JPS63177451A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63177451A
JPS63177451A JP62008755A JP875587A JPS63177451A JP S63177451 A JPS63177451 A JP S63177451A JP 62008755 A JP62008755 A JP 62008755A JP 875587 A JP875587 A JP 875587A JP S63177451 A JPS63177451 A JP S63177451A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
semiconductor substrate
layer
recessed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62008755A
Other languages
Japanese (ja)
Inventor
Takeyuki Yao
八尾 健之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62008755A priority Critical patent/JPS63177451A/en
Publication of JPS63177451A publication Critical patent/JPS63177451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a low-cost semiconductor device where the electrical contact between an upper-layer semiconductor substrate and a lower-layer semiconductor substrate is good by a method wherein protruding parts at the upper-layer semiconductor substrate where a recessed part is made are bonded to the lower-layer semiconductor substrate so as to integrate both substrates in such a way that the recessed part formed on the rear of the upper-layer semiconductor substrate surrounds semiconductor devices on the lower-layer semiconductor substrate. CONSTITUTION:Semiconductor devices 3-1, 3-2 are formed almost in the central part of a substrate; in addition, the following two are provided: a first semiconductor substrate 1 where wiring electrodes 8 are installed at the peripheral parts of the semiconductor devices 3-1, 3-2 and a second semiconductor substrate 2 where semiconductor devices 4-1, 4-2 are formed on its surface and a recessed part 5 is formed on its rear. Protruding parts 17 at the second semiconductor substrate 2 where the recessed part 5 is made are bonded to the first semiconductor substrate 1 so as to integrate both substrates 1, 2 in such a way that the recessed part surrounds the semiconductor devices 3-1, 3-2 and does not surround the wiring electrodes 8. For example, a lower-layer substrate 1 and an upper-layer substrate 2 are bonded via an oxide film 6; Al pads 8 formed at the edge parts of the lower-layer substrate 1 are connected directly to Al pads 9 at the upper-layer substrate 2 by using Au wire 10, etc.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は上下2層に半導体基板を配置した半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a semiconductor device in which semiconductor substrates are arranged in two layers, upper and lower.

B、従来の技術 2種類の半導体チップを電極部分で接合させて形成した
半導体装置が例えばIEEE  IEDM1984年第
816頁〜第819頁に開示されている。第10図に示
すとおり、この従来の半導体装置は、・半導体素子53
が設けられた下層基板51と半導体基板54が設けられ
た上層基板52とが互いに接合されて構成されている。
B. Prior Art A semiconductor device formed by joining two types of semiconductor chips at electrode portions is disclosed, for example, in IEEE IEDM, 1984, pages 816 to 819. As shown in FIG. 10, this conventional semiconductor device includes: a semiconductor element 53;
A lower substrate 51 provided with a semiconductor substrate 54 and an upper substrate 52 provided with a semiconductor substrate 54 are bonded to each other.

下層基板51の酸化シリコン層(Sin、)55には半
導体素子53の一部を形成するポリシリコンゲート56
と、AQ電極57と、Au電極58と、ポリイミド層5
9とが形成され、同様に上層基板52の酸化シリコン層
60には半導体素子54の一部を形成するポリシリコン
ゲート61と、Au電極62と、Au電極63と、ポリ
イミド層64とが形成されている。そして、下層基板5
1と上層基板52とはAu電極58とAu電極63とに
よって電気的接続がなされ、また基板表面のポリイミド
層59.64は平坦化されている。
A polysilicon gate 56 forming a part of the semiconductor element 53 is formed on the silicon oxide layer (Sin) 55 of the lower substrate 51.
, AQ electrode 57 , Au electrode 58 , and polyimide layer 5
Similarly, a polysilicon gate 61 forming a part of the semiconductor element 54, an Au electrode 62, an Au electrode 63, and a polyimide layer 64 are formed on the silicon oxide layer 60 of the upper substrate 52. ing. And the lower substrate 5
1 and the upper substrate 52 are electrically connected by Au electrodes 58 and 63, and polyimide layers 59 and 64 on the substrate surface are planarized.

このような構成によれば半導体素子を三次元的配置する
ことができ集積度が向上する。また互いに接する面に酸
化シリコン層55.60を形成し、さらにこれらの表面
にポリイミド層59.64を形成しているので、上層基
板S2と下層基板51とが完全に絶縁され、CMOSト
ランジスタなどに用いた場合にラッチアップを有効に防
止できる。
According to such a configuration, semiconductor elements can be arranged three-dimensionally, and the degree of integration is improved. Furthermore, since silicon oxide layers 55 and 60 are formed on the surfaces in contact with each other, and polyimide layers 59 and 64 are further formed on these surfaces, the upper layer substrate S2 and the lower layer substrate 51 are completely insulated, making it suitable for CMOS transistors and the like. When used, latch-up can be effectively prevented.

C9発明が解決しようとする問題点 しかしながら、上述のような従来の半導体装置では、2
つの半導体基板51.52の全表面を精度よく平坦化し
なくてはならず、コストがかかり、また電気的接続の信
頼性に問題があった。
C9 Problems to be Solved by the Invention However, in the conventional semiconductor device as described above, 2
The entire surface of each semiconductor substrate 51, 52 must be planarized with high precision, which increases cost and poses problems in the reliability of electrical connections.

本発明は、上下2層の半導体基板同士の電気的接触が良
好でありかつ低コストの半導体装置を提供することを目
的としている。
An object of the present invention is to provide a low-cost semiconductor device that has good electrical contact between upper and lower semiconductor substrate layers.

D2問題点を解決するための手段 本発明に係る半導体装置は、一実施例を示す第1図に示
すとおり、基板のほぼ中央部に半導体素子3−1.3−
2が形成されるとともに該半導体素子3−1.3−2の
周囲に配線用電極8が設けられた第1の半導体基板1と
、表面に半導体素子4−1.4−2が形成されると共に
裏面に凹部5が形成された第2の半導体基板2とを備え
、凹部5が第1の半導体基板1上の半導体素子3−1゜
3−2を囲繞し配線用電極8を囲繞しないように、当該
凹部5を画成する第2の半導体基板の凸部17を第1の
半導体基板1に接合して両基板を一体化したものである
Means for Solving Problem D2 As shown in FIG. 1 showing one embodiment, the semiconductor device according to the present invention has a semiconductor element 3-1.3- located approximately in the center of the substrate.
A first semiconductor substrate 1 on which a wiring electrode 8 is provided around the semiconductor element 3-1.3-2, and a semiconductor element 4-1.4-2 is formed on the surface thereof. and a second semiconductor substrate 2 having a recess 5 formed on its back surface, so that the recess 5 surrounds the semiconductor elements 3-1 and 3-2 on the first semiconductor substrate 1 and does not surround the wiring electrode 8. Then, the convex portion 17 of the second semiconductor substrate defining the recess 5 is bonded to the first semiconductor substrate 1 to integrate both substrates.

E0作用 第2の半導体基板2は、その凸部17を第1の半導体基
板1に接合して第1の半導体基板1上に積層され、これ
により第1の半導体基板1と第2の半導体基板2との接
着面積が小さくなる。このため、両基板の接触面が従来
よりも狭くなり、平滑化に要するコストが低減される。
E0 action The second semiconductor substrate 2 is stacked on the first semiconductor substrate 1 with its convex portion 17 bonded to the first semiconductor substrate 1, and thereby the first semiconductor substrate 1 and the second semiconductor substrate 1 are bonded to each other. The adhesion area with 2 becomes smaller. Therefore, the contact surface between both substrates becomes narrower than before, and the cost required for smoothing is reduced.

また第1の半導体基板1の配線用電極8は、例えばAQ
ワイヤあるいはAuワイヤ10.11などを用いたワイ
ヤボンディングなどによって第2の半導体基板2の電極
9と直接接続されるので信頼性が向上する。
Further, the wiring electrode 8 of the first semiconductor substrate 1 is, for example, an AQ
Since it is directly connected to the electrode 9 of the second semiconductor substrate 2 by wire bonding using a wire or Au wire 10, 11, etc., reliability is improved.

F、実施例 本発明の一実施例を第1図および第2図に基づいて説明
する。
F. Embodiment An embodiment of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の半導体装置の構成図であり、半導体素
子3−1.3−2が形成された下層基板1と半導体素子
4−1.4−2が形成された上層基板2とが凸部17を
介して接合されている。下層基板1と接する上層基板2
の下面には凹部5が形成され、下層基板1の半導体素子
3−1゜3−2はこの凹部5に収容されている。半導体
素子3−1.3−2は、ポリシリコンからなるゲート電
極13−1.13−2をそれぞれ有し、また半導体素子
4−1.4−2はポリシリコンからなるゲート電極14
−1.14−2をそれぞれ有する。なお、これらの半導
体素子3−1.3−2および4−1.4−2上には表面
保護膜15゜16がそれぞれ設けられている。また半導
体素子3−2および4−2の下側にはウェル41および
42がそれぞれ形成されている。
FIG. 1 is a block diagram of a semiconductor device of the present invention, in which a lower substrate 1 on which a semiconductor element 3-1.3-2 is formed and an upper substrate 2 on which a semiconductor element 4-1.4-2 is formed. They are joined via the protrusion 17. Upper layer substrate 2 in contact with lower layer substrate 1
A recess 5 is formed in the lower surface of the substrate 1, and the semiconductor elements 3-1 and 3-2 of the lower substrate 1 are housed in the recess 5. The semiconductor elements 3-1.3-2 each have a gate electrode 13-1.13-2 made of polysilicon, and the semiconductor element 4-1.4-2 has a gate electrode 14 made of polysilicon.
-1.14-2 respectively. Incidentally, surface protective films 15 and 16 are provided on these semiconductor elements 3-1, 3-2 and 4-1, 4-2, respectively. Further, wells 41 and 42 are formed under the semiconductor elements 3-2 and 4-2, respectively.

下層基板1と上層基板2とは酸化膜6を介して接着され
、酸化膜6に接する下層基板1の表面には拡散層配線7
など凹凸の少ない素子が形成されている。また上層基板
2が当接しない下層基板1の縁部表面にはLOGO8酸
化膜(局所酸化膜)12が設けられ、そのほぼ真上に外
部電極取り出し用のAΩパッド8が形成されている。こ
のAQバッド8と上層基板2のAQパッド9とはAuワ
イヤ10(あるいはAfiワイヤ)で直接接続されてい
る。リードフレーム(図示せず)を介して両者を接続し
てもよい。
The lower substrate 1 and the upper substrate 2 are bonded together via an oxide film 6, and a diffusion layer wiring 7 is provided on the surface of the lower substrate 1 in contact with the oxide film 6.
An element with few irregularities is formed. Further, a LOGO8 oxide film (local oxide film) 12 is provided on the edge surface of the lower substrate 1 which the upper substrate 2 does not contact, and an AΩ pad 8 for taking out external electrodes is formed almost directly above the LOGO8 oxide film (local oxide film) 12. This AQ pad 8 and the AQ pad 9 of the upper layer substrate 2 are directly connected by an Au wire 10 (or an Afi wire). The two may be connected via a lead frame (not shown).

第2図(a)〜(g)は第1図に示す半導体装置の製造
プロセスを示したものである。
FIGS. 2(a) to 2(g) show the manufacturing process of the semiconductor device shown in FIG. 1.

第2図(a)に示すように、先ず下層基板1および上層
基板2に半導体素子3−1.3−2および半導体素子4
−1.4−2をそれぞれ形成するとともに、AQパッド
8,9を設ける。このとき下層基板1の半導体素子3−
1.3−2とAQパッド8との間にはある程度の距離を
もたせて表面が平坦となる拡散層配線7(第1図参照)
で接続し、更にその上に積層された酸化膜6(第1図参
照)を平坦化する。これにより、両者間に広がる基板表
面の凹凸を小さくする。
As shown in FIG. 2(a), first, semiconductor elements 3-1, 3-2 and semiconductor elements 4 are placed on a lower substrate 1 and an upper substrate 2.
-1, 4-2 are respectively formed, and AQ pads 8 and 9 are provided. At this time, the semiconductor element 3- of the lower substrate 1
1. Diffusion layer wiring 7 with a flat surface with a certain distance between 3-2 and AQ pad 8 (see Figure 1)
The oxide film 6 (see FIG. 1) layered thereon is then flattened. This reduces the unevenness on the substrate surface that spreads between the two.

次に第2図(b)に示すように、上層基板2の底面のう
ち、半導体素子3−1.3−2およびAQパッド8に対
向する部分にエツチング等により凹部5を形成する。こ
のときに凸部17が同時に形成される。
Next, as shown in FIG. 2(b), a recess 5 is formed by etching or the like in a portion of the bottom surface of the upper layer substrate 2 facing the semiconductor element 3-1, 3-2 and the AQ pad 8. At this time, the convex portion 17 is formed at the same time.

次いで第2図(c)に示すように、上層基板2の凸部1
7と下層基板1の平坦化された酸化膜6とを、例えば特
開昭60−51700号に開示されている方法で接着す
る。上層基板2と下層基板1とを接着した後、第2図(
d)に示すように、上1基板2の凸部17の外側でかつ
下層基板1のAQバッド8よりも内方と対峙する部分を
符号18で示すように切断する。さらに第2図(e)に
示すように、下層基板1のAflダイパッド外周部分を
符号19で示すように切断し、第2図(f)に示すよう
にする。
Next, as shown in FIG. 2(c), the convex portion 1 of the upper layer substrate 2 is
7 and the planarized oxide film 6 of the lower substrate 1 are bonded together, for example, by the method disclosed in Japanese Patent Laid-Open No. 60-51700. After bonding the upper layer substrate 2 and the lower layer substrate 1, as shown in FIG.
As shown in d), a portion outside the convex portion 17 of the upper substrate 2 and facing inward from the AQ pad 8 of the lower substrate 1 is cut as shown by reference numeral 18. Further, as shown in FIG. 2(e), the outer circumferential portion of the Afl die pad of the lower substrate 1 is cut as shown by reference numeral 19 to form the shape shown in FIG. 2(f).

最後に第2図(f)に示す半導体チップをセラミックパ
ッケージあるいはリードフレームのダイパッドにダイボ
ンディングし、第2図(g)に示すように上層基板2と
下層基板1のAΩパッド8゜9同士をAuワイヤ10,
11などによってワイヤボンディングして半導体装置が
完成する。
Finally, the semiconductor chip shown in FIG. 2(f) is die-bonded to the die pad of the ceramic package or lead frame, and the AΩ pads 8°9 of the upper layer substrate 2 and lower layer substrate 1 are bonded together as shown in FIG. 2(g). Au wire 10,
11 and the like to complete the semiconductor device.

このような構造の半導体装置では、上層基板2と下層基
板1との接着面積が上層基板の凸部17の底面積だけで
あるので、下層基板1および上層基板2を広い面積にわ
たって平坦化する必要がなく、平坦化に要するコストを
低減できる。また上層基板2と下層基板1との電気的接
続がワイヤボンディングによってなされるために電気的
接続部の信頼性が向上する。
In a semiconductor device having such a structure, since the bonding area between the upper layer substrate 2 and the lower layer substrate 1 is only the bottom area of the convex portion 17 of the upper layer substrate, it is necessary to flatten the lower layer substrate 1 and the upper layer substrate 2 over a wide area. Therefore, the cost required for planarization can be reduced. Further, since the electrical connection between the upper layer substrate 2 and the lower layer substrate 1 is made by wire bonding, the reliability of the electrical connection is improved.

第3図〜第9図は、第1図に示した半導体装置の応用例
を示したものである。
3 to 9 show examples of applications of the semiconductor device shown in FIG. 1.

第3図は、下層基板1にCPU20を形成し、上層基板
2にROMまたはRAMのメモリ素子21を形成したも
のである。汎用性のCPU20を用いれば、用途に応じ
てメモリ素子21のみを積換えればよく、設計自由度が
向上し、しかも実装密度が小さくなる。
In FIG. 3, a CPU 20 is formed on the lower substrate 1, and a memory element 21 of ROM or RAM is formed on the upper substrate 2. If the general-purpose CPU 20 is used, only the memory element 21 needs to be replaced depending on the application, which improves the degree of freedom in design and reduces the packaging density.

第4図は、下層基板1にバイポーラ素子21を形成し下
層基板2にCMOSトランジスタなどのMOSデバイス
23を形成した例である。近年、CMO8)−ランジス
タ回路の出力段などにファンアウト(電流容量)の大き
なバイポーラトランジスタを用いたいという要求が高ま
っている。1チツプ上に異種のトランジスタを形成する
場合に素子分離工程が複雑でコストアップとなるが、第
4図に示すような構造をとれば、1チツプ上に異種のデ
バイスを形成することも容易になる。
FIG. 4 shows an example in which a bipolar element 21 is formed on the lower substrate 1 and a MOS device 23 such as a CMOS transistor is formed on the lower substrate 2. In recent years, there has been an increasing demand for using bipolar transistors with large fan-out (current capacity) in the output stage of CMO8)-transistor circuits and the like. When forming different types of transistors on one chip, the element isolation process is complicated and costs increase, but if the structure shown in Figure 4 is adopted, it is easy to form different types of devices on one chip. Become.

第5図は、下層基板1にパワーMOSトランジスタ24
を形成し上層基板2にCMOSトランジスタ25を形成
した例である。この構成も第4図に示す構成と同様に素
子分離工程のためのコストを削減することができる。さ
らに、パワーMOSトランジスタ24のチップ上にCM
OSトランジスタ25を形成しているので、パワーMO
Sトランジスタ23から発生する熱がCMOSトランジ
スタ24に伝わり易くなり過温度検知の停止回路などを
実現することができる。
FIG. 5 shows a power MOS transistor 24 on the lower substrate 1.
This is an example in which a CMOS transistor 25 is formed on the upper layer substrate 2. This configuration can also reduce the cost for the element isolation process, similar to the configuration shown in FIG. Furthermore, a CM on the chip of the power MOS transistor 24 is
Since it forms the OS transistor 25, the power MO
The heat generated from the S transistor 23 is easily transmitted to the CMOS transistor 24, making it possible to implement a stop circuit for detecting overtemperature.

第6図は、上層基板2の凹部5にメタル25を蒸着して
これを接地電位にすることによって下層基板1に形成し
た回路をシールドするようにした例である。下層基板1
に例えば高速のクロックによって作動する高速動作回路
26を形成した場合、高速動作回路26からノイズが発
生し他の素子を誤動作させる可能性がある。第6図に示
すように上層基板2の凹部5にメタル25のシールドを
形成することによって、高速動作回路26から発生する
ノイズを有効に遮断し他の素子の誤動作を防止できる。
FIG. 6 shows an example in which the circuit formed on the lower substrate 1 is shielded by depositing metal 25 in the recess 5 of the upper substrate 2 and setting it at ground potential. Lower substrate 1
For example, if a high-speed operation circuit 26 operated by a high-speed clock is formed, noise may be generated from the high-speed operation circuit 26 and cause other elements to malfunction. As shown in FIG. 6, by forming a metal shield 25 in the recess 5 of the upper layer substrate 2, noise generated from the high-speed operation circuit 26 can be effectively blocked and malfunctions of other elements can be prevented.

また外部ノイズを遮断する効果もある。It also has the effect of blocking external noise.

また第7図は、下層基板1としてG検出用片持ち梁27
をもつGセンサ28を用いたものであり、上層基板2の
凸部17を片持ち梁27の過振防止用ストッパとした例
である。通常、片持ち梁構造をもつ梁のストッパには、
半導体素子が形成されていない半導体基板を用いるが、
第7図に示すような構造にすればストッパ用の上層基板
2にも例えば信号処理回路29のような半導体素子を形
成することが可能となり実装面積を小さくすることがで
きる。
FIG. 7 also shows a cantilever beam 27 for G detection as the lower substrate 1.
This is an example in which the convex portion 17 of the upper layer substrate 2 is used as a stopper for preventing excessive vibration of the cantilever beam 27. Usually, a stopper for a beam with a cantilever structure is
Although a semiconductor substrate on which no semiconductor element is formed is used,
With the structure shown in FIG. 7, it is possible to form a semiconductor element such as the signal processing circuit 29 on the upper layer substrate 2 for the stopper, and the mounting area can be reduced.

また第8図は、下層基板1としてダイヤフラム30をも
つ圧力センサ31を用いると共に、上層基板2の凹部5
を真空室として用いた例である。
8 uses a pressure sensor 31 having a diaphragm 30 as the lower substrate 1, and also uses a recess 5 in the upper substrate 2.
This is an example of using a vacuum chamber as a vacuum chamber.

圧力センサ31のダイヤフラム30の一方の面を真空圧
にすることにより、絶対圧を検知する圧力センサを構成
することができる。上層基板2に検知回路としての信号
処理回路32を形成することによって小型の圧力センサ
を構成することができる。なお、第8図に示す半導体装
置は第2図(c)の工程を真空中で行うことによって凹
部5を真空とし、容易に形成できる。
By applying vacuum pressure to one surface of the diaphragm 30 of the pressure sensor 31, a pressure sensor that detects absolute pressure can be constructed. By forming the signal processing circuit 32 as a detection circuit on the upper layer substrate 2, a small pressure sensor can be constructed. Note that the semiconductor device shown in FIG. 8 can be easily formed by performing the process shown in FIG. 2(c) in a vacuum to make the recess 5 a vacuum.

第9図も、上層基板2の凹部5を真空室として用いた例
である。下層基板1を1984年発行のProceed
ings of the I E E E第70巻第4
20頁〜第456頁に示されているような片持ち梁構造
の振動センサ33としている。片持ち梁構造の振動セン
サ33は、振動の検知感度を向上させるため真空中に形
成する必要があり、第9図に示すような構造を用いれば
1ウ工ハ単位で同時に多数の真空室を形成できるので、
実装工数を低減することができる。また真空室上の上層
基板2内に信号処理回路34等を形成できるので実装面
積を小さくすることができる。
FIG. 9 also shows an example in which the recess 5 of the upper substrate 2 is used as a vacuum chamber. Proceed of lower layer board 1 issued in 1984
ings of the IEE Volume 70 No. 4
The vibration sensor 33 has a cantilever structure as shown on pages 20 to 456. The vibration sensor 33 with a cantilever structure needs to be formed in a vacuum in order to improve the vibration detection sensitivity, and if the structure shown in FIG. Because it can be formed,
Mounting man-hours can be reduced. Furthermore, since the signal processing circuit 34 and the like can be formed in the upper layer substrate 2 above the vacuum chamber, the mounting area can be reduced.

G0発明の詳細 な説明したように、本発明によれば、第2の半導体基板
の凸部を第1の半導体基板に接合して第1の半導体基板
上に第2の半導体基板を積層し、これにより第1の半導
体基板と第2の半導体基板との接着面積が小さくなり、
このため、両基板の接触面が従来よりも狭くなり、平滑
化に要するコストが低減される。また第1の半導体基板
の配線用電極を1例えばAuワイヤあるいはAuワイヤ
などを用いたワイヤボンディングなどによって第2の半
導体基板の電極と直接接続したので信頼性が向上する。
As described in detail of the G0 invention, according to the present invention, the convex portion of the second semiconductor substrate is bonded to the first semiconductor substrate, and the second semiconductor substrate is laminated on the first semiconductor substrate, This reduces the adhesive area between the first semiconductor substrate and the second semiconductor substrate,
Therefore, the contact surface between both substrates becomes narrower than before, and the cost required for smoothing is reduced. Further, since the wiring electrodes of the first semiconductor substrate are directly connected to the electrodes of the second semiconductor substrate by, for example, Au wire or wire bonding using Au wire, reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体装置の一実施例を示す構成
図、第2図(a)〜(g)は本発明に係る半導体装置の
製造工程例を示す図、第3図〜第9図は本発明に係る半
導体装置の応用例を示す図、第10図は従来の半導体装
置の構成図である。 1:下層基板      2:上層基板3−1.3−2
.4−1.4−2:半導体素子5:凹部       
 6二酸化膜 8.9:AQパッド 10.11:Auワイヤ17:凸
部 特許出願人  日産自動車株式会社 代理人弁理士   永 井 冬 紀 第2図 第2図 第3図     第6図 第4図     第7図 第5図     第8図 ダイアフラム   圧力センサ 第9図
FIG. 1 is a configuration diagram showing an embodiment of a semiconductor device according to the present invention, FIGS. 1 is a diagram showing an application example of a semiconductor device according to the present invention, and FIG. 10 is a configuration diagram of a conventional semiconductor device. 1: Lower layer substrate 2: Upper layer substrate 3-1.3-2
.. 4-1.4-2: Semiconductor element 5: Recessed part
6 Dioxide film 8.9: AQ pad 10.11: Au wire 17: Convex portion Patent applicant: Nissan Motor Co., Ltd. Representative Patent Attorney Fuyuki Nagai Figure 2 Figure 2 Figure 3 Figure 6 Figure 4 Figure 7 Figure 5 Figure 8 Diaphragm Pressure sensor Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)基板のほぼ中央部に半導体素子が形成されるとと
もに該半導体素子の周囲に配線用電極が設けられた第1
の半導体基板と、 表面に半導体素子が形成されると共に裏面に凹部が形成
された第2の半導体基板とを備え、前記凹部が前記第1
の半導体基板上の半導体素子を囲繞し前記配線用電極を
囲繞しないように、当該凹部を画成する前記第2の半導
体基板の凸部を前記第1の半導体基板に接合して両基板
を一体化したことを特徴とする半導体装置。
(1) A first substrate in which a semiconductor element is formed approximately at the center of the substrate and wiring electrodes are provided around the semiconductor element.
and a second semiconductor substrate having a semiconductor element formed on its front surface and a recessed portion formed on its back surface, the recessed portion being the first semiconductor substrate.
A convex portion of the second semiconductor substrate defining the concave portion is bonded to the first semiconductor substrate so that the convex portion of the second semiconductor substrate surrounds the semiconductor element on the semiconductor substrate and does not surround the wiring electrode, so that both substrates are integrated. A semiconductor device characterized by:
JP62008755A 1987-01-17 1987-01-17 Semiconductor device Pending JPS63177451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008755A JPS63177451A (en) 1987-01-17 1987-01-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008755A JPS63177451A (en) 1987-01-17 1987-01-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63177451A true JPS63177451A (en) 1988-07-21

Family

ID=11701740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008755A Pending JPS63177451A (en) 1987-01-17 1987-01-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63177451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506871A (en) * 1999-08-02 2003-02-18 ハネウエル・インコーポレーテッド Dual wafer attachment method
JP2005268670A (en) * 2004-03-19 2005-09-29 Nec Electronics Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506871A (en) * 1999-08-02 2003-02-18 ハネウエル・インコーポレーテッド Dual wafer attachment method
JP4890708B2 (en) * 1999-08-02 2012-03-07 ハネウェル・インターナショナル・インコーポレーテッド Dual wafer attachment method
JP2005268670A (en) * 2004-03-19 2005-09-29 Nec Electronics Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US6529062B2 (en) Power module
JPS62203359A (en) Laminated semiconductor device
JPH088330B2 (en) Semiconductor integrated circuit device having LOC type lead frame
US4984065A (en) Hybrid resin-sealed semiconductor device
JPS5892230A (en) Semiconductor device
JP3171172B2 (en) Hybrid integrated circuit
US20040018662A1 (en) Method of manufacturing a semiconductor device
JP2004071961A (en) Compound module and manufacturing method thereof
US6091144A (en) Semiconductor package
JP2000232235A (en) Semiconductor device
US20040245651A1 (en) Semiconductor device and method for fabricating the same
JPH0590452A (en) Resin-sealed type semiconductor device
JP3681690B2 (en) Semiconductor device
JPS63177451A (en) Semiconductor device
JP2001168270A (en) Semiconductor device and manufacturing method therefor
JPH04107964A (en) Semiconductor ic device
JP3495281B2 (en) Semiconductor device
JP2863287B2 (en) Structure of bonding pad electrode of semiconductor device
US5434450A (en) PGA package type semiconductor device having leads to be supplied with power source potential
JP2752262B2 (en) Manufacturing method of one-chip LSI
JP2001135777A (en) Semiconductor device
JP4291094B2 (en) Semiconductor device
JPH07312414A (en) Semiconductor integrated circuit device and its manufacture
JP2754969B2 (en) Semiconductor device having bump formation region
JP2963952B2 (en) Semiconductor device