JPS63172894A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS63172894A
JPS63172894A JP450287A JP450287A JPS63172894A JP S63172894 A JPS63172894 A JP S63172894A JP 450287 A JP450287 A JP 450287A JP 450287 A JP450287 A JP 450287A JP S63172894 A JPS63172894 A JP S63172894A
Authority
JP
Japan
Prior art keywords
groove
pipe
heat transfer
spiral
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP450287A
Other languages
Japanese (ja)
Other versions
JPH07109354B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Shinji Fujimoto
藤本 真嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP62004502A priority Critical patent/JPH07109354B2/en
Publication of JPS63172894A publication Critical patent/JPS63172894A/en
Publication of JPH07109354B2 publication Critical patent/JPH07109354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a high performance heat exchanger by providing spiral grooves of at least two kinds with different groove spiral angle with respect to the axis of the pipe with the spiral grooves and different depths of the spiral grooves in a heat transfer pipe and making larger the groove spiral angle and groove depth in the low dryness area. CONSTITUTION:In a heat transfer pipe spiral grooves are provided which are of at least two kinds with different groove spiral angles beta with respect to the axis of the pipe with the spiral grooves and different groove depths h of the spiral grooves. If the groove spiral angle is beta1, the groove depth h1 in the low dryness area of the fluid in the pipe, the groove spiral angle beta2, and the groove depth h2 in the high dryness area, they are made to give beta1>beta2 and h1>h2. When the heat exchanger is used as an evaporator, in the areas from the low dryness area to the middle dryness area, namely, in the area where the flow rate of the liquid coolant in the pipe is high, the groove depth h1 is larger so that the groove seldom sinks in the liquid coolant and the groove spiral angle beta1 is larger so that a liquid coolant of a relatively small flow rate becomes easy to flow along the grooves. With this arrangement an improved heat transfer coefficient in the areas from the low dryness area of coolant to the middle dryness area of coolant and reduced pressure loss in the pipe in the high dryness area can be provided with improved heat transfer performance in pipe.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機や冷凍機等に使用され、冷媒と空気
等の流体間で熱の授受を行う熱交換器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in air conditioners, refrigerators, etc., which transfers heat between a refrigerant and a fluid such as air.

従来の技術 冷媒等の作動流体が伝熱管内を相変化しながら流動する
熱交換器としては、従来、第8図に示すようなフィン付
熱交換器が用いられている。これは、一定間隔で平行に
並べられたフィン1とフィン1に直角に挿通された伝熱
管2とからなり、伝熱管2内を流れる冷媒とフィン1間
を流れる空気との間で熱交換が行われる。図中矢印3は
冷媒の流動方向を示す。伝熱管2としては、第9図に示
すように、管内壁にらせん溝4が設けられており、らせ
ん溝4の管軸に対する溝ねじれ角β及びらせん溝5の溝
深さhは一定に保たれた管内らせん溝付管が用いられて
いる。
BACKGROUND OF THE INVENTION Conventionally, a finned heat exchanger as shown in FIG. 8 has been used as a heat exchanger in which a working fluid such as a refrigerant flows through heat transfer tubes while undergoing a phase change. It consists of fins 1 arranged in parallel at regular intervals and heat exchanger tubes 2 inserted at right angles to the fins 1. Heat exchange occurs between the refrigerant flowing inside the heat exchanger tubes 2 and the air flowing between the fins 1. It will be done. Arrow 3 in the figure indicates the flow direction of the refrigerant. As shown in FIG. 9, the heat transfer tube 2 is provided with a helical groove 4 on the inner wall of the tube, and the groove torsion angle β of the helical groove 4 with respect to the tube axis and the groove depth h of the helical groove 5 are kept constant. A sagging internal spiral grooved tube is used.

この管内らせん溝付管はらせん溝5を設けることによっ
て、蒸発熱伝達の場合は水平ならせん溝付管内の管底部
を流れている液冷媒が毛細現象によって溝内を引き上げ
られ、管内伝熱面に形成される冷媒液膜の平均厚さが薄
くなり、凝縮熱伝達の場合は凝縮液が表面張力の作用で
らせん溝4底部に集まり、管内伝熱面に形成される凝縮
液膜の平均厚さが薄くなり、蒸発時、凝縮時共、管内伝
熱性能が向上すると言われていた。
By providing the helical groove 5 in this internal spiral grooved tube, in the case of evaporative heat transfer, the liquid refrigerant flowing at the bottom of the horizontal spiral grooved tube is pulled up in the groove by capillary phenomenon, and the internal heat transfer surface In the case of condensation heat transfer, the condensate gathers at the bottom of the spiral groove 4 due to surface tension, and the average thickness of the condensate film formed on the heat transfer surface inside the tube decreases. It was said that this would improve the heat transfer performance within the tube during both evaporation and condensation.

発明が解決しようとする問題点 しかし、例えば、蒸発熱伝達の場合に管内伝熱面の全て
に薄い厚さの冷媒液膜が形成され、著しい伝熱促進効果
が得られるのは、冷媒の乾き度が大きい領域、すなわち
蒸発過程の後期だけである。
Problems to be Solved by the Invention However, for example, in the case of evaporative heat transfer, a thin refrigerant liquid film is formed on all the heat transfer surfaces in the tube, and the reason why a remarkable heat transfer promotion effect is obtained is due to the drying of the refrigerant. It is only in the region where the temperature is large, that is, in the later stages of the evaporation process.

一方、蒸発過程の初期においては、冷媒の乾き度は小さ
く、管内の液冷媒の流量が多いために、液冷媒によって
らせん溝は埋もれてしまい、液冷媒はらせん溝の上を通
過してしまう。従って、上述した様な蒸発メカニズムに
よる著しい伝熱促進効果は望めない。このことは、凝縮
熱伝達の場合についても同様に考えられる。従って、管
内冷媒が低乾き度の場合に、管内熱伝達率が低いために
、熱交換器としての性能(熱通過率)が低いという問題
を有していた。
On the other hand, at the beginning of the evaporation process, the degree of dryness of the refrigerant is low and the flow rate of the liquid refrigerant in the tube is large, so the helical groove is buried by the liquid refrigerant and the liquid refrigerant passes over the helical groove. Therefore, a significant heat transfer promoting effect due to the evaporation mechanism as described above cannot be expected. This can be similarly considered in the case of condensation heat transfer. Therefore, when the refrigerant in the tubes has a low degree of dryness, the heat transfer coefficient in the tubes is low, resulting in a problem that the performance as a heat exchanger (heat transfer rate) is low.

そこで、本発明は管内らせん溝付管内のらせん溝を工夫
することによって、冷媒の低乾き度域から中乾き度域に
おける管内伝達率を向上させ、かつ、高乾き度域におけ
る圧力損失を低減することによって、高性能な熱交換器
を得ようとするものである。
Therefore, the present invention improves the intra-pipe transfer coefficient in the low to medium dryness range of the refrigerant and reduces the pressure loss in the high dryness range by devising the spiral groove in the pipe. By doing so, the aim is to obtain a high-performance heat exchanger.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、熱交換器
を構成する伝熱管内に、らせん溝の管軸に対する溝ねじ
れ角及びらせん溝の溝深さがそれぞれ異なる少なくとも
2種類のらせん溝を設け、かつ、管内流体の高乾き度域
に比して、低乾き度域において溝ねじれ角及び溝深さを
それぞれより大きくするものである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is that the helical grooves have a groove helix angle with respect to the tube axis and a groove depth of the helical grooves in the heat exchanger tubes constituting the heat exchanger. At least two different types of helical grooves are provided, and the groove torsion angle and groove depth are made larger in the low dryness region than in the high dryness region of the fluid in the pipe.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、上述したように、熱交換器を構成する、水平
に設置された伝熱管内に、らせん溝の管軸に対する溝ね
じれ角β及びらせん溝の溝深さhが異なる少なくとも2
種類のらせん溝を設け、かつ、管内流体の低乾き度域に
おける溝ねじれ角をβ 、溝深さをhl  とし、高乾
き度域における溝ねじれ角をβ2.溝深さをh2 とす
ると、β1〉β2及びhl〉h2なる関係があるため、
本発明による熱交換器を蒸発器として使用する場合には
、低乾き度域から中乾き度域(例えば、冷媒R−22.
管径4鵡の場合、乾き度I≦0.7)、すなわち、管内
の液冷媒の流量が多い領域で、溝深さhl が大きいた
めに液冷媒によって埋もれることが少なく、かつ、溝ね
じれ角β1が大きいために比較的流速の小さい液冷媒が
らせん溝に沿って流れやすくなる。例えば、流動状態は
波状流から環状流へ遷移しやすくなり、管内の全らせん
溝の山頂部分に均一な厚さの冷媒液膜が形成され伝熱性
能を大幅に向上させることができる。また、高乾き度域
(x20.7)、すなわち、液冷媒の流量が少ない領域
では、ある程度の溝深さく例えば管径4鰭では0.1〜
○*2a)’rあればらせん溝内を液冷媒が毛細管現象
によって引き上げられるために低乾き度域はど溝深さh
2を大きくしなくても、流動状態は還伏流あるいは環状
噴霧流に遷移しやすくなり、管内の全溝面上に薄い厚さ
の冷媒液膜が形成され、高い熱伝達率が得られる。更に
、溝ねじれ角β2カ砥乾き度より小さいため圧力損失の
低減が図れる。これは、溝ねじれ角βが管内熱伝達率に
与える影響は小さいにも拘らず、圧力損失に与える影響
が大きいからである。すなわち、溝ねじれ角βが大きく
なるほど圧力損失は増加する。
That is, as described above, in a horizontally installed heat transfer tube constituting a heat exchanger, there are at least two helical grooves in which the groove torsion angle β with respect to the tube axis of the helical groove and the groove depth h of the helical groove are different.
Types of spiral grooves are provided, and the groove torsion angle in the low dryness region of the fluid in the pipe is β, the groove depth is hl, and the groove torsion angle in the high dryness region is β2. If the groove depth is h2, there are relationships β1>β2 and hl>h2, so
When the heat exchanger according to the present invention is used as an evaporator, it may be used in a low to medium dryness range (for example, refrigerant R-22.
In the case of a pipe diameter of 4 mm, in the dryness I≦0.7), that is, in the region where the flow rate of liquid refrigerant in the pipe is large, the groove depth hl is large, so it is less likely to be buried by liquid refrigerant, and the groove torsion angle is Since β1 is large, liquid refrigerant having a relatively low flow rate easily flows along the spiral groove. For example, the flow state can easily transition from a wavy flow to an annular flow, and a refrigerant liquid film with a uniform thickness is formed on the crests of all the spiral grooves in the pipe, making it possible to significantly improve heat transfer performance. In addition, in the high dryness region (x20.7), that is, in the region where the flow rate of liquid refrigerant is small, the groove depth is to a certain extent, for example, 0.1~
○*2a) If 'r, the liquid refrigerant is pulled up in the spiral groove by capillary phenomenon, so the groove depth h in the low dryness area
Even if 2 is not increased, the flow state easily transitions to a reflux flow or an annular spray flow, a thin refrigerant liquid film is formed on all groove surfaces in the tube, and a high heat transfer coefficient can be obtained. Furthermore, since the groove helix angle β2 is smaller than the grinding dryness, pressure loss can be reduced. This is because although the groove torsion angle β has a small effect on the in-pipe heat transfer coefficient, it has a large effect on the pressure loss. That is, the pressure loss increases as the groove torsion angle β increases.

また、本発明は凝縮熱伝達においても、蒸発熱伝達の場
合と同様の効果を発揮する。
Moreover, the present invention exhibits the same effect in condensation heat transfer as in the case of evaporative heat transfer.

以上より、冷媒低乾き度域から中乾き度域における管内
熱伝達率の向上、及び高乾き度域における管内圧力損失
の低減が図れ、すなわち、管内伝熱性能の向上が図れ、
従って、熱交換器の高性能化が可能になる。
From the above, it is possible to improve the heat transfer coefficient in the pipe in the low to medium dryness range of the refrigerant, and to reduce the pressure loss in the pipe in the high dryness range, that is, to improve the heat transfer performance in the pipe.
Therefore, it becomes possible to improve the performance of the heat exchanger.

実施例 以下、本発明の一実施例を第1図〜第7図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 7.

第1図は本発明の一実施例の熱交換器の一部欠截正面図
である。10は一定間隔に並設したフィンであり、その
フィン10を貫通して配列した伝熱管11、各伝熱管1
1を互いに結合するU字形ベンド12、及びエンドプレ
ート13よす熱交換器が構成されている。伝熱管11内
を矢印14方向に冷媒が流動し、その冷媒と、フィン1
o間を流れる空気との間で熱交換が行われる。そして、
各伝熱管11a、11b、11c内壁には、それぞれ第
2図〜第7図に示すような管軸に対する垂直断面形状が
三角状のらせん溝15a、15b、15cが刻設されて
いる。すなわち、冷媒乾き度を低。
FIG. 1 is a partially cutaway front view of a heat exchanger according to an embodiment of the present invention. Reference numeral 10 denotes fins arranged in parallel at regular intervals, heat exchanger tubes 11 arranged through the fins 10, and each heat exchanger tube 1
A U-shaped bend 12 connecting the parts 1 to each other and an end plate 13 constitute a heat exchanger. A refrigerant flows in the direction of the arrow 14 inside the heat transfer tube 11, and the refrigerant and the fins 1
Heat exchange takes place with the air flowing between the two. and,
Spiral grooves 15a, 15b, and 15c each having a triangular cross-sectional shape perpendicular to the tube axis as shown in FIGS. 2 to 7 are cut into the inner walls of each of the heat exchanger tubes 11a, 11b, and 11c. In other words, the dryness of the refrigerant is low.

中、高と三つに分け、低乾き度域の伝熱管11aのらせ
ん溝15aの管軸に対する溝ねじれ角をβ1゜溝深さを
hl、同様に、中乾き度域の伝熱管11bのらせん溝1
6bの溝ねじれ角をβ2.溝深さをh2゜高乾き度域の
伝熱管11cのらせん溝16Cの溝ねじれ角をβ 、溝
深さをh3とするとβ1〉β2〉β3.hl〉h2>h
3なる関係がある。
Divided into three parts, medium and high, the helical groove 15a of the heat exchanger tube 11a in the low dryness area has a groove twist angle of β1° with respect to the tube axis, and the groove depth is hl, and similarly, the helical groove of the heat exchanger tube 11b in the medium dryness area Groove 1
The groove twist angle of 6b is β2. Let the groove depth be h2°, the groove twist angle of the spiral groove 16C of the heat exchanger tube 11c in the high dryness region be β, and the groove depth be h3, then β1>β2>β3. hl>h2>h
There are three relationships.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

本発明による一実施例の熱交換器を蒸発器として使用す
る場合、低乾き度域、すなわち、管内の液冷媒流量が多
い領域では、流動状態は層状流あるいはスラグ流である
ことが多いが溝ねじれ角β1及び溝深さhlがβ2.β
3及びh2.h3よシ大きいために第3図に示すように
、水平管の下部には液冷媒16aがたまっているが、上
部へ液冷媒18aが表面張力によりらせん溝15aに沿
って流れやすくなって、上部では比較的薄い厚みの冷媒
液膜17aが形成される。従って、伝熱管11aの管内
上部における蒸発熱伝達率が向上する。次に、中乾き度
域、すなわち、流動状態が通常波状流から半環状流のよ
うな状態では、比較的液冷媒流量が少なく、らせん溝1
5b内を液冷媒16bが毛細管現象によって引き上げら
れるが、溝深さh2は伝熱管11b内下部において液冷
媒16bがたまっても三角状山頂部18が完全に埋まら
ない高さであるので(h2〈hl)、管内上部はもちろ
ん、下部においても比較的均一な厚さの冷媒液膜17b
が形成され、伝熱管11b内において流動状態が環状流
に遷移しやすくなる。従って、伝熱管11b内における
蒸発熱伝達率が大幅に向上すると共に、溝ねじれ角β2
はβ2〈β、であるので、圧力損失の増大は抑えられる
。更に、高乾き度域においては、液冷媒流量もかなり少
なくなシ、気相によって液冷媒が加速されるため、伝熱
管11C内のらせん溝15c上に形成される冷媒液膜1
7cはかなり薄くなり、従って、蒸発熱伝達率は最大と
なる。この場合、溝深さh3は冷媒液膜17cの厚みが
薄くなることより、h3〈h2としており、溝ねじれ角
β3もβ3〈β2としている。これは、高乾き度域にお
いては、溝深さh3及び溝ねじれ角β3が蒸発熱伝達率
に与える影響は小さく、逆に、圧力損失への影響が大き
いため、すなわち、h3及びβ3が大きい程、圧力損失
も大きくなることを考慮しているからである。
When the heat exchanger according to one embodiment of the present invention is used as an evaporator, in a low dryness region, that is, in a region where the flow rate of liquid refrigerant in the pipes is large, the flow state is often a laminar flow or a slug flow. The helix angle β1 and the groove depth hl are β2. β
3 and h2. As shown in Fig. 3, the liquid refrigerant 16a accumulates at the bottom of the horizontal pipe because it is larger than h3. In this case, a relatively thin refrigerant liquid film 17a is formed. Therefore, the evaporative heat transfer coefficient in the upper part of the heat exchanger tube 11a is improved. Next, in the medium dryness region, that is, when the flow state is from a normal wavy flow to a semi-annular flow, the liquid refrigerant flow rate is relatively small, and the spiral groove 1
Although the liquid refrigerant 16b is pulled up inside the heat transfer tube 11b by capillary action, the groove depth h2 is such that even if the liquid refrigerant 16b accumulates in the lower part of the heat transfer tube 11b, the triangular peak 18 is not completely buried (h2< hl), the refrigerant liquid film 17b has a relatively uniform thickness not only in the upper part of the pipe but also in the lower part.
is formed, and the flow state easily changes to an annular flow within the heat exchanger tube 11b. Therefore, the evaporative heat transfer coefficient within the heat exchanger tube 11b is significantly improved, and the groove torsion angle β2
Since β2<β, the increase in pressure loss can be suppressed. Furthermore, in a high dryness region, the flow rate of liquid refrigerant is quite small, and the liquid refrigerant is accelerated by the gas phase, so that the refrigerant liquid film 1 formed on the spiral groove 15c in the heat transfer tube 11C
7c becomes much thinner and therefore the evaporative heat transfer coefficient is maximum. In this case, since the thickness of the refrigerant liquid film 17c becomes thinner, the groove depth h3 is set as h3<h2, and the groove torsion angle β3 is also set as β3<β2. This is because, in a high dryness region, the groove depth h3 and the groove torsion angle β3 have a small effect on the evaporative heat transfer coefficient, but conversely, they have a large effect on the pressure loss, that is, the larger h3 and β3 are, the more This is because it takes into consideration that the pressure loss will also increase.

以上より、冷媒低乾き度域から中乾き度域における蒸発
熱伝達率の向上及び、高乾き度域における管内圧力損失
の低減が図れ、蒸発管としての伝熱性能が向上する。
As described above, it is possible to improve the evaporative heat transfer coefficient in the low to medium dryness region of the refrigerant and reduce the pressure loss inside the pipe in the high dryness region, and improve the heat transfer performance as an evaporation tube.

また、本発明は、凝縮器として用いた場合においても蒸
発器の場合と同様の効果を発揮する。更に、上記実施例
では、管内らせん溝1sa、1sb。
Furthermore, the present invention exhibits the same effects as when used as an evaporator even when used as a condenser. Furthermore, in the above embodiment, the internal spiral grooves 1sa and 1sb.

15cは断面が三角状溝であるが、断面形状が三角形以
外の多′角形であっても同様の効果が得られる。
Although the groove 15c has a triangular cross section, the same effect can be obtained even if the cross section is a polygonal shape other than a triangle.

発明の効果 以上のように本発明は、内部を相変化する流体が流動し
、管内壁にらせん溝の刻設されている伝熱管とから熱交
換器を構成し、伝熱管内に、らせん溝の管軸に対する溝
ねじれ角及び溝深さがそれぞれ異なる少なくとも2種類
のらせん溝を設け、かつ、管内流体の高乾き度域に比し
て、低乾き度域において、溝ねじれ角及び溝深さをそれ
ぞれより大きくしているために、冷媒代乾き度域から中
乾き度域における管内熱伝達率の大幅な向上、及び、高
乾き度域における管内圧力損失の低減が図れ、熱交換器
としての伝熱性能が向上する。
Effects of the Invention As described above, the present invention comprises a heat exchanger including a heat exchanger tube in which a phase-changing fluid flows, and a spiral groove is carved in the inner wall of the tube. At least two types of helical grooves having different groove torsion angles and groove depths with respect to the pipe axis are provided, and the groove torsion angle and groove depth are different in a low dryness region than in a high dryness region of the fluid in the pipe. Since these are made larger, it is possible to significantly improve the heat transfer coefficient in the pipe from the refrigerant cost dryness range to the medium dryness range, and to reduce the pressure loss in the pipe in the high dryness range, making it suitable for use as a heat exchanger. Heat transfer performance is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による熱交換器の一部欠截正
面図、第2図は第1図中の伝熱管11aの一部欠截正面
図、第3図は第2図のA−A線における断面図、第4図
は第1図中の伝熱管11bの一部欠截正面図、第5図は
第4図のB−B線における断面図、第6図は第1図中の
伝熱管11cの一部欠截正面図、第7図は第6図のC−
C線における断面図、第8図は従来の熱交換器の斜視図
、第9図は第8図中の伝熱管の一部欠截正面図である。 11 、11 a 、 1 l b 、 11 c−−
伝熱管、15a、15b、15c・・・・−らせん溝、
β1.β2゜β3・・・・・・溝ねじれ角、hl、h2
.h3・・・・・・溝深さ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名Il
lん’1.I7b、l7D−’iデぐ差へ乍紫1511
、I5b、75/、−−らセンし1転第1図
1 is a partially cutaway front view of a heat exchanger according to an embodiment of the present invention, FIG. 2 is a partially cutaway front view of a heat exchanger tube 11a in FIG. 1, and FIG. 3 is a partially cutaway front view of a heat exchanger 11a in FIG. 4 is a partially cutaway front view of the heat exchanger tube 11b in FIG. 1, FIG. 5 is a sectional view taken along the line BB in FIG. 4, and FIG. A partially cutaway front view of the heat exchanger tube 11c in the figure, FIG. 7 is C- in FIG. 6.
8 is a perspective view of a conventional heat exchanger, and FIG. 9 is a partially cutaway front view of a heat exchanger tube in FIG. 8. 11, 11a, 1lb, 11c--
Heat exchanger tubes, 15a, 15b, 15c...-Spiral grooves,
β1. β2゜β3...Groove torsion angle, hl, h2
.. h3...Groove depth. Name of agent: Patent attorney Toshio Nakao and one other person
ln'1. I7b, l7D-'i Degu difference 1511
, I5b, 75/, -- Rasenshi 1st turn Figure 1

Claims (1)

【特許請求の範囲】[Claims]  内部を相変化する流体が流動し、管内壁にらせん溝の
刻設されている伝熱管から構成され、前記伝熱管内にら
せん溝の管軸に対する溝ねじれ角と、らせん溝の溝深さ
がそれぞれ異なる少なくとも2種類のらせん溝を設け、
かつ、管内流体の高乾き度域に比して低乾き度域にて、
溝ねじれ角と溝深さをそれぞれより大きくした熱交換器
It consists of a heat transfer tube in which a phase-changing fluid flows, and a spiral groove is carved on the inner wall of the tube, and the groove twist angle with respect to the tube axis of the spiral groove and the groove depth of the spiral groove are determined in the heat transfer tube. At least two different types of helical grooves are provided,
And, in the low dryness area compared to the high dryness area of the fluid in the pipe,
A heat exchanger with larger groove helix angle and groove depth.
JP62004502A 1987-01-12 1987-01-12 Heat exchanger Expired - Lifetime JPH07109354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004502A JPH07109354B2 (en) 1987-01-12 1987-01-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004502A JPH07109354B2 (en) 1987-01-12 1987-01-12 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS63172894A true JPS63172894A (en) 1988-07-16
JPH07109354B2 JPH07109354B2 (en) 1995-11-22

Family

ID=11585832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004502A Expired - Lifetime JPH07109354B2 (en) 1987-01-12 1987-01-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH07109354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425982U (en) * 1990-06-20 1992-03-02
WO2001031275A1 (en) * 1999-10-28 2001-05-03 Mitsubishi Shindoh Co., Ltd. Heat exchanger and heat exchanging apparatus
WO2013094084A1 (en) * 2011-12-19 2013-06-27 三菱電機株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938596A (en) * 1982-08-25 1984-03-02 Matsushita Electric Ind Co Ltd Heat exchanger
JPS61110891A (en) * 1984-11-01 1986-05-29 Matsushita Electric Ind Co Ltd Heat exchanger
JPS61280393A (en) * 1985-05-17 1986-12-10 Sanyo Electric Co Ltd Heat transfer tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938596A (en) * 1982-08-25 1984-03-02 Matsushita Electric Ind Co Ltd Heat exchanger
JPS61110891A (en) * 1984-11-01 1986-05-29 Matsushita Electric Ind Co Ltd Heat exchanger
JPS61280393A (en) * 1985-05-17 1986-12-10 Sanyo Electric Co Ltd Heat transfer tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425982U (en) * 1990-06-20 1992-03-02
WO2001031275A1 (en) * 1999-10-28 2001-05-03 Mitsubishi Shindoh Co., Ltd. Heat exchanger and heat exchanging apparatus
WO2013094084A1 (en) * 2011-12-19 2013-06-27 三菱電機株式会社 Air conditioner
US9506700B2 (en) 2011-12-19 2016-11-29 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JPH07109354B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
CN100494863C (en) Heat transfer pipe with grooved inner surface
JPH0587752B2 (en)
JP3323682B2 (en) Heat transfer tube with internal cross groove for mixed refrigerant
JPH0449038B2 (en)
JP2005523414A (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
KR20040082571A (en) Fin and tube solid type heat exchanger
CN1200243C (en) Internal thread heat-transferring pipe
JPS63172894A (en) Heat exchanger
JP3811909B2 (en) Heat transfer tube and heat exchanger using the same
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JPH01150797A (en) Heat exchanger with internal fin
JP3292043B2 (en) Heat exchanger
JPS62142995A (en) Heat transfer pipe with inner surface spiral groove
JP2002350080A (en) Internally grooved heat exchanger tube
JPH0579783A (en) Heat transfer tube with inner surface groove
JP3417825B2 (en) Inner grooved pipe
JPS5938596A (en) Heat exchanger
JPH0250086A (en) Heat transfer tube for condensing within tube and manufacture thereof
JPS63172890A (en) Heat exchanger
JPS61114092A (en) Heat exchanger
JPH04260792A (en) Small-diameter heat transfer tube
JPS63172891A (en) Heat exchanger
JPH0961013A (en) Absorption refrigerating machine
JPH05133692A (en) Evaporator
KR100517925B1 (en) Fin and tube solid type heat exchanger