JPS63172891A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS63172891A
JPS63172891A JP450187A JP450187A JPS63172891A JP S63172891 A JPS63172891 A JP S63172891A JP 450187 A JP450187 A JP 450187A JP 450187 A JP450187 A JP 450187A JP S63172891 A JPS63172891 A JP S63172891A
Authority
JP
Japan
Prior art keywords
heat transfer
dryness
area
pipe
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP450187A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Shinji Fujimoto
藤本 真嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP450187A priority Critical patent/JPS63172891A/en
Publication of JPS63172891A publication Critical patent/JPS63172891A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat transfer performance in a heat transfer pipe by making the cross section of the flow channel in the heat transfer pipe rectangular in the areas from the supercooled area to the low dryness area and from the high dryness area to the superheated area and circular in the medium dryness area of fluid in the pipe. CONSTITUTION:In the supercooled area and the low dryness area (for instance, dryness x<=0.3) and the high dryness area and superheated area (for instance, x>=0.9) of the coolant in a pipe, the coolant is considered to be almost liquid phase and almost gas phase respectively, that is, close to a single phase flow. In this case a rectangular flow channel 10a has improved heat transfer performance in the pipe than a circular flow channel 10b. Further, in the inner wall of the heat transfer pipe 10a grooves 13a which have a triangle cross section are provided by cutting in the grooves. With those grooves the heat transfer area is increased with improved heat transfer performance. And, because in the middle dryness area of the coolant in the pipe (for instance 0.3 <=x<=0.9) there are two phase flows, a gas phase flow and liquid phase flow, the cross section of the flow channel in the heat transfer pipe 10b is circular and has spiral groove 13b cut into the wall. The coolant is pulled up in the spiral groove 13b by the so-called capillary action to form a thin liquid film on the whole spiral groove 13b so that a high evaporation heat transfer coefficient can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機や冷凍機等に使用され、冷媒と空気
等の流体間で熱の授受を行う熱交換器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in air conditioners, refrigerators, etc., which transfers heat between a refrigerant and a fluid such as air.

従来の技術 冷媒等の作動流体が伝熱管内金相変化しながら流動する
熱交換器としては、従来、第4図に示すようなフィン付
熱交換器が用いられている。これは、一定間隔で平行に
並べられたフィン1とフィン1に直角に挿通された伝熱
管2とからなり、伝熱f2内を流れる冷媒とフィン1間
を流れる空気との間で熱交換が行われる。図中矢印3は
冷媒の流動方向を示す。伝熱管2としては、第6図及び
第6図に示すように、円管状であり、管内壁にらせん溝
4が設けられており、らせん溝4の管軸に対する隣ねじ
れ角β及びらせん溝4の溝深さhなど流路断面形状が一
定に保たれた管内らせん溝付管が用いられている。
BACKGROUND OF THE INVENTION Conventionally, a finned heat exchanger as shown in FIG. 4 has been used as a heat exchanger in which a working fluid such as a refrigerant flows while changing its phase inside heat transfer tubes. It consists of fins 1 arranged in parallel at regular intervals and heat transfer tubes 2 inserted at right angles to the fins 1, and heat exchange occurs between the refrigerant flowing in the heat transfer f2 and the air flowing between the fins 1. It will be done. Arrow 3 in the figure indicates the flow direction of the refrigerant. As shown in FIGS. 6 and 6, the heat exchanger tube 2 has a circular tube shape, and a spiral groove 4 is provided on the inner wall of the tube. A spiral grooved tube is used in which the cross-sectional shape of the flow path, such as the groove depth h, is kept constant.

この管内らせん溝付管はらせん#14t−設けることに
よって、蒸発熱伝達の場合は水平ならせん溝付管内の管
底部を流れている液冷媒が毛細現象によって溝内を引き
上げられ、管内伝熱面に形成される冷媒液膜の平均厚さ
が薄くなシ、また、凝縮熱伝達の場合は凝縮液が表面張
力の作用でらせん溝4底部に集まり、管内伝熱面に形成
される凝縮液膜の平均厚さが薄くなり、蒸発時、凝縮時
共、管内伝熱性能が向上すると言われていた。
By providing this internal spiral grooved tube with a #14 spiral, in the case of evaporative heat transfer, the liquid refrigerant flowing at the bottom of the horizontal spiral grooved tube is pulled up in the groove by capillary phenomenon, and the internal heat transfer surface In addition, in the case of condensation heat transfer, the condensed liquid gathers at the bottom of the spiral groove 4 due to the action of surface tension, and the condensed liquid film formed on the heat transfer surface inside the tube is small. It was said that the average thickness of the pipe becomes thinner, improving the heat transfer performance within the pipe during both evaporation and condensation.

発明が解決しようとする問題点 しかし、例えば、蒸発熱伝達の場合に管内伝熱面の全て
に薄い厚さの冷媒液膜が形成され、著しい伝熱促進効果
が得られるのは、冷媒の乾き度が大きい領域、すなわち
蒸発過程の後期、乾き度を!で表わせば、およそ0.6
”:x≦0.9 の領域だけである。一方、過冷却域や
蒸発過程の初期(例えば乾き度x(0,3)においては
、冷媒の乾き度は小さく、管内の液冷媒の流量が多いた
めに、液冷媒によってらせん溝はほとんど埋もれてしま
い、液冷媒はらせん溝の上を通過してしまう。また、乾
き度x>o、gの高乾き度域から過熱域では、管内表面
が完全に乾いてしまう。従って、上述した様な蒸発メカ
ニズムによる著しい伝熱促進効果は望めない。このこと
は、凝縮熱伝熱の場合についても同様に考えられる。従
って、管内冷媒が過冷却域から低乾き度域、そして、高
乾き度域から過熱域の場合に、管内伝熱率が低いために
、熱交換器としての性能(熱通過率)が低いという問題
を有していた。
Problems to be Solved by the Invention However, for example, in the case of evaporative heat transfer, a thin refrigerant liquid film is formed on all the heat transfer surfaces in the tube, and the reason why a remarkable heat transfer promotion effect is obtained is due to the drying of the refrigerant. The area where the degree is large, that is, the late stage of the evaporation process, the degree of dryness! If expressed as , approximately 0.6
”: only in the region where x≦0.9. On the other hand, in the supercooled region or the early stage of the evaporation process (for example, in the dryness x (0, 3)), the dryness of the refrigerant is small and the flow rate of the liquid refrigerant in the pipes is Because of the large amount of liquid refrigerant, the spiral groove is almost buried by the liquid refrigerant, and the liquid refrigerant passes over the spiral groove.Also, from the high dryness region (x>o, g) to the superheated region, the inner surface of the tube It dries completely.Therefore, we cannot expect a significant heat transfer promotion effect due to the evaporation mechanism as described above.This can be considered in the same way in the case of condensation heat transfer.Therefore, the refrigerant in the pipes is removed from the supercooled region. In the case of a low dryness region and a high dryness region to a superheated region, the in-pipe heat transfer rate is low, so there has been a problem that the performance as a heat exchanger (heat transfer rate) is low.

そこで、本発明は伝熱管内流路所面形状を工夫すること
によって、上記の管内熱伝達率が(低下する領域)にお
ける管内伝熱性能を向上させ、高性能な熱父換器全得よ
うとするものである。
Therefore, the present invention aims to improve the heat transfer performance in the tube in the above-mentioned region where the heat transfer coefficient in the tube decreases by devising the shape of the flow path in the heat transfer tube, thereby obtaining a high-performance heat exchanger. That is.

問題点全解決するための手段 上記問題点を解決する本発明の技術的手段は、熱交換器
を構成する伝熱管内流路所面を、管内流体の過冷却域か
ら低乾き度域(乾き度X≦Q、3)そして高乾き度域か
ら過熱域(x>o、9)にて矩形状とし、中乾き度域(
o、3’:x≦0.9)Kて円管状とするものである。
Means for Solving All Problems The technical means of the present invention for solving the above problems is to change the area of the flow path in the heat transfer tubes constituting the heat exchanger from the supercooled region of the fluid in the tubes to the low dryness region (dry degree
o, 3': x≦0.9)K to form a circular tube shape.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

まず、上述したように、熱交換器を構成する、水平に設
置された伝熱管内流体の過冷却域及び低乾き度域(乾き
度x ’S’ 0.3) 、そして高乾き度域及び過熱
域(I≧0.9)においては、流路断面形状を矩形にし
ているため、管内熱伝達率は円管の場合に比べて大幅に
向上する。これは、これらの領域では液相が流量の大部
分を占めている。あるいは気相が流量の大部分を占めて
いる。はぼ単相流に近い状態と考えられる。ここで、伝
熱学(西用、藤田共著、理工学社)によると、単相流の
層流における発達状態での無次元数又セルト数Nuは、
熱流束一定条件で、円管流路の場合、 Nu=4.36
゜縦横比1.0の矩形流路の場合、Nu=3.63.縦
横比3.0の矩形流路で、Nu=4.77、縦横比4.
0の矩形流路でN u = 5.35と言われている。
First, as mentioned above, the supercooled region and low dryness region (dryness x 'S' 0.3) of the fluid in the horizontally installed heat transfer tubes that constitute the heat exchanger, and the high dryness region and In the superheat region (I≧0.9), since the cross-sectional shape of the flow path is rectangular, the in-pipe heat transfer coefficient is significantly improved compared to the case of a circular pipe. This is because the liquid phase accounts for most of the flow rate in these regions. Alternatively, the gas phase occupies most of the flow rate. The state is considered to be close to single-phase flow. Here, according to Heat Transfer Science (co-authored by Nishiyo and Fujita, Rikogakusha), the dimensionless number or Cert number Nu in the developed state of single-phase laminar flow is:
Under constant heat flux conditions, in the case of a circular pipe channel, Nu = 4.36
゜For a rectangular channel with an aspect ratio of 1.0, Nu=3.63. A rectangular channel with an aspect ratio of 3.0, Nu=4.77, and an aspect ratio of 4.
It is said that N u = 5.35 in a rectangular flow path of 0.

但し、又セルト数Nuは次式で定義されている。However, the number Nu of cells is defined by the following formula.

Nu=tt−1/λ ここで、α:熱伝達率、l:代表寸法、λ:熱伝導率で
ある。従って、矩形流路の代表寸法を水力直径金とり、
矩形の短辺の長さt ” を長辺の長さ’Ib、円管流
路の直径をd5及び単位長さ当たりの管内伝熱面積1F
r、Ai  とすると、熱流束一定条件での熱伝達率@
)q及び(”)q−A工は次表のようになる。
Nu=tt-1/λ Here, α: heat transfer coefficient, l: representative dimension, and λ: thermal conductivity. Therefore, the representative dimensions of the rectangular flow path are taken as the hydraulic diameter, and
The length of the short side of the rectangle t'' is the length of the long side 'Ib, the diameter of the circular pipe flow path is d5, and the heat transfer area in the pipe per unit length is 1F.
If r, Ai, the heat transfer coefficient under constant heat flux condition @
)q and ('')q-A are as shown in the table below.

従って、管内が単相層流と仮定し、熱交換器の性能を表
わす(L:tq)・Ai  で比較すると、円管流路よ
り矩形流路の方が上回っていることがわかる。
Therefore, if we assume that there is a single-phase laminar flow inside the pipe and compare the performance of the heat exchanger (L:tq)·Ai, we can see that the rectangular flow path is superior to the circular pipe flow path.

但し、実際の伝熱管内では完全な単相流ではなく、又、
乾き度が大きくなるにつれて、気相の流速により液相が
加速されてくる。しかし、過冷却域及び低乾き度域(乾
き度Iく0.3)そして、高乾き度域及び過熱域(x>
0.9)に限って言えば、画表に示した傾向は成り立つ
と考えられる。従って、管内流体の上記領域において流
路断面形状を矩形にすることによって大幅に伝熱性能が
向上する。
However, in actual heat exchanger tubes, there is not a complete single-phase flow, and
As the degree of dryness increases, the flow rate of the gas phase accelerates the liquid phase. However, the supercooling region and low dryness region (dryness I × 0.3), the high dryness region and superheating region (x>
0.9), it is thought that the trend shown in the chart holds true. Therefore, by making the cross-sectional shape of the flow path rectangular in the above region of the fluid in the pipe, the heat transfer performance is significantly improved.

次に、管内流体の高乾き置載すなわち、液相の流量の少
ない領域では、らせん溝付円管伝熱管を用いることによ
り、従来、言われているように、らせん溝内全液相が毛
細管現象によって引き上げられるため、管内の全溝面上
に薄い厚さの液膜が形成され、高い熱伝達率が得られる
Next, in areas where the fluid in the tube is highly dry, that is, in areas where the flow rate of the liquid phase is low, by using a circular heat exchanger tube with a spiral groove, the entire liquid phase in the spiral groove is transferred to a capillary tube. As the liquid is pulled up by the phenomenon, a thin liquid film is formed on the entire groove surface within the tube, resulting in a high heat transfer coefficient.

以上により、管内流体の過冷却域及び低乾き度域、そし
て高乾き度域及び過熱域における管内伝熱性能の大幅な
向上が図れ、熱交換器の高性能化が可能になる。
As a result of the above, the heat transfer performance within the pipes can be significantly improved in the supercooled region and low dryness region of the fluid in the pipes, as well as the high dryness region and superheated region, and it is possible to improve the performance of the heat exchanger.

実施例 以下、本発明の一実施例を第1図〜第3図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

第15図は本発明の一実施例の熱交換器の一部欠截正面
図である。10a 、 1 obは直管部分を水平にな
るように蛇行状に曲げられた伝熱管で、各伝熱管10M
 、 1 obは互いにU字形ペンド11により結合さ
れて熱交換器が構成されている。本熱交換器金蒸発器と
して用いる場合、伝熱管10a 。
FIG. 15 is a partially cutaway front view of a heat exchanger according to an embodiment of the present invention. 10a and 1ob are heat exchanger tubes whose straight parts are bent in a meandering manner so that they are horizontal, and each heat exchanger tube 10M
, 1 ob are connected to each other by a U-shaped pend 11 to form a heat exchanger. When this heat exchanger is used as a gold evaporator, the heat exchanger tube 10a.

1ob内を矢印12方向に冷媒が流動し、その冷媒と、
伝熱管外を流れる流体と熱交換が行われる。
A refrigerant flows in the direction of arrow 12 within 1ob, and the refrigerant and
Heat exchange occurs with the fluid flowing outside the heat transfer tube.

そして、熱交換器の冷媒入口側と出口側に、すなわち、
管内冷媒の過冷却域及び低乾き度域(乾き度X≦0.3
)と高乾き度域及び過熱度域(x>o、9)において、
伝熱管10a内流路断面を矩形状とし、中乾き度(0,
3≦I≦0.9)において、伝熱管1ob内流路断面を
円管状としている。また、伝熱管10a内壁には第2図
に示すように、管軸に対する垂直断面形状が三角状の溝
13aが、管軸に平行に刻設されており、云熱交1ob
内壁にはM3図に示すように、管軸に対する垂直断面形
状が三角状のらせん溝13bが刻設されている。
Then, on the refrigerant inlet side and outlet side of the heat exchanger, that is,
Supercooling region and low dryness region (dryness X≦0.3 of the refrigerant in the pipe)
) and in the high dryness region and superheat region (x>o, 9),
The cross section of the flow path inside the heat exchanger tube 10a is rectangular, and the degree of dryness (0,
3≦I≦0.9), the cross section of the flow path within the heat transfer tube 1 ob is made into a circular tube shape. Furthermore, as shown in FIG. 2, grooves 13a having a triangular cross section perpendicular to the tube axis are carved in the inner wall of the heat exchanger tube 10a in parallel to the tube axis.
As shown in Fig. M3, a spiral groove 13b having a triangular cross-sectional shape perpendicular to the tube axis is carved in the inner wall.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

本発明による一実施例の熱交換器を蒸発器として使用す
る場合、管内冷媒の過冷却域及び低乾き度域(例えば乾
き度X≦0.3)と高乾き度域及び過熱域(例えば!≧
0.9)においては、それぞれほとんど液相あるいはほ
とんど気相、すなわち、単相流に近いと考えられる。従
って、この場合では、画表に示したように、円管流路で
ある10bより矩形流路である10aの方が管内の伝熱
性能が大福に向上する。また、伝熱管10a内壁には断
面形状が三角状の$13aが刻設されているため、伝熱
面積が増加し、伝熱性能は更に向上する。
When the heat exchanger according to one embodiment of the present invention is used as an evaporator, the refrigerant in the tubes has a supercooling region and a low dryness region (for example, dryness X≦0.3), a high dryness region and a superheating region (for example! ≧
0.9), it is considered that the flow is almost liquid phase or almost gaseous phase, that is, close to single-phase flow. Therefore, in this case, as shown in the diagram, the heat transfer performance within the tube is much better in the rectangular flow path 10a than in the circular tube flow path 10b. Moreover, since the $13a having a triangular cross-sectional shape is carved on the inner wall of the heat transfer tube 10a, the heat transfer area increases and the heat transfer performance is further improved.

また、管内冷媒の中乾き度域(例えばo3≦X≦0.9
)では、気液二相流であるので、伝熱管1obの流路断
面が円管状で、かつ、らせん溝13bの刻設によって、
らせん?!113be液冷媒が引き上げられる、いわゆ
る、毛細管現象が効果を発揮し、伝熱管1ob内の全ら
せん溝13b上に薄い厚さの液膜が形成され、高い管内
蒸発熱伝達率が得られる。
In addition, the medium dryness range of the refrigerant in the pipe (for example, o3≦X≦0.9
), since it is a gas-liquid two-phase flow, the flow passage cross section of the heat transfer tube 1ob is circular, and the spiral groove 13b is carved.
Spiral? ! The so-called capillary phenomenon in which the 113be liquid refrigerant is pulled up takes effect, and a thin liquid film is formed on all the spiral grooves 13b in the heat transfer tube 1ob, resulting in a high intra-tube evaporative heat transfer coefficient.

以上により、管内冷媒の過冷却域、低乾き度域及び高乾
き度域、過熱域における管内伝熱性能の大幅な改善が図
れ、蒸発器としての伝熱性能が向上する。
As a result of the above, it is possible to significantly improve the heat transfer performance within the pipe in the supercooling region, low dryness region, high dryness region, and superheating region of the refrigerant in the pipe, and the heat transfer performance as an evaporator is improved.

また、本発明は、凝縮器として用いた場合においても蒸
発器の場合と同様の効果を発揮する。更に、上記実施例
では、管内壁面に設けた溝13a。
Furthermore, the present invention exhibits the same effects as when used as an evaporator even when used as a condenser. Furthermore, in the above embodiment, the groove 13a is provided on the inner wall surface of the pipe.

13bは断面が三角状であるが、断面形状が三角形以外
の多角形であっても同様の効果が得られる。
13b has a triangular cross section, but the same effect can be obtained even if the cross section is a polygon other than a triangle.

発明の効果 以上のように本発明は、内部を相変化する流体が流動す
る伝熱管から熱交換器を構成し、伝熱管内流体の過冷却
域及び低乾き度域(乾き度x<0.3)。
Effects of the Invention As described above, the present invention configures a heat exchanger from a heat exchanger tube through which a phase-changing fluid flows, and the fluid in the heat exchanger tube has a supercooled region and a low dryness region (dryness x<0. 3).

そして高乾き度域及び過熱域(X≧0.9)にて、伝熱
管内流路所面を矩形状とし、中乾き度域(0,3≦X≦
0.9)にて、伝熱管内流路所面を円管状とするために
、伝熱管内流体の過冷却域、低乾き度域(乾き度X <
 0.3 )および高乾き度域、過熱域(X > O,
S )における管内伝熱性能の大幅な向上が図れ、熱交
換器としての伝熱性能が向上する。
In the high dryness region and overheating region (X≧0.9), the flow path inside the heat transfer tube is made rectangular, and the medium dryness region (0,3≦X≦
0.9), in order to make the area of the flow path inside the heat transfer tube circular, the fluid inside the heat transfer tube has a supercooled region and a low dryness region (dryness X <
0.3), high dryness region, superheat region (X > O,
The heat transfer performance in the tube can be significantly improved in S), and the heat transfer performance as a heat exchanger is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による熱交換器の一部欠截正
面図、第2図は第1図中のA−A線における断面図、第
3図は第1図中のB−B線における断面図、第4図は従
来例を示す熱交換器の斜視図、第6図は第4図中の伝熱
管の一部欠截正面図、第6図は第5図中のC−C,IQ
における断面図である。 10a 、 10b・・・・・・伝熱管、13a・・・
・・・溝、13b・・・・・・らせん溝。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名13
b−−らa艮
FIG. 1 is a partially cutaway front view of a heat exchanger according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is a cross-sectional view taken along line B-- 4 is a perspective view of a conventional heat exchanger, FIG. 6 is a partially cutaway front view of the heat exchanger tube in FIG. 4, and FIG. 6 is a cross-sectional view taken along line B. -C, IQ
FIG. 10a, 10b... Heat exchanger tube, 13a...
...Groove, 13b...Spiral groove. Name of agent: Patent attorney Toshio Nakao and 1 other person13
b--raa 艮

Claims (2)

【特許請求の範囲】[Claims] (1)内部を相変化する流体が流動する伝熱管から構成
され、前記伝熱管内流体の過冷却域及び低乾き度域(乾
き度x■0.3)、そして高乾き度域から過熱域(x■
0.9)にて、伝熱管内流路所面を矩形状とし、中乾き
度域(0.3■x■0.9)にて、伝熱管内流路断面を
円管状とする熱交換器。
(1) Consists of a heat transfer tube through which a phase-changing fluid flows, and the fluid in the heat transfer tube has a supercooling region, a low dryness region (dryness x 0.3), and a high dryness region to a superheating region. (x■
At 0.9), the cross-section of the flow path in the heat transfer tube is made into a rectangular shape, and in the medium dryness region (0.3×■0.9), the cross section of the flow path inside the heat transfer tube is made into a circular tube shape. vessel.
(2)矩形状流路の伝熱管内壁に溝を刻設した特許請求
の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein grooves are carved in the inner wall of the heat exchanger tube of the rectangular flow path.
JP450187A 1987-01-12 1987-01-12 Heat exchanger Pending JPS63172891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP450187A JPS63172891A (en) 1987-01-12 1987-01-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP450187A JPS63172891A (en) 1987-01-12 1987-01-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS63172891A true JPS63172891A (en) 1988-07-16

Family

ID=11585805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP450187A Pending JPS63172891A (en) 1987-01-12 1987-01-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS63172891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048915A2 (en) * 1999-04-28 2000-11-02 Haruo Uehara Heat exchanger
CN105987539B (en) * 2015-02-03 2018-09-18 上海海立电器有限公司 Air conditioner and its heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048915A2 (en) * 1999-04-28 2000-11-02 Haruo Uehara Heat exchanger
EP1048915A3 (en) * 1999-04-28 2002-03-27 Haruo Uehara Heat exchanger
CN105987539B (en) * 2015-02-03 2018-09-18 上海海立电器有限公司 Air conditioner and its heat exchanger

Similar Documents

Publication Publication Date Title
US6412549B1 (en) Heat transfer pipe for refrigerant mixture
JPH0587752B2 (en)
JP2000039283A (en) Heat exchanger
JP2007120787A (en) Heat exchanger tube with inner surface groove
JPS58108394A (en) Heat exchanger
KR100479781B1 (en) Evaporator and refrigerator
JPS6214751B2 (en)
JPS63172891A (en) Heat exchanger
JP3083385B2 (en) Heat exchanger
JPS63172890A (en) Heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JPH0539969A (en) Condenser for refrigerant
JPS5938596A (en) Heat exchanger
JPH0444192B2 (en)
JPS6252238B2 (en)
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JPS63172894A (en) Heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPS61114092A (en) Heat exchanger
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JPH0968396A (en) Heat exchanger
JPS61110891A (en) Heat exchanger
JPS63161360A (en) Refrigeration cycle
JPH05133692A (en) Evaporator
JPH08105699A (en) Heat transfer tube with inside grooves