹脂結合剤は
フェノール1モルに対してホルムアルデヒドを1モル以
上使用し、アルカリ触媒の存在下で反応させた熱硬化性
フェノール樹脂結合剤であり、アンモニア、またはアミ
ン化合物などのアミン系触媒からなる固形アンモニアレ
ゾール型フェノール樹脂、およびアミン触媒とアルカリ
金属触媒との併用触媒からなる固形アンモニアレゾール
型フェノール樹脂、およびアルカリ金属触媒からなる固
形レゾール型フェノール樹脂、および上記レゾール型フ
ェノール樹脂に、フェノール1モルに対してホルムアル
デヒドを1モル未満使用し、酸性触媒の存在下で反応さ
せたノボラック型フェノール樹脂を含有する固形レゾー
ル型フェノール樹脂である。
The thermosetting phenolic resin binder used for the resin-coated sand grains for shell molds of the present invention and coated on the surface of the foundry sand contains at least 1 mol of formaldehyde per 1 mol of phenol, and is reacted in the presence of an alkali catalyst. A solid ammonia aresol type phenol resin which is a thermosetting phenolic resin binder and is made of ammonia or an amine catalyst such as an amine compound; and a solid resol-type phenolic resin consisting of an alkali metal catalyst, and a novolac-type phenolic resin in which less than 1 mol of formaldehyde is used per 1 mol of phenol and reacted in the presence of an acidic catalyst. It is a solid resol type phenolic resin.

ここにおいて使用するフェノールとは、フェノール、メ
タクレゾール、パラクレゾール、ビスフェノールA1キ
シレノールなどである。ホルムアルデヒドとしてはホル
マリン、バラホルムアルデヒドなどが使用できる。アミ
ン系触媒のアミン化合物とは、モノメチルアミン、モノ
エチルアミン、ジメチルアミン、エタノールアミンなど
の第1級、第2級アミンである。アルカリ金属触媒は、
ナトリウム、カリウムなどのアルカリ金属の水酸化物ま
たは酸化物、バリウム、カルシウムなどのアルカリ土類
金属の水酸化物または酸化物である。ノボラック型フェ
ノール樹脂に使用する酸性触媒は、塩酸、硫酸、シュウ
酸などの酸であり、また酢酸亜鉛のような2価金属の酢
酸塩などが使用できる。
The phenol used here includes phenol, meta-cresol, para-cresol, bisphenol A1 xylenol, and the like. As the formaldehyde, formalin, rose formaldehyde, etc. can be used. The amine compounds of the amine catalyst are primary and secondary amines such as monomethylamine, monoethylamine, dimethylamine, and ethanolamine. Alkali metal catalysts are
These are hydroxides or oxides of alkali metals such as sodium and potassium, and hydroxides or oxides of alkaline earth metals such as barium and calcium. The acidic catalyst used in the novolac type phenolic resin is an acid such as hydrochloric acid, sulfuric acid, or oxalic acid, and an acetate of a divalent metal such as zinc acetate can be used.

本発明のシェルモールド用樹脂被覆砂粒に使用するアミ
ンフェノール類としては、オルソアミノフェノール、メ
タアミノフェノール、バラアミノフェノール、2.3−
ジアミノフェノール、2.4−ジアミノフェノール、3
.5−ジアミノフェノールが使用でき、特にメタアミノ
フェノール、3.5−ジアミノフェノールが望ましい。
The amine phenols used in the resin-coated sand grains for shell molds of the present invention include ortho-aminophenol, meta-aminophenol, para-aminophenol, 2.3-
Diaminophenol, 2,4-diaminophenol, 3
.. 5-diaminophenol can be used, and meta-aminophenol and 3,5-diaminophenol are particularly preferred.

このアミノフェノール類は、熱硬化性フェノール樹脂の
反応終了後、減圧脱水終了後、または、混練時のいずれ
の時期に添加してもよい。このアミノフェノール類の添
加割合は、熱硬化性フェノール樹脂ioo重量部に対し
て、1.0〜5.0重量部であり、好ましくは2.0〜
4,0重量部である。1.0重量部未満では、アミノフ
ェノール類添加の効果がなく、また5、0重量部を超え
るとコストアップになるので好ましくない。
The aminophenols may be added at any time after the reaction of the thermosetting phenol resin is completed, after the vacuum dehydration is completed, or during kneading. The addition ratio of the aminophenols is 1.0 to 5.0 parts by weight, preferably 2.0 to 5.0 parts by weight, based on ioo parts by weight of the thermosetting phenol resin.
It is 4.0 parts by weight. If it is less than 1.0 parts by weight, the addition of aminophenols will not be effective, and if it exceeds 5.0 parts by weight, it will increase the cost, which is not preferable.

次に、本発明のシェルモールド用樹脂被覆砂粒の製造方
法の概要を説明する。
Next, the outline of the method for producing resin-coated sand grains for shell molds of the present invention will be explained.

■反応容器中にフェノール1モルとホルムアルデヒド1
〜3モルを仕込み、アルカリ触媒を添加する。そして5
0〜100℃に加熱して約1〜3時開綿合反応を行う。
■1 mole of phenol and 1 mole of formaldehyde in the reaction vessel
Charge ~3 mol and add alkaline catalyst. and 5
The mixture is heated to 0 to 100° C. for about 1 to 3 hours to carry out the cotton-opening reaction.

(ここで必要によってアミノフェノール類を添加する。(At this point, add aminophenols if necessary.

)次に減圧下、温度100℃以下で締金物中の水及び未
反応物を除去し、黄色ないし黄褐色の高粘性の透明樹脂
が得られる。(この時点でアミノフェノール類を添加す
る場合もある。)反応容器からこの樹脂を取出し急冷す
ると固形の熱硬化性フェノール樹脂が得られる。
) Next, water and unreacted substances in the clamped material are removed under reduced pressure at a temperature of 100° C. or lower to obtain a yellow to yellow-brown, highly viscous transparent resin. (Aminophenols may be added at this point.) The resin is removed from the reaction vessel and rapidly cooled to obtain a solid thermosetting phenol resin.

上記の縮合反応終了時又は、減圧脱水終了時に周知の方
法で合成したノボラック型フェノール樹脂を添加するこ
とが出来る。
A novolac type phenol resin synthesized by a known method can be added at the end of the above condensation reaction or at the end of vacuum dehydration.

■次に、鋳物砂を120〜160℃に加熱し、混練器に
投入する。その後上記の熱硬化性フェノール樹脂結合剤
を、鋳物砂100重量部に対して2〜3M量部添加する
。(ここでアミンフェノール類、およびノボラック型フ
ェノール樹脂を添加する場合もある。)30秒混練のの
ち、鋳物砂100重量部に対して、1.0〜1.5重量
部の冷却をするための水を添加し、鋳物砂が崩壊するま
で混練を続ける。次いで鋳物砂100重量部に対し、0
.03〜0.1重量部のステアリン酸カルシウムを加え
ることにより、本発明のシェルモールド用樹脂被覆砂粒
が得られる。
(2) Next, the foundry sand is heated to 120 to 160°C and put into a kneader. Thereafter, the above-mentioned thermosetting phenolic resin binder is added in an amount of 2 to 3 M parts per 100 parts by weight of foundry sand. (Amine phenols and novolac type phenolic resin may be added here.) After kneading for 30 seconds, 1.0 to 1.5 parts by weight of the foundry sand for cooling is added to 100 parts by weight of foundry sand. Add water and continue mixing until the foundry sand disintegrates. Next, to 100 parts by weight of foundry sand, 0
.. By adding 0.3 to 0.1 parts by weight of calcium stearate, the resin-coated sand grains for shell molds of the present invention can be obtained.

[作用] 鋳型の常温強度は、混線時の樹脂結合剤の流動性はもち
ろん、鋳型造型時の樹脂結合剤の流動性に大きく影響さ
れる。
[Function] The room-temperature strength of a mold is greatly influenced by the fluidity of the resin binder at the time of cross-contact, as well as the fluidity of the resin binder at the time of mold making.

アミンフェノール類を添加することにより鋳物砂に被覆
された樹脂結合剤の流動性が良好になり、鋳型の常温強
度の向上が得られる。また樹脂結合剤の硬化段階におい
て、アミノフェノール類が架橋触媒作用及び自ら架橋剤
として鋳型の硬化を促進し、優れた鋳型の温間強度をも
たらす。
Addition of amine phenols improves the fluidity of the resin binder coated on the foundry sand, and improves the room temperature strength of the mold. In addition, in the curing step of the resin binder, aminophenols act as a crosslinking catalyst and themselves act as crosslinking agents to promote the curing of the mold, resulting in excellent warm strength of the mold.

[実施例] 以下実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

(樹脂結合剤の製造方法) (1)攪拌機、コンデンサ、温度計を備えた三ツロフラ
スコにフェノール1000g、85%バラホルムアルデ
ヒド620g、20%水酸化ナトリウム水溶液8gを秤
量し、攪拌しながらウォータバスで加熱し、90℃で4
5分間反応させた後50℃まで冷却、25%アンモニア
水180gを攪拌しながら加える。70℃で白濁するま
で反応を行ったのち、−65〜−70cmHgの減圧下
で濃縮を行い内温が98℃になった時フラスコから排出
し、冷却固化したのち、破砕して6〜20メツシユの固
形アンモニアレゾール型フェノール樹脂(A)を得た。
(Production method of resin binder) (1) Weigh out 1000 g of phenol, 620 g of 85% paroxysmaldehyde, and 8 g of 20% aqueous sodium hydroxide solution into a Mitsuro flask equipped with a stirrer, condenser, and thermometer, and heat in a water bath while stirring. 4 at 90℃
After reacting for 5 minutes, the mixture was cooled to 50° C., and 180 g of 25% ammonia water was added with stirring. After the reaction was carried out at 70°C until it became cloudy, it was concentrated under reduced pressure of -65 to -70 cmHg, and when the internal temperature reached 98°C, it was discharged from the flask, cooled and solidified, and then crushed into 6 to 20 mesh pieces. A solid ammonia aresol type phenol resin (A) was obtained.

(2)  (1)  と同様−65〜−70cm1(H
の減圧下で濃縮を行い、内湯が98℃になった時、常圧
にもどし、すばやくメタアミノフェノールを42gfi
加溶解させた後、フラスコから排出し、冷却固化後破砕
して6〜20メツシユのメタアミノフェノ−ル含有固形
アンモニアレゾール型フェノール樹脂(B)を得た。
(2) Same as (1) -65 to -70 cm1 (H
Concentration was carried out under reduced pressure, and when the indoor bath temperature reached 98℃, the pressure was returned to normal and 42gfi of meta-aminophenol was quickly extracted.
After dissolving, the mixture was discharged from the flask, cooled and solidified, and then crushed to obtain 6 to 20 meshes of meta-aminophenol-containing solid ammonia resol type phenol resin (B).

(3)攪拌機、コンデンサ、温度計を備えた三ツロフラ
スコにフェノール1000g、85%バラホルムアルデ
ヒド526gを秤量し、50℃を超えない様に冷却しな
がら25%アンモニア水を150g添加する。次に50
℃で白濁するまで反応させ、さらに2時間反応を行った
のち、−65〜−70cmHgの減圧下で濃縮を行い内
温が98℃になった時フラスコから排出し、冷却固化し
たのち、破砕して6〜20メツシユの固形アンモニアレ
ゾール型フェノール樹脂(C)を得た。
(3) Weigh out 1000 g of phenol and 526 g of 85% formaldehyde into a Mitsuro flask equipped with a stirrer, condenser, and thermometer, and add 150 g of 25% ammonia water while cooling to a temperature not exceeding 50°C. then 50
The reaction was carried out at ℃ until it became cloudy, and after further reaction for 2 hours, it was concentrated under reduced pressure of -65 to -70 cmHg, and when the internal temperature reached 98 ℃, it was discharged from the flask, and after cooling and solidifying, it was crushed. 6 to 20 meshes of solid ammonia aresol type phenol resin (C) were obtained.

(4)  (3)と同様に反応させ−65〜−70cm
Hgの減圧下で濃縮を行い内温が98℃になった時、常
圧にもどし、すばやくメタアミノフェノールを38g添
加溶解させたのち、フラスコから排出し、冷却固化後破
砕して6〜20メツシユのメタアミノフェノール含有固
形アンモニアレゾール型フェノール樹脂(D)を得た。
(4) React in the same manner as in (3) -65 to -70 cm
Concentration was carried out under reduced pressure of Hg, and when the internal temperature reached 98°C, the pressure was returned to normal, and 38 g of meta-aminophenol was quickly added and dissolved, then discharged from the flask, cooled and solidified, and then crushed into 6 to 20 mesh pieces. A meta-aminophenol-containing solid ammonia aresol type phenol resin (D) was obtained.

(5)攪拌機、コンデンサ、温度計を備えた三ツロフラ
スコに、フェノール1000g、パラホルムアルデヒド
125g、37%ホルマリン250gを秤量し、攪拌し
ながら70℃まで昇温してパラホルムアルデヒドを溶解
し、50%酢酸亜鉛水溶液10gを添加したのち徐々に
昇温して4時間還流反応を行った。
(5) Weigh out 1,000 g of phenol, 125 g of paraformaldehyde, and 250 g of 37% formalin into a Mitsuro flask equipped with a stirrer, condenser, and thermometer, raise the temperature to 70°C while stirring, dissolve the paraformaldehyde, and dissolve 50% acetic acid. After adding 10 g of a zinc aqueous solution, the temperature was gradually raised to perform a reflux reaction for 4 hours.

その後−65〜−70cmHgの減圧下、濃縮を行い内
温が170℃に達した時、常圧にもどし、エチレンビス
ステアロアミド20gを添加溶解させ、フラスコから排
出し、冷却固化後破砕し6〜20メツシユのノボラック
型フェノール樹脂(E)を得た。
Thereafter, it was concentrated under a reduced pressure of -65 to -70 cmHg, and when the internal temperature reached 170°C, it was returned to normal pressure, and 20 g of ethylene bisstearamide was added and dissolved, discharged from the flask, cooled and solidified, and then crushed. ~20 meshes of novolac type phenolic resin (E) were obtained.

〈実施例1〉 スピードミキサーN5C−2型(遠州鉄工■製)に16
0℃に加熱したフーカ砂10kgを投入し、砂温か15
0℃になった時固形アンモニアレゾール型フェノール樹
脂(A)を194gとメタアミノフェノール6gを添加
し、30秒間混練したのち、冷却水を150g仕込み、
被覆砂粒が崩壊するまで混練したのち、10gのステア
リン酸カルシウムを添加し、さらに20秒間混練し、排
砂してエアレーションを行いシェルモールド用樹脂被覆
砂粒を得た。該砂粒の特性を表に示す。
<Example 1> Speed mixer N5C-2 type (manufactured by Enshu Tekko) 16
Pour 10kg of fuka sand heated to 0℃, and let the sand temperature rise to 15℃.
When the temperature reached 0°C, 194 g of solid ammonia aresol type phenol resin (A) and 6 g of meta-aminophenol were added, and after kneading for 30 seconds, 150 g of cooling water was added.
After kneading the coated sand grains until they disintegrated, 10 g of calcium stearate was added, kneading was further continued for 20 seconds, and the sand was removed for aeration to obtain resin-coated sand grains for shell molding. The properties of the sand grains are shown in the table.

〈実施例2〉 メタアミノフェノールをオルソアミノフェノールに変え
たこと以外は実施例1と同様の方法で樹脂被覆砂粒を得
た。該砂粒の特性を表に示す。
<Example 2> Resin-coated sand grains were obtained in the same manner as in Example 1 except that meta-aminophenol was changed to ortho-aminophenol. The properties of the sand grains are shown in the table.

〈実施例3〉 固形アンモニアレゾール型フェノール樹脂(A)を19
4gとメタアミノフェノール6gをメタアミノフェノー
ル含有固形アンモニアレゾール型フェノール樹脂(B)
を200gにかえた以外は実施例1と同様の方法で樹脂
被覆砂粒を得た。
<Example 3> Solid ammonia aresol type phenol resin (A)
4g and 6g of meta-aminophenol to solid ammonia aresol type phenol resin (B) containing meta-aminophenol.
Resin-coated sand grains were obtained in the same manner as in Example 1, except that the amount was changed to 200 g.

該砂粒の特性を表に示す。The properties of the sand grains are shown in the table.

〈実施例4〉 固形アンモニアレゾール型フェノール樹脂(A)を固形
アンモニアレゾール型フェノール樹脂(C)にかえた以
外は実施例1と同様の方法で樹脂被覆砂粒を得た。該砂
粒の特性を表に示す。
<Example 4> Resin-coated sand grains were obtained in the same manner as in Example 1, except that the solid ammonia resol type phenol resin (A) was replaced with the solid ammonia resol type phenol resin (C). The properties of the sand grains are shown in the table.

〈実施例5〉 メタアミノフェノール含有固形アンモニアレゾール樹脂
(B)を、メタアミノフェノール含有固形アンモニアレ
ゾール樹脂(D)にかえた以外は実施例3と同様の方法
で樹脂被覆砂粒を得た。
<Example 5> Resin-coated sand grains were obtained in the same manner as in Example 3, except that the meta-aminophenol-containing solid ammonia resol resin (B) was replaced with the meta-aminophenol-containing solid ammonia resol resin (D).

該砂粒の特性を表に示す。The properties of the sand grains are shown in the table.

〈実施例6〉 スピードミキサーN5C−2型(遠州鉄工■製)に16
0℃に加熱したフーカ砂10kgを投入し、砂温が15
0℃になった時固形アンモニアレゾール型フェノール樹
脂(A)155gとノボラック型フェノール樹脂(E)
39gおよびメタアミノフェノール6gの混合物を添加
し、30秒間混練したのち、冷却水150gを仕込み、
被覆砂粒が崩壊するまで混練したのち10gのステアリ
ン酸カルシウムを添加し、さらに20秒間混練し、エア
レーションを行い樹脂被覆砂粒を得た。
<Example 6> Speed mixer N5C-2 type (manufactured by Enshu Tekko) 16
Add 10kg of fuka sand heated to 0℃, and the sand temperature becomes 15℃.
155g of ammonia aresol type phenolic resin (A) and novolac type phenolic resin (E) which are solid when the temperature reaches 0℃
After adding a mixture of 39 g and 6 g of meta-aminophenol and kneading for 30 seconds, 150 g of cooling water was added.
After kneading the coated sand grains until they disintegrated, 10 g of calcium stearate was added, kneading was further continued for 20 seconds, and aeration was performed to obtain resin-coated sand grains.

該砂粒の特性を表に示す。The properties of the sand grains are shown in the table.

〈実施例7〉 メタアミノフェノールをオルソアミノフェノールにかえ
た以外は実施例6と同様の方法で樹脂被覆砂粒を得た。
<Example 7> Resin-coated sand grains were obtained in the same manner as in Example 6 except that meta-aminophenol was replaced with ortho-aminophenol.

該砂粒の特性を表に示す。The properties of the sand grains are shown in the table.

く比較例1〉 固形アンモニアレゾール型フェノール樹脂(A)194
gとメタアミノフェノール6gを、固形アンモニアレゾ
ール型フェノール樹脂(A)200gにかえた以外は実
施例1と同様の方法で樹脂被覆砂粒を得た。該砂粒の特
性を表に示す。
Comparative Example 1> Solid ammonia aresol type phenolic resin (A) 194
Resin-coated sand grains were obtained in the same manner as in Example 1, except that 200 g of solid ammonia resol type phenol resin (A) was used instead of 6 g of meta-aminophenol. The properties of the sand grains are shown in the table.

〈比較例2〉 メタアミノフェノールをカテコールにかえた以外は実施
例1と同様の方法で樹脂被覆砂粒を得た6該砂粒の特性
を表に示す。
<Comparative Example 2> Resin-coated sand grains were obtained in the same manner as in Example 1 except that meta-aminophenol was replaced with catechol.The properties of the six sand grains are shown in the table.

く比較例3〉 固形アンモニアレゾール型フェノール樹脂(A)を固形
アンモニアレゾール型フェノール樹脂(C)にかえた以
外は比較例1と同様の方法で樹脂被覆砂粒を得た。該砂
粒の特性を表に示す。
Comparative Example 3 Resin-coated sand grains were obtained in the same manner as in Comparative Example 1, except that the solid ammonia resol type phenolic resin (A) was replaced with the solid ammonia resol type phenol resin (C). The properties of the sand grains are shown in the table.

く比較例4〉 固形アンモニアレゾール型フェノール樹脂(A)155
gとノボラック型フェノール樹脂39gおよびメタアミ
ノフェノール6gの混合物を固形アンモニアレゾール型
フェノール樹脂t6ogとノボラック型フェノール樹脂
40gの混合物にかえた以外は実施例6と同様の方法で
樹脂被覆砂粒を得た。該砂粒の特性を表に示す。
Comparative Example 4> Solid ammonia aresol type phenolic resin (A) 155
Resin-coated sand grains were obtained in the same manner as in Example 6, except that the mixture of g, 39 g of novolac type phenol resin, and 6 g of meta-aminophenol was replaced with a mixture of solid ammonia resol type phenol resin t6og and 40 g of novolac type phenol resin. The properties of the sand grains are shown in the table.

表より明らかに、各実施例の樹脂被覆砂粒は、融着点の
低下をもたらすことなく、常温曲げ強度、および温間曲
げ強度が比較例のそれに比べ、それぞれの樹脂結合剤共
に向上している。
It is clear from the table that the resin-coated sand grains of each example have improved room-temperature bending strength and warm bending strength with each resin binder compared to those of the comparative example, without causing a decrease in the fusion point. .

なお、常温曲げ強度はJACT試験法5M−1、温間曲
げ強度はJACT試験法5M−5、融着点はJACT試
験法C−1に準拠して行った。
Note that the room temperature bending strength was measured in accordance with JACT test method 5M-1, the warm bending strength was measured in accordance with JACT test method 5M-5, and the fusion point was measured in accordance with JACT test method C-1.

[発明の効果コ 以上説明したように本発明に従えば、硬化剤としてヘキ
サメチレンテトラミンや、ホルムアルデヒド源を用いる
必要性がないので、混練時、鋳型造型時および注湯時に
アンモニアやホルムアルデヒドの発生が少なく、低臭気
のシェルモールド用樹脂被覆砂粒が得られる。ざらにア
ミノフェノール類の作用により、混練時はもちろん鋳型
造型時の樹脂結合剤の流動性が良く、常温曲げ強度が高
く、樹脂結合剤の使用量を低減でき、経済性の面でも有
効である。
[Effects of the Invention] As explained above, according to the present invention, there is no need to use hexamethylenetetramine as a hardening agent or a formaldehyde source, so ammonia and formaldehyde are not generated during kneading, mold making, and pouring. Resin-coated sand grains for shell molding with low odor can be obtained. Due to the action of the aminophenols, the resin binder has good fluidity not only during kneading but also during mold making, has high bending strength at room temperature, reduces the amount of resin binder used, and is also effective in terms of economic efficiency. .

また、アミノフェノール類が架橋触媒作用及び自ら架橋
剤として硬化を促進するため、温間曲げ強度が高く鋳型
造型時間の短縮が可能となる。さらにカテコールのよう
に融着点を低下させることがないので、樹脂被覆砂粒の
ブロッキングを起すことがなく、流動性に富んだ樹脂被
覆砂粒が得られるという効果がある。
In addition, since aminophenols have a crosslinking catalytic effect and act as crosslinking agents themselves to promote curing, warm bending strength is high and mold making time can be shortened. Furthermore, unlike catechol, it does not lower the melting point, so there is no blocking of the resin-coated sand grains, and resin-coated sand grains with high fluidity can be obtained.

特許出願人 アイシン化工株式会社 代表者栗木清二Patent applicant: Aisin Kako Co., Ltd. Representative Seiji Kuriki

Claims (5)

【特許請求の範囲】[Claims] (1)鋳物砂と、該鋳物砂の表面に被覆された熱硬化性
フェノール樹脂結合剤とからなり、該熱硬化性フェノー
ル樹脂結合剤にモノアミノフェノールおよびジアミノフ
ェノールの少なくとも1種を含むことを特徴とするシェ
ルモールド用樹脂被覆砂粒。
(1) Consisting of foundry sand and a thermosetting phenol resin binder coated on the surface of the foundry sand, the thermosetting phenol resin binder containing at least one of monoaminophenol and diaminophenol. Features resin-coated sand grains for shell molds.
(2)熱硬化性フェノール樹脂結合剤がアンモニア、第
1級アミンおよび第2級アミンから選ばれた少なくとも
1種を主たる触媒とした固形アンモニアレゾール型フェ
ノール樹脂である特許請求の範囲第1項記載のシェルモ
ールド用樹脂被覆砂粒。
(2) Claim 1, wherein the thermosetting phenolic resin binder is a solid ammonia resol type phenol resin containing at least one selected from ammonia, primary amines, and secondary amines as a main catalyst. resin-coated sand grains for shell molds.
(3)熱硬化性フェノール樹脂が、ノボラック型フェノ
ール樹脂を含有するアンモニア、第1級アミンおよび第
2級アミンから選ばれた少なくとも1種を主たる触媒と
した固形アンモニアレゾール型樹脂である特許請求の範
囲第1項または第2項記載のシェルモールド用樹脂被覆
砂粒。
(3) The thermosetting phenolic resin is a solid ammonia resol type resin containing a novolac type phenolic resin and using at least one selected from ammonia, a primary amine, and a secondary amine as a main catalyst. Resin-coated sand grains for shell molds according to item 1 or 2.
(4)モノアミノフェノールまたは/およびジアミノフ
ェノールの添加割合が熱硬化性フェノール樹脂結合剤1
00重量部に対して、1.0〜5.0重量部である特許
請求の範囲第1、2または3項記載のシェルモールド用
樹脂被覆砂粒。
(4) The addition ratio of monoaminophenol or/and diaminophenol is 1 to 1 in the thermosetting phenol resin binder.
The resin-coated sand grains for shell molds according to claim 1, 2 or 3, wherein the amount is 1.0 to 5.0 parts by weight based on 00 parts by weight.
(5)モノアミノフェノールが、メタアミノフェノール
である特許請求の範囲第1、2、3または4項記載のシ
ェルモールド用樹脂被覆砂 粒。
(5) The resin-coated sand grains for shell mold according to claim 1, 2, 3 or 4, wherein the monoaminophenol is meta-aminophenol.
JP62020679A 1987-01-30 1987-01-30 Resin-coated sand grains for shell mold Expired - Lifetime JPH0824992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020679A JPH0824992B2 (en) 1987-01-30 1987-01-30 Resin-coated sand grains for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020679A JPH0824992B2 (en) 1987-01-30 1987-01-30 Resin-coated sand grains for shell mold

Publications (2)

Publication Number Publication Date
JPS63188442A true JPS63188442A (en) 1988-08-04
JPH0824992B2 JPH0824992B2 (en) 1996-03-13

Family

ID=12033865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020679A Expired - Lifetime JPH0824992B2 (en) 1987-01-30 1987-01-30 Resin-coated sand grains for shell mold

Country Status (1)

Country Link
JP (1) JPH0824992B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
CN104226888A (en) * 2014-08-29 2014-12-24 吴江市液铸液压件铸造有限公司 Easily-scattered precoated sand and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684143A (en) * 1979-12-12 1981-07-09 Kao Corp Manufacture of casting mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684143A (en) * 1979-12-12 1981-07-09 Kao Corp Manufacture of casting mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
CN104226888A (en) * 2014-08-29 2014-12-24 吴江市液铸液压件铸造有限公司 Easily-scattered precoated sand and preparation method thereof
CN104226888B (en) * 2014-08-29 2016-07-06 吴江市液铸液压件铸造有限公司 A kind of easy defeated and dispersed precoated sand and preparation method thereof

Also Published As

Publication number Publication date
JPH0824992B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
JPS5855146A (en) Phenolic resin binder for shell mold and resin coated sand produced by using said binder
JPS63188442A (en) Resin coating sand grain for shell mold
CN107150103B (en) Mold molding set, mold molding sand composition, and method for producing same
JPS5978745A (en) Resin coated sand for casting
JPH11244991A (en) Manufacture of resin coated sand
JP4106212B2 (en) Phenolic resin composition for shell mold and resin coated sand for shell mold mold
JPH0347942B2 (en)
JPS62127140A (en) Resin coated sand for shell mold
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JP2002102999A (en) Resin coated sand for shell mold
JPS58224038A (en) Composition of coated sand and its production
JP2005095932A (en) Phenolic resin composition for shell mold, and resin-coated sand
JP2000015389A (en) Binder composition for carbon dioxide curing
JPS58184034A (en) Resin coated sand
JPS58173051A (en) Resin coated sand for shell mold
JPS6240949A (en) Resin composition for coated sand
JPH0468059B2 (en)
JP4122545B2 (en) Binder composition for foundry sand
JPS6327103B2 (en)
JPH01154843A (en) Manufacture of resin coated sand for gas hardening mold
JP2593332B2 (en) Resin-coated sand composition for hot box
JPH05320477A (en) Binder
JP3170904B2 (en) Carbon dioxide gas-curable binder aqueous solution for casting sand and method for producing mold
JPH09201648A (en) Resin coated sand composition for shell mold
JPS6015648B2 (en) Manufacturing method of resin for shell mold