JP2994863B2 - Heterojunction semiconductor device - Google Patents

Heterojunction semiconductor device

Info

Publication number
JP2994863B2
JP2994863B2 JP4197350A JP19735092A JP2994863B2 JP 2994863 B2 JP2994863 B2 JP 2994863B2 JP 4197350 A JP4197350 A JP 4197350A JP 19735092 A JP19735092 A JP 19735092A JP 2994863 B2 JP2994863 B2 JP 2994863B2
Authority
JP
Japan
Prior art keywords
layer
doped
gaas
thickness
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4197350A
Other languages
Japanese (ja)
Other versions
JPH0645368A (en
Inventor
彰 龍治
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4197350A priority Critical patent/JP2994863B2/en
Publication of JPH0645368A publication Critical patent/JPH0645368A/en
Application granted granted Critical
Publication of JP2994863B2 publication Critical patent/JP2994863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高電子移動度トランジ
スタ等のヘテロ接合を備えた半導体装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a heterojunction such as a high electron mobility transistor.

【0002】[0002]

【従来の技術】ノンドープのGaAs層上にn型のAl
GaAs層を形成したときにそのヘテロ接合界面に発生
する高い移動度の2次元電子ガスの濃度をゲート電極に
より制御する高電子移動度トランジスタ(以下、HEM
Tという。)が考案されている。このHEMTは、高速
スイッチング素子、マイクロ波素子として有望なので、
その特性をさらに向上させるために構造面、および材料
面から研究が盛んに行われている。
2. Description of the Related Art An n-type Al is formed on a non-doped GaAs layer.
A high electron mobility transistor (hereinafter referred to as HEM) that controls the concentration of a high mobility two-dimensional electron gas generated at the heterojunction interface when a GaAs layer is formed by a gate electrode.
It is called T. ) Has been devised. Since this HEMT is promising as a high-speed switching element and a microwave element,
In order to further improve the characteristics, research is being actively conducted from the aspect of structure and material.

【0003】まず、構造面では、GaAsとAlx Ga
1-x Asとの間にIny Ga1-y Asを入れたヘテロ構
造を有するn−AlGaAs/InGaAs/GaAs
系Pseudo morphic HEMTがある。従
来のHEMTではx=0.3近傍を用いるためにDXセ
ンターが多量に存在し、素子特性に悪影響を及ぼしてい
たが、このHEMTではx=0.15、y=0.15程
度を用いるためDXセンターの影響は少なく、かつAl
GaAsとInGaAsとの間に十分大きなコンダクシ
ョンバンドオフセットがあるため、デバイス動作に必要
なキャリアが確保される。また、チャネルとなるInG
aAsはGaAsと格子不整合であるが、その厚みを臨
界膜厚以下とするため、転位のないstrained
layerとなり、従来のGaAsをチャネルとしたH
EMTよりも電子輸送特性が向上する。
First, in terms of structure, GaAs and Al x Ga
N-AlGaAs / InGaAs / GaAs having a heterostructure in which In y Ga 1-y As is inserted between 1-x As and
There is the system Pseudo morphic HEMT. In the conventional HEMT, a large number of DX centers exist to use around x = 0.3, which adversely affects the element characteristics. However, in this HEMT, x = 0.15 and y = 0.15 are used. The influence of the DX center is small and Al
Since there is a sufficiently large conduction band offset between GaAs and InGaAs, carriers necessary for device operation are secured. Further, InG serving as a channel
Although aAs is lattice mismatched with GaAs, since its thickness is not more than the critical film thickness, it is strained without dislocation.
layer, and H using a conventional GaAs channel
Electron transport characteristics are improved as compared with EMT.

【0004】次に、材料面では、GaAs基板に替わっ
てInP基板を用い、InPに格子整合したInGaA
sとn型のInAlAsからなるヘテロ構造を有するn
−InAlAs/InGaAs系HEMTがある。この
系は、従来のHEMTよりもそれぞれ高い電子移動度、
電子飽和速度および2次元電子ガス濃度を示すため、よ
り高性能なHEMTを実現できるものとして注目されて
いる。また、従来からキャリア供給層として用いられて
きたn型AlGaAsの替わりにn型InGaPを用い
てヘテロ構造を形成したn−InGaP/GaAs系H
EMTもある。n型In0.49Ga0.51PはGaAsに格
子整合し、AlGaAsで問題となるDXセンターは存
在しない。またGaAs系に対して選択的にエッチング
が可能なため、プロセス上も優れた材料である。GaA
sとのコンダクションバンドオフセットが比較的小さい
ため、GaAsとInGaPとの間にInGaAsを入
れたヘテロ構造を有するn−InGaP/InGaAs
/GaAs系Pseudomorphic HEMTも
高性能なHEMTとして有望視されている。
[0004] Next, in terms of material, an InP substrate is used instead of the GaAs substrate, and InGaAs lattice-matched to InP is used.
n having a heterostructure composed of s and n-type InAlAs
-There is an InAlAs / InGaAs HEMT. This system has higher electron mobilities than conventional HEMTs,
Since it shows the electron saturation velocity and the two-dimensional electron gas concentration, it is attracting attention as a device capable of realizing a higher-performance HEMT. Further, an n-InGaP / GaAs H in which a heterostructure is formed using n-type InGaP instead of n-type AlGaAs conventionally used as a carrier supply layer.
There is also EMT. The n-type In 0.49 Ga 0.51 P lattice-matches with GaAs, and there is no DX center which is problematic in AlGaAs. Further, since it is possible to selectively etch a GaAs-based material, the material is excellent in process. GaAs
n-InGaP / InGaAs having a heterostructure in which InGaAs is inserted between GaAs and InGaP because the conduction band offset with s is relatively small.
/ GaAs-based Pseudomorphic HEMTs are also promising as high-performance HEMTs.

【0005】ところで、このように接合面の垂直方向に
運動の自由度のない実質的には2次元チャネルが形成さ
れた構造のHEMTの動作にとって、ヘテロ接合界面近
傍の結晶性の良否、急峻性は非常に重要である。
By the way, in the operation of the HEMT having a structure in which a two-dimensional channel is substantially formed without a degree of freedom of movement in the vertical direction of the bonding surface, the crystallinity of the vicinity of the hetero-junction interface and the steepness Is very important.

【0006】InGaPをキャリア供給層に用いたn−
InGaP/InGaAs/GaAs系Pseudo
morphic HEMTを第1の従来例として図3に
示す。図3において、1は半絶縁性GaAs基板、2は
膜厚が500nmのノンドープGaAsバッファ層、3
は膜厚が15nmのノンドープIn0.2 Ga0.8 Asチ
ャネル層、5は膜厚が5nmのノンドープInx Ga
1-x Pスペーサ層、6は膜厚が35nmのn−Inx
1-x Pキャリア供給層、7は膜厚が10nmのInx
Ga1-x Pノンドープ層、8は膜厚が10nmのGaA
sコンタクト層であり、5,6,7の各層はGaAsに
対して格子整合する条件であるx=0.49、またはシ
ョトキバリアハイトを大きくしかつ2次元電子ガス濃度
を高めるためにx=0.45程度で形成されている。
An n-type semiconductor device using InGaP as a carrier supply layer
InGaP / InGaAs / GaAs Pseudo
A morphic HEMT is shown in FIG. 3 as a first conventional example. In FIG. 3, 1 is a semi-insulating GaAs substrate, 2 is a non-doped GaAs buffer layer having a thickness of 500 nm, 3
Is a non-doped In 0.2 Ga 0.8 As channel layer having a thickness of 15 nm, and 5 is a non-doped In x Ga layer having a thickness of 5 nm.
The 1-x P spacer layer 6 is a 35 nm thick n-In x G
a 1-x P carrier supply layer, 7 is a 10 nm thick In x
Ga 1-x P non - doped layer, 8 is GaAs having a thickness of 10 nm
Each of the layers 5, 6, and 7 is x = 0.49 which is a condition for lattice matching with GaAs, or x = 4 to increase the Shotoki barrier height and increase the two-dimensional electron gas concentration. It is formed at about 0.45.

【0007】この構造によれば、キャリア供給層6から
チャネル層3へ電子が供給される結果、該チャネル層3
に高移動度の2次元電子ガスが形成される。
According to this structure, electrons are supplied from the carrier supply layer 6 to the channel layer 3 so that the channel layer 3
Then, a two-dimensional electron gas having high mobility is formed.

【0008】同じくInGaPをキャリア供給層に用い
たn−InGaP/InGaAs/GaAs系Pseu
do morphic 逆HEMTを第2の従来例とし
て図4に示す。図4において、1は半絶縁性GaAs基
板、9は膜厚が100nmのノンドープGaAsバッフ
ァ層、10は膜厚が200nmのノンドープInx Ga
1-x Pバッファ層、11は膜厚が35nmのn−Inx
Ga1-x Pキャリア供給層、12は膜厚が5nmのノン
ドープInx Ga1-x Pスペーサ層、14は膜厚が15
nmのノンドープIn0.2 Ga0.8 Asチャネル層、1
5は膜厚が100nm程度のGaAsノンドープ層、1
6は膜厚が10nmのGaAsコンタクト層であり、1
0,11,12の各層はGaAsに対して格子整合する
条件であるx=0.49で形成されている。
An n-InGaP / InGaAs / GaAs Pseu using InGaP as a carrier supply layer.
FIG. 4 shows a do morphic inverse HEMT as a second conventional example. In FIG. 4, 1 is a semi-insulating GaAs substrate, 9 is a non-doped GaAs buffer layer having a thickness of 100 nm, and 10 is a non-doped In x Ga layer having a thickness of 200 nm.
1-x P buffer layer, 11 is n-In x having a thickness of 35 nm
Ga 1-x P carrier supply layer, 12 is a non-doped In x Ga 1-x P spacer layer having a thickness of 5 nm, and 14 is a layer having a thickness of 15 nm.
nm non-doped In 0.2 Ga 0.8 As channel layer, 1
5 is a GaAs non-doped layer having a thickness of about 100 nm;
Reference numeral 6 denotes a GaAs contact layer having a thickness of 10 nm.
The layers 0, 11, and 12 are formed under x = 0.49 which is a condition for lattice matching with GaAs.

【0009】この構造の場合でも、キャリア供給層11
からチャネル層14へ電子が供給される結果、該チャネ
ル層14に高移動度の2次元電子ガスが形成される。
In this structure, the carrier supply layer 11
As a result, electrons are supplied to the channel layer 14, so that a two-dimensional electron gas having high mobility is formed in the channel layer 14.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記のよ
うな構造を例えば分子線エピタキシ法で形成する場合、
まず図3に示す第1の従来例では、チャネル層3の形成
後にスペーサ層5を形成する際に、チャンバー内に残留
しやすいAsがスペーサ層5に取り込まれるためInG
aAsP混晶からなる遷移領域17が形成される結果、
急峻なInGaAs/InGaPヘテロ接合が得られな
い。また、図4に示す第2の従来例では、スペーサ層1
2の形成後にチャネル層14を形成する際に、チャンバ
ー内に残留しやすいPがチャネル層14に取り込まれる
ためInGaAsP混晶からなる遷移領域18が形成さ
れる結果、急峻なInGaP/InGaAsヘテロ接合
がやはり得られない。また、InGaAsとInGaP
ではInとGaのビーム強度比が異なるため、成長中断
を余儀なくされることとなる。この成長中断の間チャネ
ル近傍に炭素が付着するため、あるいはAsやPの再蒸
発が起こるため清浄な界面が得られない。これらのこと
は有機金属気相成長法においてもあてはまることであ
る。以上の理由から十分に高い移動度が得られないとい
う問題点を有していた。
However, when the above structure is formed by, for example, a molecular beam epitaxy method,
First, in the first conventional example shown in FIG. 3, when the spacer layer 5 is formed after the formation of the channel layer 3, As which tends to remain in the chamber is taken into the spacer layer 5, so that InG
As a result of the formation of the transition region 17 made of aAsP mixed crystal,
A steep InGaAs / InGaP heterojunction cannot be obtained. In the second conventional example shown in FIG.
When the channel layer 14 is formed after the formation of the second layer 2, P which tends to remain in the chamber is taken into the channel layer 14, so that a transition region 18 made of InGaAsP mixed crystal is formed. As a result, a steep InGaP / InGaAs hetero junction is formed. After all I can not get it. Also, InGaAs and InGaP
In this case, since the beam intensity ratios of In and Ga are different, the growth must be interrupted. A clean interface cannot be obtained because carbon adheres to the vicinity of the channel during the growth interruption or re-evaporation of As or P occurs. These facts also apply to metal organic chemical vapor deposition. For the above reasons, there is a problem that a sufficiently high mobility cannot be obtained.

【0011】本発明の目的は、ヘテロ接合界面に発生す
る2次元電子ガスの移動度を高めることにある。
An object of the present invention is to increase the mobility of a two-dimensional electron gas generated at a heterojunction interface.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、InGaAsチャネル層に対して同じA
s系材料であるAlGaAsからなるスペーサ層を相接
して形成することにより、急峻なヘテロ接合を実現する
こととしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an InGaAs channel layer having the same A.
By forming a spacer layer made of AlGaAs, which is an s-based material, adjacent to each other, a steep hetero junction is realized.

【0013】具体的には、請求項1の発明は、GaAs
基板上に形成されたノンドープのInGaAsからなる
チャネル層と、該チャネル層に接するように形成された
ノンドープのAlGaAsからなる最下層を少なくとも
有するスペーサ層と、該スペーサ層上に形成されたn型
のInGaPからなるキャリア供給層とを備えた構成を
採用したものである。
More specifically, the invention of claim 1 is characterized in that GaAs
A channel layer made of non-doped InGaAs formed on a substrate, a spacer layer having at least a lowermost layer made of non-doped AlGaAs formed in contact with the channel layer, and an n-type layer formed on the spacer layer. In this configuration, a carrier supply layer made of InGaP is provided.

【0014】また、請求項2の発明は、GaAs基板上
に形成されたn型のInGaPからなるキャリア供給層
と、ノンドープのAlGaAsからなる最上層を少なく
とも有するように前記キャリア供給層上に形成されたス
ペーサ層と、該スペーサ層中のノンドープのAlGaA
sからなる最上層に接するように形成されたノンドープ
のInGaAsからなるチャネル層とを備えた構成を採
用したものである。
According to another aspect of the present invention, the carrier supply layer is formed on the GaAs substrate so as to have at least a carrier supply layer made of n-type InGaP and an uppermost layer made of non-doped AlGaAs. Spacer layer and undoped AlGaAs in the spacer layer
and a channel layer made of non-doped InGaAs formed so as to be in contact with the uppermost layer made of s.

【0015】[0015]

【作用】本発明によれば、上記した構造によって、電子
が閉じこめられかつ電子が走行するチャネル層とスペー
サ層とのヘテロ接合が急峻かつ清浄な接合となるので、
十分に高い移動度が得られることになる。
According to the present invention, a heterojunction between the channel layer and the spacer layer, in which electrons are confined and electrons travel, becomes steep and clean due to the above structure,
A sufficiently high mobility will be obtained.

【0016】[0016]

【実施例】以下、本発明の2つの実施例に係るヘテロ接
合半導体装置について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Two heterojunction semiconductor devices according to two embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の第1の実施例に係るヘテ
ロ接合半導体装置の断面構造を示すものであって、前記
第1の従来例(図3)に対応するものである。図1にお
いて、1は半絶縁性GaAs基板、2は膜厚が500n
mのノンドープGaAsバッファ層、3は膜厚が15n
mのノンドープIn0.2 Ga0.8 Asチャネル層、4は
本発明の中心となる膜厚が3nmのノンドープAl0.2
Ga0.8 Asからなる第1のスペーサ層、5は膜厚が2
nmのノンドープInx Ga1-x Pからなる第2のスペ
ーサ層、6は膜厚が35nmでn型不純物を2×1018
cm-3程度ドープしたn−Inx Ga1-x Pキャリア供
給層、7は膜厚が10nmのInx Ga1-x Pノンドー
プ層、8は膜厚が10nmでn型不純物を5×1018
-3程度ドープしたGaAsコンタクト層であり、5,
6,7の各層はGaAsに対して格子整合する条件であ
るx=0.49またはx=0.45で形成されている。
FIG. 1 shows a cross-sectional structure of a heterojunction semiconductor device according to a first embodiment of the present invention, which corresponds to the first conventional example (FIG. 3). In FIG. 1, reference numeral 1 denotes a semi-insulating GaAs substrate, and 2 denotes a film thickness of 500 n.
m non-doped GaAs buffer layer, 3 has a thickness of 15 n
m non-doped In 0.2 Ga 0.8 As channel layer, 4 is a non-doped Al 0.2
The first spacer layer made of Ga 0.8 As has a thickness of 2
The second spacer layer 6 made of non-doped In x Ga 1-x P having a thickness of 35 nm and having a film thickness of 35 nm and containing an n-type impurity of 2 × 10 18
n-In x Ga 1-x P carrier supply layer doped at about cm −3 , 7 is a 10-nm thick In x Ga 1-x P non - doped layer, 8 is a 10 nm-thick n-type impurity of 5 × 10 18 c
a GaAs contact layer doped about m −3 ;
Each of the layers 6 and 7 is formed under x = 0.49 or x = 0.45, which is a condition for lattice matching with GaAs.

【0018】以上のように構成されたヘテロ接合半導体
装置によれば、キャリア供給層6から2層のスペーサ層
5,4を介してチャネル層3へ電子が供給される結果、
該チャネル層3に高移動度の2次元電子ガスが形成され
る。このとき、ノンドープAl0.2 Ga0.8 Asからな
る第1のスペーサ層4を設けたことにより、従来とは違
って残留するAsがノンドープInx Ga1-x Pからな
る第2のスペーサ層5に取り込まれることはほとんどな
く、急峻かつ清浄なInGaAs/AlGaAsヘテロ
接合が形成される結果、十分に高い電子移動度が期待さ
れる。その効果について、Inの組成をx=0.45と
したときのキャリア濃度と電子移動度とを従来例との比
較のために表1および表2に示す。
According to the heterojunction semiconductor device configured as described above, electrons are supplied from the carrier supply layer 6 to the channel layer 3 through the two spacer layers 5 and 4,
A high-mobility two-dimensional electron gas is formed in the channel layer 3. At this time, by providing the first spacer layer 4 made of non-doped Al 0.2 Ga 0.8 As, unlike the conventional case, the remaining As is taken into the second spacer layer 5 made of non-doped In x Ga 1 -xP. In this case, a steep and clean InGaAs / AlGaAs heterojunction is formed, and a sufficiently high electron mobility is expected. Regarding the effect, Tables 1 and 2 show the carrier concentration and the electron mobility when the composition of In is x = 0.45 for comparison with the conventional example.

【0019】[0019]

【表1】 [Table 1]

【表2】 [Table 2]

【0020】図2は、本発明の第2の実施例に係るヘテ
ロ接合半導体装置の断面構造を示すものであって、前記
第2の従来例(図4)に対応するものである。図2にお
いて、1は半絶縁性GaAs基板、9は膜厚が100n
mのノンドープGaAsバッファ層、10は膜厚が20
0nmのノンドープInx Ga1-x Pバッファ層、11
は膜厚が35nmでn型不純物を2×1018cm-3程度
ドープしたn−InxGa1-x Pキャリア供給層、12
は膜厚が2nmのノンドープInx Ga1-x Pからなる
第1のスペーサ層、13は本発明の中心となる膜厚が3
nmのノンドープAl0.2 Ga0.8 Asからなる第2の
スペーサ層、14は膜厚が15nmのノンドープIn
0.2 Ga0.8 Asチャネル層、15は膜厚が100nm
のGaAsノンドープ層、16は膜厚が10nmでn型
不純物を5×1018cm-3程度ドープしたGaAsコン
タクト層であり、10,11,12の各層はGaAsに
対して格子整合する条件であるx=0.49で形成され
ている。
FIG. 2 shows a cross-sectional structure of a heterojunction semiconductor device according to a second embodiment of the present invention, which corresponds to the second conventional example (FIG. 4). In FIG. 2, 1 is a semi-insulating GaAs substrate, 9 is 100 n thick.
m non-doped GaAs buffer layer, 10
0 nm non-doped In x Ga 1 -x P buffer layer, 11
Is an n-In x Ga 1 -x P carrier supply layer having a thickness of 35 nm and doped with an n-type impurity at about 2 × 10 18 cm −3 ;
Is a first spacer layer made of non-doped In x Ga 1-x P having a thickness of 2 nm, and 13 is a first spacer layer having a thickness of 3
a second spacer layer 14 of non-doped Al 0.2 Ga 0.8 As with a thickness of 15 nm;
0.2 Ga 0.8 As channel layer, 15 has a thickness of 100 nm
The GaAs non-doped layer 16 is a GaAs contact layer having a thickness of 10 nm and doped with an n-type impurity of about 5 × 10 18 cm −3 , and the layers 10, 11, and 12 are conditions for lattice matching with GaAs. It is formed with x = 0.49.

【0021】以上のように構成されたヘテロ接合半導体
装置によれば、キャリア供給層11から2層のスペーサ
層12,13を介してチャネル層14へ電子が供給され
る結果、該チャネル層14に高移動度の2次元電子ガス
が形成される。このとき、ノンドープAl0.2 Ga0.8
Asからなる第2のスペーサ層13を設けたことによ
り、従来とは違って残留するPがノンドープIn0.2
0.8 Asからなるチャネル層14に取り込まれること
はほとんどなく、急峻かつ清浄なAlGaAs/InG
aAsヘテロ接合が形成され、十分に高い電子移動度が
実現される。
According to the heterojunction semiconductor device configured as described above, electrons are supplied from the carrier supply layer 11 to the channel layer 14 through the two spacer layers 12 and 13, so that the channel layer 14 A high mobility two-dimensional electron gas is formed. At this time, the non-doped Al 0.2 Ga 0.8
By providing the second spacer layer 13 made of As, unlike the conventional case, the remaining P becomes non-doped In 0.2 G
Al steep and clean AlGaAs / InG is hardly taken into the channel layer 14 of a 0.8 As.
An aAs heterojunction is formed, and a sufficiently high electron mobility is realized.

【0022】なお、上記両実施例において、チャネル層
3,14を構成するノンドープInx Ga1-x AsのI
nの組成xは0.2、膜厚は15nmとしたが、xで決
まる臨界膜厚以下の膜厚であればどのようなxと膜厚の
組み合わせでもよい。また、x=0であるGaAsでも
よい。
In each of the above embodiments, the non-doped In x Ga 1 -x As
Although the composition x of n is 0.2 and the film thickness is 15 nm, any combination of x and film thickness may be used as long as the film thickness is not more than the critical film thickness determined by x. Alternatively, GaAs where x = 0 may be used.

【0023】また、チャネル層3,14と接するスペー
サ層4,13を構成するノンドープAly Ga1-y As
のAlの組成yは0.2としたが、どのようなyの値を
用いてもよい。また、その膜厚を3nmとしたが、この
限りではない。
The non-doped Al y Ga 1 -y As which constitutes the spacer layers 4 and 13 which are in contact with the channel layers 3 and 14, respectively.
Although the Al composition y of 0.2 was 0.2, any value of y may be used. In addition, the film thickness is set to 3 nm, but is not limited to this.

【0024】ノンドープInGaPからなるスペーサ層
5,12の膜厚を2nmとしたがこの限りではなく、な
くてもよい。
Although the thickness of the spacer layers 5 and 12 made of non-doped InGaP is set to 2 nm, the thickness is not limited to this and may be omitted.

【0025】[0025]

【発明の効果】以上説明してきたとおり、本発明によれ
ば、InGaAsチャネル層と接するようにAlGaA
sスペーサ層を形成した構成を採用したので、電子が閉
じこめられかつ電子が走行するチャネル層とスペーサ層
とのヘテロ接合が急峻かつ清浄な接合となる結果、十分
に高い2次元電子ガスの移動度が得られる。
As described above, according to the present invention, AlGaAs is in contact with an InGaAs channel layer.
Since the structure in which the s spacer layer is formed is employed, the heterojunction between the channel layer and the spacer layer, in which electrons are confined and electrons travel, becomes steep and clean, resulting in a sufficiently high mobility of the two-dimensional electron gas. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係るヘテロ接合半導体
装置の断面図である。
FIG. 1 is a sectional view of a heterojunction semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係るヘテロ接合半導体
装置の断面図である。
FIG. 2 is a sectional view of a heterojunction semiconductor device according to a second embodiment of the present invention.

【図3】第1の従来例に係るヘテロ接合半導体装置の断
面図である。
FIG. 3 is a cross-sectional view of a heterojunction semiconductor device according to a first conventional example.

【図4】第2の従来例に係るヘテロ接合半導体装置の断
面図である。
FIG. 4 is a sectional view of a heterojunction semiconductor device according to a second conventional example.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 ノンドープGaAsバッファ層 3 ノンドープIn0.2 Ga0.8 Asチャネル層 4 ノンドープAl0.2 Ga0.8 Asスペーサ層 5 ノンドープInx Ga1-x Pスペーサ層 6 n−Inx Ga1-x Pキャリア供給層 7 Inx Ga1-x Pノンドープ層 8 GaAsコンタクト層 9 ノンドープGaAsバッファ層 10 ノンドープInx Ga1-x Pバッファ層 11 n−Inx Ga1-x Pキャリア供給層 12 ノンドープInx Ga1-x Pスペーサ層 13 ノンドープAl0.2 Ga0.8 Asスペーサ層 14 ノンドープIn0.2 Ga0.8 Asチャネル層 15 GaAsノンドープ層 16 GaAsコンタクト層 17 Asの取り込みにより形成されたInGaAs
P(遷移領域) 18 Pの取り込みにより形成されたInGaAsP
(遷移領域)
Reference Signs List 1 semi-insulating GaAs substrate 2 non-doped GaAs buffer layer 3 non-doped In 0.2 Ga 0.8 As channel layer 4 non-doped Al 0.2 Ga 0.8 As spacer layer 5 non-doped In x Ga 1-x P spacer layer 6 n-In x Ga 1-x P Carrier supply layer 7 In x Ga 1-x P non - doped layer 8 GaAs contact layer 9 non-doped GaAs buffer layer 10 non-doped In x Ga 1-x P buffer layer 11 n-In x Ga 1-x P carrier supply layer 12 non-doped In x Ga 1-x P spacer layer 13 non-doped Al 0.2 Ga 0.8 As spacer layer 14 non-doped In 0.2 Ga 0.8 As channel layer 15 GaAs non-doped layer 16 GaAs contact layer 17 InGaAs formed by taking in As
InGaAsP formed by incorporation of P (transition region) 18 P
(Transition area)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 29/775 - 29/778 H01L 21/337 - 21/338 H01L 29/80 - 29/812 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 29/775-29/778 H01L 21/337-21/338 H01L 29/80-29/812

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaAs基板上に形成されたノンドープ
のInGaAsからなるチャネル層と、 前記チャネル層に接するように形成されたノンドープの
AlGaAsからなる最下層を少なくとも有するスペー
サ層と、 前記スペーサ層上に形成されたn型のInGaPからな
るキャリア供給層とを備えたことを特徴とするヘテロ接
合半導体装置。
1. A spacer layer having at least a non-doped InGaAs channel layer formed on a GaAs substrate, a non-doped AlGaAs lower layer formed so as to be in contact with the channel layer, and A heterojunction semiconductor device comprising: a formed carrier supply layer made of n-type InGaP.
【請求項2】 GaAs基板上に形成されたn型のIn
GaPからなるキャリア供給層と、 ノンドープのAlGaAsからなる最上層を少なくとも
有するように前記キャリア供給層上に形成されたスペー
サ層と、 前記スペーサ層中のノンドープのAlGaAsからなる
最上層に接するように形成されたノンドープのInGa
Asからなるチャネル層とを備えたことを特徴とするヘ
テロ接合半導体装置。
2. An n-type In layer formed on a GaAs substrate.
A spacer layer formed on the carrier supply layer so as to have at least a carrier supply layer made of GaP, an uppermost layer made of non-doped AlGaAs, and formed so as to be in contact with an uppermost layer made of non-doped AlGaAs in the spacer layer Undoped InGa
A heterojunction semiconductor device comprising a channel layer made of As.
JP4197350A 1992-07-24 1992-07-24 Heterojunction semiconductor device Expired - Fee Related JP2994863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197350A JP2994863B2 (en) 1992-07-24 1992-07-24 Heterojunction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197350A JP2994863B2 (en) 1992-07-24 1992-07-24 Heterojunction semiconductor device

Publications (2)

Publication Number Publication Date
JPH0645368A JPH0645368A (en) 1994-02-18
JP2994863B2 true JP2994863B2 (en) 1999-12-27

Family

ID=16373025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197350A Expired - Fee Related JP2994863B2 (en) 1992-07-24 1992-07-24 Heterojunction semiconductor device

Country Status (1)

Country Link
JP (1) JP2994863B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304332B2 (en) 2002-12-25 2007-12-04 Sumitomo Chemical Company Limited Compound semiconductor epitaxial substrate and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462361B1 (en) 1995-12-27 2002-10-08 Showa Denko K.K. GaInP epitaxial stacking structure and fabrication method thereof, and a FET transistor using this structure
JPH10199896A (en) * 1997-01-07 1998-07-31 Fujitsu Ltd Manufacture of semiconductor device and semiconductor device
TW522574B (en) * 1999-09-28 2003-03-01 Showa Denko Kk GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304332B2 (en) 2002-12-25 2007-12-04 Sumitomo Chemical Company Limited Compound semiconductor epitaxial substrate and method for manufacturing same

Also Published As

Publication number Publication date
JPH0645368A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
US5818078A (en) Semiconductor device having a regrowth crystal region
JP2676442B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US5548140A (en) High-Speed, low-noise millimeterwave hemt and pseudomorphic hemt
EP0051271B1 (en) Heterojunction semiconductor device
US5952672A (en) Semiconductor device and method for fabricating the same
JP2994863B2 (en) Heterojunction semiconductor device
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
EP0602671B1 (en) Heterojunction field effect transistor having an improved transistor characteristic
US5258631A (en) Semiconductor device having a two-dimensional electron gas as an active layer
KR100286093B1 (en) Compound semiconductor device
JP3141838B2 (en) Field effect transistor
JP2759526B2 (en) Semiconductor device and manufacturing method thereof
JPH11214676A (en) Semiconductor device
JPH0260225B2 (en)
JPH0684959A (en) High electron mobility field effect semiconductor device
JPH06244217A (en) Heterojunction semiconductor device
JP2879250B2 (en) Field effect semiconductor device
JP2730511B2 (en) Heterojunction field effect transistor
JP2616634B2 (en) Field effect transistor
Prost et al. High speed, high gain InP-based heterostructure FETs with high breakdown voltage and low leakage
JP2000164852A (en) Gallium-indium-nitride-arsenide based epitaxial wafer and high electron mobility transistor using the same
JPH01120871A (en) Semiconductor device
JPS63229763A (en) Semiconductor device
JPH09260643A (en) High-electron mobility transistor
JP2834172B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees