JPS63170A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63170A
JPS63170A JP14361586A JP14361586A JPS63170A JP S63170 A JPS63170 A JP S63170A JP 14361586 A JP14361586 A JP 14361586A JP 14361586 A JP14361586 A JP 14361586A JP S63170 A JPS63170 A JP S63170A
Authority
JP
Japan
Prior art keywords
layer
algaas
gaas
doped
gallium arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14361586A
Other languages
Japanese (ja)
Inventor
Tatsuya Ohori
達也 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14361586A priority Critical patent/JPS63170A/en
Publication of JPS63170A publication Critical patent/JPS63170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve characteristics by forming a non-doped AlGaAs layer and a GaAs/AlGaAs superlattice as buffer layers, making a non-doped GaAs channel layer thinner than the AlGaAs buffer layer and shaping an AlGaAs electron supply layer. CONSTITUTION:A non-doped GaAs channel layer 5 is grown on a buffer constituted of an AlGaAS layer 2, a superlattice 3 and an AlGaAs layer 4 from the substrate 1 side, an a two-dimensional electron gas 5e is formed near a hetero-junction interface with an AlGaAs electron supply layer 6. Consequently, the disturbance of the interface of buffer layer/channel layer is inhibited, an adverse effect such as the deterioration of mobility on the two-dimensional electron gas 5e is prevented even when the GaAs channel layer 5 is thin. Accordingly, the GaAs channel layer 5 is thinned, thus improving characteristics such as the displacement of pinch-off voltage due to the spreading of the two-dimensional electron gas 5e.

Description

【発明の詳細な説明】 〔概要〕 この発明は、2次元電子ガスをチャネルとするGaAs
/AlGaAs系半導体装置にかかり、バッファ層とし
てノンドープのAlGaAs層とGaAs/AlGaA
s超格子構造とを設け、ノンドープのGaAsチャネル
層を該AlGaAsバッファ層より薄くして、AlGa
As電子供給層を設けることにより、その特性を向上し
、加えてMO−CVD法により半導体基体を形成して実
用化に対処することを可能とする。
[Detailed Description of the Invention] [Summary] This invention relates to a GaAs film using a two-dimensional electron gas as a channel.
/AlGaAs-based semiconductor device, with a non-doped AlGaAs layer and a GaAs/AlGaA buffer layer.
s superlattice structure, and the non-doped GaAs channel layer is made thinner than the AlGaAs buffer layer.
By providing the As electron supply layer, its characteristics are improved, and in addition, it becomes possible to form a semiconductor substrate by the MO-CVD method for practical use.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特に空間分離ドーピングと界面量
子化による高移動度のキャリアをチャネルとする、例え
ば高電子移動度電界効果トランジスタ(HEMT)等の
GaAs /へ1GaAs系半導体装置の改善に関する
The present invention relates to improvements in semiconductor devices, particularly GaAs/GaAs-based semiconductor devices such as high electron mobility field effect transistors (HEMTs), which use high-mobility carriers as channels through spatial separation doping and interface quantization.

例えばHEl’lTは、2次元状態の電子が移動する領
域と不純物をドーピングする領域とを空間的に分離して
キャリア移動度の増大を実現し、高速デバイスとして強
い期待が寄せられているが、その実用化のためになお一
層の改善が要望されている。
For example, HEl'IT spatially separates the region where two-dimensional electrons move and the region where impurities are doped to increase carrier mobility, and there are strong expectations as a high-speed device. Further improvements are required for its practical use.

〔従来の技術〕[Conventional technology]

空間分離ドーピングとキャリアの界面量子化により高移
動度を実現している半導体装置の例として、HE?IT
の一例の模式側断面図を第2図(alに示す。
HE? is an example of a semiconductor device that achieves high mobility through spatial separation doping and interfacial quantization of carriers. IT
A schematic side sectional view of an example is shown in FIG. 2 (al).

その半導体基体は半絶縁性砒化ガリウム(GaAs)基
板21上に、バッファ層を兼ねるノンドープのGaAs
チャネル層25、これより電子親和力が小さい砒化アル
ミニウムガリウム(AIGaAs)電子供給層26及び
n型GaAs層27が積層され、このAlGaAs電子
供給層26はGaAsチャネル層25とのへテロ接合界
面近傍に例えば厚さ5nm程度のノンドープのスペーサ
領域26aを設けて、その他を例えばシリコン(Si)
を濃度2 XIO”cm−’程度にドープしたn型領域
26bとすることが多い。
The semiconductor substrate is made of non-doped GaAs that also serves as a buffer layer on a semi-insulating gallium arsenide (GaAs) substrate 21.
A channel layer 25, an aluminum gallium arsenide (AIGaAs) electron supply layer 26 having a lower electron affinity than the channel layer 25, and an n-type GaAs layer 27 are laminated. A non-doped spacer region 26a with a thickness of about 5 nm is provided, and the rest is made of silicon (Si), for example.
The n-type region 26b is often doped to a concentration of about 2XIO"cm-'.

このAlGaAs電子供給層26からGaAsチャネル
125へ遷移した電子によってヘテロ接合界面近傍に2
次元電子ガス25eが形成される。この2次元電子ガス
25eの面密度をゲート電極29によるショットキ空乏
層で制御してトランジスタ動作が行われるが、2次元電
子ガス25eは不純物散乱による移動度低下が殆どなく
、格子散乱が減少する例えば77に程度以下の低温にお
いて最も高い移動度が得られる。
The electrons transferred from the AlGaAs electron supply layer 26 to the GaAs channel 125 cause 2
A dimensional electron gas 25e is formed. Transistor operation is performed by controlling the areal density of this two-dimensional electron gas 25e with a Schottky depletion layer formed by the gate electrode 29. However, the two-dimensional electron gas 25e has almost no mobility decrease due to impurity scattering, and lattice scattering is reduced, for example. The highest mobility is obtained at low temperatures below 77°C.

また第2図(b)に示す従来例では、前記従来例と同等
の各半導体層とGaAs基板21との間にバ・7フア層
としてノンドープのAlGaAs層22を設けている。
In the conventional example shown in FIG. 2(b), a non-doped AlGaAs layer 22 is provided as a buffer layer between each semiconductor layer and the GaAs substrate 21, which are the same as in the conventional example.

実用化に備えて次第に適用されている有機金属熱分解気
相成長(MO−CVD)法による半導体基体では、この
AlGaAsバッファJi!22は成長初期に生じ易い
組成の偏りの回避、GaAs基板21に含まれる不純物
等の拡散の阻止などを従来上たる目的としている。
In semiconductor substrates produced by metal organic pyrolysis vapor deposition (MO-CVD), which is gradually being applied in preparation for practical use, this AlGaAs buffer Ji! The conventional purpose of 22 is to avoid compositional imbalance that tends to occur in the initial stage of growth, and to prevent diffusion of impurities and the like contained in the GaAs substrate 21.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の第2図(alの従来例では、GaAsチャネル層
25はバッファ層を兼ねてその厚さが例えば0.5〜1
−程度と大きく、ゲート電圧がマイナスであるときに2
次元電子ガス25eがへテロ接合界面近傍から深さ方向
に拡がり、ピンチオフ電圧のずれを生ずる傾向がある。
In the conventional example shown in FIG.
− degree, and when the gate voltage is negative, 2
The dimensional electron gas 25e tends to spread in the depth direction from the vicinity of the heterojunction interface, causing a deviation in the pinch-off voltage.

第2図(blの従来例ではGaAsチャネル層25を薄
くし、AlGaAsバッファ層22によって2次元電子
ガス25eの深さ方向の拡がりを抑制することが試みら
れている。しかしながらAlGaAsバッファ層22の
結晶成長表面にはTEM(Transmission 
Electro Micr。
In the conventional example shown in FIG. 2 (bl), an attempt is made to thin the GaAs channel layer 25 and suppress the spread of the two-dimensional electron gas 25e in the depth direction by the AlGaAs buffer layer 22. However, the crystal of the AlGaAs buffer layer 22 A TEM (Transmission) is placed on the growth surface.
Electro Micro.

5copy)観察で明らかにされている様に凹凸の乱れ
を生じ、この面上に成長するGaAsチャネル層25を
薄くすれば2次元電子ガス25eがこの界面の乱れの影
響を受けて、その移動度が低下するなどの問題を伴って
いる。
5copy) As revealed by observation, irregularities occur in the unevenness, and if the GaAs channel layer 25 grown on this surface is thinned, the two-dimensional electron gas 25e will be affected by the disturbance at this interface, and its mobility will decrease. This is accompanied by problems such as a decline in

他方前記の半導体基体のMO−CVD法による成長では
、n型AlGaAs電子供給層26のへテロ接合界面近
傍にキャリア濃度が低いデイプリージョン領域を生ずる
問題がある。
On the other hand, the above-mentioned growth of the semiconductor substrate by the MO-CVD method has a problem in that a depletion region with a low carrier concentration is generated near the heterojunction interface of the n-type AlGaAs electron supply layer 26.

第3図はこの現象を調査するための試料の深さ方向のキ
ャリア濃度分布を示す図であり、本試料では半絶縁性G
aAs基板上に、厚さが何れも1100nのノンドープ
のAlGaAs層22a1ノンドープのi型GaAs層
25a及び電子供給層26に相当し不純物濃度を5 X
IO”Cm−’と低くしたn型AlGaAs層26aを
積層しているが、n型AlGaAs層26aのGaAs
層25aとのへテロ接合界面近傍に、GaAs層25a
にノンドープでも生ずる1015 c 「3程度以下の
キャリア濃度より更に低い例えば5 XIO”cm−’
程度の低濃度領域Aを生じて、GaAs層25aに2次
元電子ガスが形成されない。
Figure 3 is a diagram showing the carrier concentration distribution in the depth direction of a sample to investigate this phenomenon.
On an aAs substrate, a non-doped AlGaAs layer 22a, each having a thickness of 1100 nm, corresponds to a non-doped i-type GaAs layer 25a and an electron supply layer 26, and has an impurity concentration of 5X.
Although the n-type AlGaAs layer 26a with a low IO"Cm-' is laminated, the GaAs of the n-type AlGaAs layer 26a
A GaAs layer 25a is located near the heterojunction interface with the layer 25a.
1015c occurs even when non-doped.
As a result, a relatively low concentration region A is generated, and no two-dimensional electron gas is formed in the GaAs layer 25a.

これらの試料に生ずる低キヤリア濃度領域AはMO−C
VD法によるAlGaAs層成長の初期に発生し、反応
管内表面でアルミニウム(AI)と例えば酸素(0)等
の不純物との化合物ができ、これが結晶成長面に到達す
るためと考えられ、目的とするAlGaAs層の前に成
長するGaAs層が薄く、その成長時間が短い場合には
この問題が現れない。
The low carrier concentration region A that occurs in these samples is MO-C.
It is thought that this occurs at the beginning of AlGaAs layer growth by the VD method, and a compound of aluminum (AI) and impurities such as oxygen (0) is formed on the inner surface of the reaction tube, and this reaches the crystal growth surface. This problem does not occur if the GaAs layer grown before the AlGaAs layer is thin and the growth time is short.

本発明は上述の各問題点を解決して、高速デバイスとし
て期待が大きいOEMT等の実用化を推進することを目
的とする。
The present invention aims to solve the above-mentioned problems and promote the practical use of OEMT, etc., which have high expectations as high-speed devices.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半絶縁性砒化ガリウム基板上に、ノンド
ープの砒化アルミニウムガリウム・バッファ層と、 砒化ガリウム層と砒化アルミニウムガリウム層とからな
るノンドープのバッファ超格子構造と、該砒化アルミニ
ウムガリウム・バッファ層より薄いノンドープの砒化ガ
リウム・チャネル層と、ドナー不純物をドープした砒化
アルミニウムガリウム電子供給層とを備えて、 該砒化ガリウム・チャネル層に2次元電子ガスが形成さ
れる本発明による半導体装置により解決される。
The problem is that a non-doped aluminum gallium arsenide buffer layer is formed on a semi-insulating gallium arsenide substrate, a non-doped buffer superlattice structure consisting of a gallium arsenide layer and an aluminum gallium arsenide layer, and the aluminum gallium arsenide buffer layer is formed on a semi-insulating gallium arsenide substrate. Solved by a semiconductor device according to the invention, comprising a thinner undoped gallium arsenide channel layer and an aluminum gallium arsenide electron supply layer doped with donor impurities, in which a two-dimensional electron gas is formed in the gallium arsenide channel layer. Ru.

なおMO−CVD法による半導体基体では、前記砒化ア
ルミニウムガリウム・バッファ層のアルミニウム混晶比
をx、前記バッファ超格子構造のアルミニウム混晶比の
平均値をy1前記砒化アルミニウムガリウム電子供給層
のアルミニウム混晶比を2として、 y≧x>z とすることが望ましい。
In the semiconductor substrate formed by the MO-CVD method, x is the aluminum alloy ratio of the aluminum gallium arsenide buffer layer, and y is the average value of the aluminum alloy ratio of the buffer superlattice structure. It is desirable to set the crystal ratio to 2 and to satisfy y≧x>z.

〔作 用〕[For production]

本発明によれば、AlGaAsバッファ層上にGaAs
 /AlGaAs超格子構造を設けることによりバッフ
ァ層/チャネル層界面の乱れを抑制して、GaAsチャ
ネル層が薄い場合にも2次元電子ガスに移動度低下等の
悪影響が及ぶことを防止する。
According to the present invention, GaAs is deposited on the AlGaAs buffer layer.
By providing the /AlGaAs superlattice structure, disturbances at the buffer layer/channel layer interface are suppressed, and even when the GaAs channel layer is thin, adverse effects such as a decrease in mobility on the two-dimensional electron gas are prevented.

この様に障害を排除することにより、GaAsチャネル
層を薄くして、2次元電子ガスの拡がりによるピンチオ
フ電圧のずれ等の特性を改善すること、更にMO−CV
D法による半導体基体ではn型A lGaAs電子供給
層のへテロ接合界面近傍のデイプリージョン領域を防止
すること等の効果が得られる。
By eliminating obstacles in this way, it is possible to make the GaAs channel layer thinner, improve characteristics such as deviation in pinch-off voltage due to two-dimensional electron gas spread, and further improve MO-CV
In the semiconductor substrate manufactured by the D method, effects such as prevention of a depletion region near the heterojunction interface of the n-type AlGaAs electron supply layer can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図はHEMTにかかる本発明の実施例を示す模式側
断面図である。
FIG. 1 is a schematic side sectional view showing an embodiment of the present invention related to a HEMT.

本実施例の半導体基体は半絶縁性GaAs基板1上に、
AlGaAsバッファ層2及び4、バッファ超格子構造
3、GaAsチャネル層5、層6a、 6bから−なる
AlGaAs電子供給層6 、GaAsキャップN7が
例えば下記の如< MO−CVD法により形成されてい
る。
The semiconductor substrate of this example is on a semi-insulating GaAs substrate 1,
AlGaAs buffer layers 2 and 4, a buffer superlattice structure 3, a GaAs channel layer 5, an AlGaAs electron supply layer 6 consisting of layers 6a and 6b, and a GaAs cap N7 are formed, for example, by the MO-CVD method as described below.

符号    組成      不純物  厚さcm−”
    nm 7      GaAs       2 xlQla
    306b   Al5Gat−Js; z□0
.3  2 xlQla    305a   A1.
Gal−、As; z=0.3   ノンドープ 嬌5
5      GaAs      ノンドープ 下記
4   Al5Gat−wAs; w=0.5   ノ
ンドープ #503 超格子構造  3a×5層+3b
×5層3b     GaAs      ノンドープ
   13a  Al5Gat−yAsHy=x、o 
  ノンドープ   12A1xGal−xAs; x
=0.5   ノンドープ ≧50本実施例のバッファ
は基板1側がらAlGaAs層2、超格子構造3、Al
GaAs層4で構成しているが、AlGaAs層2及び
4はAl混晶比を0.5として、へlGaAs電子供給
層6a、6bの0.3より大きくしている。
Code Composition Impurity Thickness cm-”
nm 7 GaAs 2 xlQla
306b Al5Gat-Js; z□0
.. 3 2 xlQla 305a A1.
Gal-, As; z=0.3 Non-doped 5
5 GaAs Non-doped Below 4 Al5Gat-wAs; w=0.5 Non-doped #503 Superlattice structure 3a x 5 layers + 3b
×5 layer 3b GaAs non-doped 13a Al5Gat-yAsHy=x, o
Non-doped 12A1xGal-xAs; x
=0.5 Non-doped ≧50 The buffer of this example has an AlGaAs layer 2, a superlattice structure 3, and an Al layer from the substrate 1 side.
The AlGaAs layers 2 and 4 have an Al mixed crystal ratio of 0.5, which is larger than 0.3 of the GaAs electron supply layers 6a and 6b.

超格子構造3は上記の如<Y=1.0のAl5Gat−
yAsすなわちAlAsとGaAsとで構成し、その厚
さ及び層数を重みづけした混晶比の平均値yを0.5以
上としている。
The superlattice structure 3 is made of Al5Gat- with <Y=1.0 as described above.
It is composed of yAs, that is, AlAs and GaAs, and the average value y of the mixed crystal ratio weighted by the thickness and number of layers is set to 0.5 or more.

GaAsチャネルN5はこの本発明によるバッファ上に
、厚さ例えば5〜50nm程度の範囲で任意に成長する
ことができ、AlGaAs電子供給層6とのへテロ接合
界面近傍に2次元電子ガス5eが形成され、AlGaA
sバッファ層5とのへテロ接合界面も十分に滑らかであ
って、電子移動度の低下等の障害が解決されている。
The GaAs channel N5 can be grown arbitrarily on the buffer according to the present invention to a thickness of, for example, about 5 to 50 nm, and a two-dimensional electron gas 5e is formed near the heterojunction interface with the AlGaAs electron supply layer 6. and AlGaA
The heterojunction interface with the s-buffer layer 5 is also sufficiently smooth, and problems such as a decrease in electron mobility are solved.

この半導体基体上に従来技術により、ソース、ドレイン
電極8を例えば金ゲルマニウム/金(AuGe/Au)
を用いて、ゲート電極9を例えばアルミニウム(AI)
を用いて配設する。
On this semiconductor substrate, source and drain electrodes 8 are formed using, for example, gold germanium/gold (AuGe/Au) using a conventional technique.
The gate electrode 9 is made of aluminum (AI), for example.
Arrange using.

本実施例ではGaAsチャネル層を薄くシて井戸構造と
した効果が、バッファ層界面の乱れによる悪影響なく得
られ本発明の効果を実証している。
In this example, the effect of forming a well structure by thinning the GaAs channel layer was obtained without any adverse effects caused by disturbances at the interface of the buffer layer, thus demonstrating the effect of the present invention.

なお本発明はIIEMTにその適用を限られるものでは
なく、空間分離ドーピングと界面量子化による高移動度
のキャリアを利用する他のGaAs/AlGaAs系半
導体装置にも適用することが可能である。
The application of the present invention is not limited to IIEMT, but can also be applied to other GaAs/AlGaAs-based semiconductor devices that utilize high-mobility carriers due to spatial separation doping and interface quantization.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、空間分離ドーピング
と界面量子化による2次元電子ガスをチャネルとするG
aAs/AlGaAs系半導体装置において、GaAs
チャネル層を薄くし井戸構造としてその特性を向上し、
加えてNo−CVD法により半導体基体を形成して実用
化に良く対処することが可能となる。
As explained above, according to the present invention, a G
In aAs/AlGaAs semiconductor devices, GaAs
By thinning the channel layer and creating a well structure, its characteristics are improved.
In addition, it becomes possible to form a semiconductor substrate by the No-CVD method, which is suitable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHEMTにかかる実施例の模式側断面図、第2
図(a)、(b)はHEMTの従来例の模式側断面図、
第3図はMO−CVD法による試料のキャリア濃度分布
の例を示す図である。 図において、 1は半絶縁性GaAs基板、 2及び4はノンドープのAlGaAsバッファ層、3は
GaAs /^lGaAs超格子構造、5はノンドープ
のGaAsチャネル層、5eは2次元電子ガス、 6aはノンドープのAlGaAsスペーサ層、6bはn
型AlGaAs電子供給層、 7はn型GaAsキャップ層翫 8はソース、ドレイン電極、 9はゲート電極を示す。 X党り]の榎武゛震11餠[有]図 竿 1 呟 (α) (し) HE、”ITのイ道f:、グ″jの、涙式:侵″1町韻
【子 2 図
Figure 1 is a schematic side sectional view of an embodiment related to HEMT, Figure 2
Figures (a) and (b) are schematic side sectional views of conventional examples of HEMT,
FIG. 3 is a diagram showing an example of the carrier concentration distribution of a sample obtained by the MO-CVD method. In the figure, 1 is a semi-insulating GaAs substrate, 2 and 4 are non-doped AlGaAs buffer layers, 3 is a GaAs/^lGaAs superlattice structure, 5 is a non-doped GaAs channel layer, 5e is a two-dimensional electron gas, and 6a is a non-doped AlGaAs buffer layer. AlGaAs spacer layer, 6b is n
7 is an n-type GaAs cap layer; 8 is a source and drain electrode; and 9 is a gate electrode. [X party] Enobu゛Shin 11 [Yes] Zukan 1 murmur (α) (shi) HE, ``IT's path f:, gu''j's tearful ceremony: invasion'' 1 town rhyme [child 2 figure

Claims (1)

【特許請求の範囲】 1)半絶縁性砒化ガリウム基板上に、ノンドープの砒化
アルミニウムガリウム・バッファ層と、砒化ガリウム層
と砒化アルミニウムガリウム層とからなるノンドープの
バッファ超格子構造と、該砒化アルミニウムガリウム・
バッファ層より薄いノンドープの砒化ガリウム・チャネ
ル層と、ドナー不純物をドープした砒化アルミニウムガ
リウム電子供給層とを備えて、 該砒化ガリウム・チャネル層に2次元電子ガスが形成さ
れることを特徴とする半導体装置。 2)前記砒化アルミニウムガリウム・バッファ層のアル
ミニウム混晶比をx、前記バッファ超格子構造のアルミ
ニウム混晶比の平均値をy、前記砒化アルミニウムガリ
ウム電子供給層のアルミニウム混晶比をzとして、 y≧x>z なることを特徴とする特許請求の範囲第1項記載の半導
体装置。
[Scope of Claims] 1) A non-doped aluminum gallium arsenide buffer layer on a semi-insulating gallium arsenide substrate, a non-doped buffer superlattice structure consisting of a gallium arsenide layer and an aluminum gallium arsenide layer, and the aluminum gallium arsenide.・
A semiconductor comprising a non-doped gallium arsenide channel layer thinner than a buffer layer and an aluminum gallium arsenide electron supply layer doped with a donor impurity, in which a two-dimensional electron gas is formed in the gallium arsenide channel layer. Device. 2) The aluminum alloy ratio of the aluminum gallium arsenide buffer layer is x, the average value of the aluminum alloy ratio of the buffer superlattice structure is y, and the aluminum alloy ratio of the aluminum gallium arsenide electron supply layer is z, and y The semiconductor device according to claim 1, characterized in that ≧x>z.
JP14361586A 1986-06-19 1986-06-19 Semiconductor device Pending JPS63170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14361586A JPS63170A (en) 1986-06-19 1986-06-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14361586A JPS63170A (en) 1986-06-19 1986-06-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63170A true JPS63170A (en) 1988-01-05

Family

ID=15342859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14361586A Pending JPS63170A (en) 1986-06-19 1986-06-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464367A (en) * 1987-09-04 1989-03-10 Nec Corp Semiconductor device
JPH036030A (en) * 1989-06-02 1991-01-11 Sharp Corp Field-effect type semiconductor device
US5146295A (en) * 1988-03-29 1992-09-08 Omron Tateisi Electronic Co. Semiconductor light emitting device having a superlattice buffer layer
US5254863A (en) * 1990-10-19 1993-10-19 U.S. Philips Corp. Semiconductor device such as a high electron mobility transistor
US5283445A (en) * 1991-11-29 1994-02-01 Fujitsu Limited Quantum semiconductor device employing quantum boxes for enabling compact size and high-speed operation
JPH06188272A (en) * 1992-12-21 1994-07-08 Nec Corp Hetero junction field effect transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464367A (en) * 1987-09-04 1989-03-10 Nec Corp Semiconductor device
US5146295A (en) * 1988-03-29 1992-09-08 Omron Tateisi Electronic Co. Semiconductor light emitting device having a superlattice buffer layer
JPH036030A (en) * 1989-06-02 1991-01-11 Sharp Corp Field-effect type semiconductor device
US5254863A (en) * 1990-10-19 1993-10-19 U.S. Philips Corp. Semiconductor device such as a high electron mobility transistor
US5283445A (en) * 1991-11-29 1994-02-01 Fujitsu Limited Quantum semiconductor device employing quantum boxes for enabling compact size and high-speed operation
JPH06188272A (en) * 1992-12-21 1994-07-08 Nec Corp Hetero junction field effect transistor

Similar Documents

Publication Publication Date Title
JP4631103B2 (en) Semiconductor device and manufacturing method thereof
WO2012172753A1 (en) Semiconductor device and method for manufacturing same
JPH06132318A (en) Heterojunction field-effect transistor and its manufacture
KR20160132108A (en) Heterojunction field-effect transistor
JPH10125901A (en) Field-effect transistor and manufacture thereof
US4559547A (en) Semiconductor device
JP2689057B2 (en) Static induction semiconductor device
JPS63170A (en) Semiconductor device
JPS5928383A (en) Semiconductor device
JP3447438B2 (en) Field effect transistor
JPS6353711B2 (en)
JP4631104B2 (en) Manufacturing method of semiconductor device
US6570194B2 (en) Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JP2994863B2 (en) Heterojunction semiconductor device
JP3633587B2 (en) Manufacturing method of semiconductor device
JPH11214676A (en) Semiconductor device
JPS61268069A (en) Semiconductor device
JPH0362303B2 (en)
JP2658898B2 (en) field effect transistor
JPS61260679A (en) Field-effect transistor
JPS63172A (en) Semiconductor device
JPH01120871A (en) Semiconductor device
JPS632384A (en) Semiconductor device
JPS61248479A (en) Compound semiconductor device
JPS62200771A (en) Semiconductor device and manufacture thereof