JPS63161360A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS63161360A
JPS63161360A JP30607086A JP30607086A JPS63161360A JP S63161360 A JPS63161360 A JP S63161360A JP 30607086 A JP30607086 A JP 30607086A JP 30607086 A JP30607086 A JP 30607086A JP S63161360 A JPS63161360 A JP S63161360A
Authority
JP
Japan
Prior art keywords
condenser
refrigerant
gas
heat transfer
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30607086A
Other languages
Japanese (ja)
Inventor
瀬尾 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP30607086A priority Critical patent/JPS63161360A/en
Publication of JPS63161360A publication Critical patent/JPS63161360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は非共沸混合冷媒を用いた冷媒サイクルに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerant cycle using a non-azeotropic mixed refrigerant.

〔従 来 例〕[Conventional example]

特開昭58−133568号によると、非共沸混合冷媒
を用いることにより、同一凝縮圧力の状態で二凝縮温度
が得られるようにした冷凍サイクルが示されている。す
なわち、この冷媒サイクルにおいては、圧縮機、第1の
凝縮器、気液分離器、第2の凝縮器、減圧器および蒸発
器を順次接続してなり、第1の凝縮器にて上記混合冷媒
の一部を凝縮し、気液分離器で残りのガス冷媒を抽出し
、それを第2の凝縮器にて凝縮するようにしている。
JP-A-58-133568 discloses a refrigeration cycle in which two condensing temperatures can be obtained at the same condensing pressure by using a non-azeotropic mixed refrigerant. That is, in this refrigerant cycle, a compressor, a first condenser, a gas-liquid separator, a second condenser, a pressure reducer, and an evaporator are connected in sequence, and the mixed refrigerant is mixed in the first condenser. A part of the refrigerant is condensed, the remaining gas refrigerant is extracted with a gas-liquid separator, and it is condensed with a second condenser.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した冷媒サイクルによると、第1の凝縮器には圧縮
器から吐出される冷媒の全流量が流れ、他方、第2の凝
縮器には気液分離後のガス冷媒が流されることになるが
、従来では第1および第2の凝縮器はともに同一管径の
伝熱管を用いているため、二凝縮温度が得られるにして
も総合効率が悪いという問題があった。
According to the refrigerant cycle described above, the entire flow rate of the refrigerant discharged from the compressor flows through the first condenser, while the gas refrigerant after gas-liquid separation flows through the second condenser. Conventionally, the first and second condensers both use heat exchanger tubes of the same diameter, so even if two condensing temperatures can be obtained, the overall efficiency is poor.

すなわち、この種の冷媒サイクルの総合効率は冷媒循環
量と冷媒速度とに依存する。一般に管径が細い場合には
流体速度が速くなって熱伝導率が大きくなるとともに液
溜りが少なくなり、したがって、熱通過率が大きく熱交
換上好ましい反面、圧力損失が増大し冷媒サイクルの総
合効率を悪くするという面を併せもつことになる。他方
、管径が太い場合には圧力損失は比較的低く抑えられる
が、熱交換器内の冷媒量が増大するとともに、特に出口
側の流体速度の遅い部分で液溜りが発生するため、これ
がコンプレッサを制約し、その小形軽量化の妨げとなり
、また、熱通過率も悪くなる。
That is, the overall efficiency of this type of refrigerant cycle depends on the amount of refrigerant circulation and the refrigerant velocity. In general, when the pipe diameter is small, the fluid velocity increases, the thermal conductivity increases, and the amount of liquid pools decreases. Therefore, the heat passage rate is high and it is favorable for heat exchange, but on the other hand, the pressure loss increases and the overall efficiency of the refrigerant cycle increases. It also has the aspect of making things worse. On the other hand, if the pipe diameter is large, the pressure loss can be kept relatively low, but the amount of refrigerant in the heat exchanger increases and a pool of liquid occurs, especially at the outlet side where the fluid velocity is low. This restricts the size and weight of the product, and also impairs its heat transfer rate.

この発明は上記した事情に鑑みなされたもので、その目
的は、総合効率がよく、しかも凝縮器をより一層薄形化
し得るようにした非共沸混合冷媒による冷媒サイクルを
提供することにある。
This invention was made in view of the above circumstances, and its purpose is to provide a refrigerant cycle using a non-azeotropic mixed refrigerant that has good overall efficiency and allows the condenser to be made even thinner.

〔間屈点を解決するための手段〕[Means for resolving the gap]

上記した目的を達成するため、この発明においては、気
液分離後のガス冷媒が通される第2の凝縮器の伝熱管を
第1の凝縮器の伝熱管よりも小径のチューブとしている
In order to achieve the above object, in the present invention, the heat transfer tube of the second condenser through which the gas refrigerant after gas-liquid separation passes is made smaller in diameter than the heat transfer tube of the first condenser.

〔作   用〕[For production]

上記した構成によれば、第1および第2の凝縮器ともに
その冷媒循環量と冷媒速度との関係が個別的に適正範囲
内におさめられるため、最適な総合効率がひき出される
According to the above configuration, the relationship between the refrigerant circulation amount and the refrigerant speed of both the first and second condensers is individually kept within an appropriate range, so that the optimum overall efficiency can be achieved.

〔実 施 例〕〔Example〕

以下、この発明の実施例を添付図面を参照しながら詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

まず第1図を参照してこの冷媒サイクルの構成を概略的
に説明する。
First, the configuration of this refrigerant cycle will be schematically explained with reference to FIG.

同図において1は圧縮機であり、この圧縮機1からは過
熱ガス状態の非共沸混合冷媒が吐出される。この混合冷
媒は第1の凝縮器2aにおいてその一部が液化されたの
ち気液分離器3に至る。この気液分離器3内において液
冷媒とガス冷媒とが分離され、ガス冷媒は第2の凝縮器
2bにて凝縮されて液冷媒となり、この液冷媒は先に気
液分離器3で分離された液冷媒とともにキャピラリーチ
ューブ4および蒸発器5を経て圧縮機1に戻される。
In the figure, 1 is a compressor, and a non-azeotropic mixed refrigerant in a superheated gas state is discharged from the compressor 1. This mixed refrigerant is partially liquefied in the first condenser 2a and then reaches the gas-liquid separator 3. A liquid refrigerant and a gas refrigerant are separated in this gas-liquid separator 3, and the gas refrigerant is condensed into a liquid refrigerant in the second condenser 2b, and this liquid refrigerant is first separated in the gas-liquid separator 3. The liquid refrigerant is returned to the compressor 1 through the capillary tube 4 and the evaporator 5 together with the liquid refrigerant.

上記の如く、第2の凝縮器に流される冷媒は気液分離後
のガス冷媒であるため、その流量は当然のことながら第
1の凝縮器内に流される流量よりも少ない、そこでこの
発明においては、その冷媒流量に応じて第2の凝縮器2
bの伝熱管6を第1の凝縮器2aの伝熱管7よりも細く
している。また、この両伝熱管6,7はともに同一のフ
ィン群8に挿通されていて、これにより第1および第2
の凝縮器2a、2bは外観上一つの凝縮器2を構成して
いる。
As mentioned above, since the refrigerant flowing into the second condenser is a gas refrigerant after gas-liquid separation, its flow rate is naturally lower than the flow rate flowing into the first condenser. Therefore, in this invention, is the second condenser 2 depending on the refrigerant flow rate.
The heat exchanger tube 6 of b is made thinner than the heat exchanger tube 7 of the first condenser 2a. Further, both of the heat exchanger tubes 6 and 7 are inserted through the same fin group 8, so that the first and second
The condensers 2a and 2b constitute one condenser 2 in appearance.

〔効   果〕〔effect〕

上記した実施例の説明から明らかなように、この発明に
よれば、第1の凝縮器2aの伝熱管7に比べて第2の凝
縮器2bの伝熱管6をその冷媒流量に応じて細管とした
ことにより、各凝縮器2a。
As is clear from the description of the embodiments described above, according to the present invention, the heat transfer tubes 6 of the second condenser 2b are made into thin tubes depending on the refrigerant flow rate, compared to the heat transfer tubes 7 of the first condenser 2a. As a result, each condenser 2a.

2bにおける冷媒流量と冷媒速度の関係を個別的に調整
することができるため、冷媒サイクル全体の総合効率を
より一層高めることができる。また。
Since the relationship between the refrigerant flow rate and the refrigerant speed in 2b can be adjusted individually, the overall efficiency of the entire refrigerant cycle can be further improved. Also.

第1および第2の凝縮器2a、2bのフィン群を共通に
して一体化したことにより、薄形化および製造コストの
低減が図れる。さらには、第2の凝縮器2b側の伝熱管
6を小径にしたことより、凝縮器2自体の通風抵抗が減
少する。この効果はフィン群8を通れる空気の流動方向
からみて細い方の伝熱管6をその上流側、太い方の伝熱
管7を下流側に配置した場合により顕著であって、これ
により送風機能力および騒音対策上有利である。
Since the fin groups of the first and second condensers 2a and 2b are shared and integrated, it is possible to reduce the thickness and manufacturing cost. Furthermore, by making the heat transfer tube 6 on the second condenser 2b side smaller in diameter, the ventilation resistance of the condenser 2 itself is reduced. This effect is more noticeable when the thinner heat transfer tube 6 is placed upstream and the thicker heat transfer tube 7 is placed downstream when viewed from the flow direction of the air passing through the fin group 8. This is advantageous in terms of countermeasures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にしたがって構成された冷媒サイクル
の模式図、第2図は同冷媒サイクルの凝縮器を摘示した
斜視図である。 図中、1は圧縮機、2は凝縮器、2aは第1の凝縮器、
2bは第2の凝縮器、3は気液分離器、4はキャピラリ
ーチューブ、5は蒸発器、6,7は伝熱管、8はフィン
群である。
FIG. 1 is a schematic diagram of a refrigerant cycle constructed according to the present invention, and FIG. 2 is a perspective view showing a condenser of the refrigerant cycle. In the figure, 1 is a compressor, 2 is a condenser, 2a is a first condenser,
2b is a second condenser, 3 is a gas-liquid separator, 4 is a capillary tube, 5 is an evaporator, 6 and 7 are heat exchanger tubes, and 8 is a fin group.

Claims (3)

【特許請求の範囲】[Claims] (1) 圧縮機、第1の凝縮器、気液分離器、第2の凝
縮器、減圧器および蒸発器を順次接続してなり、上記第
1の凝縮器にて非共沸混合冷媒の一部を凝縮し、上記気
液分離器で残りのガス冷媒を抽出してこれを上記第2の
凝縮器にて凝縮するようにした冷凍サイクルにおいて、 上記第2の凝縮器には、上記第1の凝縮器の伝熱管より
も小径の伝熱管が用いられていることを特徴とする冷凍
サイクル。
(1) A compressor, a first condenser, a gas-liquid separator, a second condenser, a pressure reducer, and an evaporator are connected in sequence, and one of the non-azeotropic mixed refrigerants is removed in the first condenser. In the refrigeration cycle, the remaining gas refrigerant is extracted by the gas-liquid separator and condensed by the second condenser, wherein the second condenser includes the first gas refrigerant. A refrigeration cycle characterized in that a heat transfer tube having a smaller diameter than that of the condenser is used.
(2) 特許請求の範囲(1)において、上記第1およ
び第2の凝縮器の各伝熱管は同一のフィン群に挿通され
ていることを特徴とする冷凍サイクル。
(2) The refrigeration cycle according to claim (1), wherein each heat transfer tube of the first and second condensers is inserted through the same fin group.
(3) 特許請求の範囲(2)において、上記フィン群
を通過する気流方向を基準として上記第1の凝縮器側の
太い伝熱管はその下流側に配置され、他方、上記第2の
凝縮器側の細い伝熱管はその上流側に配置されることを
特徴とする冷凍サイクル。
(3) In claim (2), the thick heat transfer tube on the first condenser side is arranged on the downstream side with respect to the direction of airflow passing through the fin group; A refrigeration cycle characterized in that the narrow side heat transfer tube is placed on the upstream side.
JP30607086A 1986-12-22 1986-12-22 Refrigeration cycle Pending JPS63161360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30607086A JPS63161360A (en) 1986-12-22 1986-12-22 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30607086A JPS63161360A (en) 1986-12-22 1986-12-22 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS63161360A true JPS63161360A (en) 1988-07-05

Family

ID=17952682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30607086A Pending JPS63161360A (en) 1986-12-22 1986-12-22 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS63161360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339511A (en) * 1997-06-09 1998-12-22 Yoriyuki Oguri Heat pump system of air conditioner
JP2000193328A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Freezer
JP2002079821A (en) * 2000-07-06 2002-03-19 Denso Corp Vehicular refrigerating cycle device
JP2009300021A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339511A (en) * 1997-06-09 1998-12-22 Yoriyuki Oguri Heat pump system of air conditioner
JP4208982B2 (en) * 1997-06-09 2009-01-14 グリーンアース株式会社 Heat pump air conditioner
JP2000193328A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Freezer
JP2002079821A (en) * 2000-07-06 2002-03-19 Denso Corp Vehicular refrigerating cycle device
JP2009300021A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device

Similar Documents

Publication Publication Date Title
JPH07852Y2 (en) Condenser
JPS6214751B2 (en)
JPS63161360A (en) Refrigeration cycle
CN109631374A (en) A kind of refrigeration system with novel double-flow micro-channel evaporator
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JPS621520B2 (en)
JPH07294179A (en) Heat exchanging device
JPH0539969A (en) Condenser for refrigerant
JP3129721B2 (en) Refrigerant condenser and method of setting the number of tubes of refrigerant condenser
JPS64542Y2 (en)
JPH10196984A (en) Air conditioner
JP2574488B2 (en) Heat exchanger
JPS644052Y2 (en)
JPH03195872A (en) Heat exchanger
JPH06147532A (en) Air conditioner
JPS5612997A (en) Heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JPH07103609A (en) Heat exchanger for freezing cycle
JPS63131965A (en) Air conditioner
JPS58140597A (en) Flat pipe for heat exchanger
CN209042541U (en) Air conditioner indoor unit and air conditioner
JPS5977272A (en) Heat exchanger for air conditioner
JPH0336496A (en) Refrigerant pipe of heat pump type air conditioner heat exchanger
JPH109711A (en) Finned condenser
JPH0367968A (en) Heat exchanger for condensing refrigerant