JP3064518B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP3064518B2
JP3064518B2 JP3183215A JP18321591A JP3064518B2 JP 3064518 B2 JP3064518 B2 JP 3064518B2 JP 3183215 A JP3183215 A JP 3183215A JP 18321591 A JP18321591 A JP 18321591A JP 3064518 B2 JP3064518 B2 JP 3064518B2
Authority
JP
Japan
Prior art keywords
weight
dielectric
temperature
composition
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3183215A
Other languages
Japanese (ja)
Other versions
JPH056710A (en
Inventor
野 晴 信 佐
地 幸 生 浜
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3183215A priority Critical patent/JP3064518B2/en
Publication of JPH056710A publication Critical patent/JPH056710A/en
Application granted granted Critical
Publication of JP3064518B2 publication Critical patent/JP3064518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は誘電体磁器組成物に関
し、特に積層コンデンサなどの材料として用いられる誘
電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, and more particularly to a dielectric porcelain composition used as a material for a multilayer capacitor or the like.

【0002】[0002]

【従来の技術】従来より、高誘電率で、誘電率温度変化
の小さい誘電体磁器組成物としては、たとえば、BaT
iO3 を主成分とし、これにBi2 3 −TiO2 ,B
2 3 −SnO2 ,Bi2 3 −ZrO2 などのビス
マス化合物と希土類元素とを副成分として添加したもの
がある。また、BaTiO3 を主成分とし、これにビス
マス化合物とMgO,SiO2 などを副成分として添加
したものも広く採用されている。
2. Description of the Related Art Conventionally, as a dielectric ceramic composition having a high dielectric constant and a small change in dielectric constant temperature, for example, BaT
iO 3 as a main component, and Bi 2 O 3 —TiO 2 , B
There are those in which a bismuth compound such as i 2 O 3 —SnO 2 or Bi 2 O 3 —ZrO 2 and a rare earth element are added as subcomponents. Further, a material containing BaTiO 3 as a main component and a bismuth compound, MgO, SiO 2 or the like added thereto as a sub component has been widely adopted.

【0003】一方、上記の組成の誘電体磁器組成物とは
別に、BaTiO3を主成分とし、これにNb2 5
Nd2 3 およびMn,Cr,Fe,Ni,Coの酸化
物を副成分として添加したものもある。(特開昭51−
143899号,特開昭57−92575号)こうした
組成の誘電体磁器組成物においても、平坦な誘電率温度
特性が得られると報告されている。
On the other hand, apart from the dielectric ceramic composition having the above composition, BaTiO 3 is mainly used, and Nb 2 O 5 ,
In some cases, Nd 2 O 3 and oxides of Mn, Cr, Fe, Ni, and Co are added as subcomponents. (JP-A-51-
(143,899, JP-A-57-92575) It has been reported that even a dielectric ceramic composition having such a composition can obtain a flat dielectric temperature characteristic.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、BaT
iO3 を主成分とし、ビスマス化合物を添加した誘電体
磁器組成物は、高周波に対する誘電損失tanδが大き
く、誘電率が1000〜2000と低かった。また、誘
電率を高くすると、静電容量の温度変化率が大きくな
り、逆に、静電容量の温度変化率を小さくすると、誘電
率が低下するという相反する傾向を示していた。そのた
め、この誘電体磁器組成物をコンデンサの材料として用
いた場合、コンデンサの小型大容量化には限界があっ
た。
However, BaT
The dielectric ceramic composition containing iO 3 as a main component and adding a bismuth compound had a large dielectric loss tan δ at high frequencies and a low dielectric constant of 1000 to 2000. In addition, when the dielectric constant is increased, the temperature change rate of the capacitance is increased, and conversely, when the temperature change rate of the capacitance is reduced, the dielectric constant is decreased. Therefore, when this dielectric porcelain composition is used as a material for a capacitor, there has been a limit in increasing the size and capacity of the capacitor.

【0005】また、副成分としてビスマス化合物を含む
誘電体磁器組成物では、焼成時にBi2 3 が蒸発し
て、磁器に歪が生じたり、組成割合が変化して、必要な
電気的特性にばらつきを生じたりするという問題点があ
った。さらに、こうした組成物を積層コンデンサの材料
に用いた場合には、内部電極としてPdあるいはAg−
Pd合金が用いられると、このPdとBi2 3 が反応
して、電極の特性が損なわれてしまう。そのため、Bi
2 3 と反応しない高価なPtを、内部電極として使用
せざるを得なかった。
In a dielectric porcelain composition containing a bismuth compound as a sub-component, Bi 2 O 3 evaporates at the time of sintering, causing distortion in the porcelain or changing the composition ratio, thereby deteriorating the required electrical characteristics. There has been a problem that variations occur. Further, when such a composition is used as a material for a multilayer capacitor, Pd or Ag-
When a Pd alloy is used, the Pd and Bi 2 O 3 react to deteriorate the characteristics of the electrode. Therefore, Bi
Expensive Pt that does not react with 2 O 3 had to be used as an internal electrode.

【0006】特開昭51−143899号に開示されて
いる組成の誘電体磁器組成物は、−25℃〜+85℃の
狭い温度範囲においてさえ、−27%以上の誘電率温度
変化率を示していた。そのため、−55℃〜+125℃
の広い温度範囲においては、±15%以内の平坦な誘電
率温度特性を得ることができなかった。
The dielectric ceramic composition having the composition disclosed in JP-A-51-143899 has a dielectric constant temperature change rate of -27% or more even in a narrow temperature range of -25.degree. C. to + 85.degree. Was. Therefore, -55 ° C to + 125 ° C
In a wide temperature range, a flat dielectric temperature characteristic within ± 15% could not be obtained.

【0007】また、特開昭57−92575号に開示さ
れている組成の誘電体磁器組成物は、−55℃〜+12
5℃の温度範囲において、誘電率温度変化率は15%以
下の値を示しているが、誘電率2800以上、誘電損失
2.5%以下、焼成温度1250℃以下という条件を満
足するまでには至っていない。
A dielectric porcelain composition having a composition disclosed in Japanese Patent Application Laid-Open No. 57-92575 has a temperature of -55 ° C. to + 12 ° C.
In the temperature range of 5 ° C., the temperature change rate of the dielectric constant shows a value of 15% or less, but it is necessary to satisfy the conditions of a dielectric constant of 2800 or more, a dielectric loss of 2.5% or less, and a firing temperature of 1250 ° C. Not reached.

【0008】一方、3000〜5000の誘電率を有
し、平坦な誘電率温度特性を有する組成物が開示されて
いる。(特開昭64−45772号)しかし、これら大
きな誘電率を有する組成物は、焼成温度が1280℃と
高い。また、最近の磁器コンデンサは小型化の傾向があ
り、特に積層コンデンサにおいては、小型化かつ大容量
化のために、磁器誘電体層の厚みが5μm〜15μmと
薄膜化される傾向がある。そのため、誘電体磁器組成物
は、高誘電率であるだけでなく、磁器のグレインサイズ
が小さいこと、さらに、電圧依存性が小さいことも望ま
れている。ところが、大きな誘電率を有する組成物は電
圧依存性が大きいため、最近の薄膜化に対応できず、小
型大容量の積層コンデンサを作製することができなかっ
た。
On the other hand, there is disclosed a composition having a dielectric constant of 3000 to 5000 and a flat dielectric constant-temperature characteristic. However, these compositions having a large dielectric constant have a high firing temperature of 1280 ° C. Further, recent ceramic capacitors tend to be miniaturized, and in particular, in multilayer capacitors, the thickness of the ceramic dielectric layer tends to be as thin as 5 μm to 15 μm in order to reduce the size and increase the capacity. Therefore, it is desired that the dielectric porcelain composition not only has a high dielectric constant but also has a small grain size of the porcelain and a small voltage dependency. However, since a composition having a large dielectric constant has a large voltage dependency, it has not been possible to cope with recent thinning, and it has not been possible to produce a small-sized and large-capacity multilayer capacitor.

【0009】それゆえに、この発明の主たる目的は、誘
電率が3000以上で、+25℃における静電容量を基
準とした時、−55℃〜+125℃の広い温度範囲にわ
たって静電容量の温度変化率が±15%以内と平坦で、
かつ誘電損失が1.2%以下と小さく、グレインサイズ
が1μm以下と小さく、1250℃以下という比較的低
い温度で焼結することが可能な、誘電体磁器組成物を提
供することである。
Therefore, a main object of the present invention is to provide a temperature change rate of capacitance over a wide temperature range of -55 ° C. to + 125 ° C. when the dielectric constant is 3000 or more and the capacitance at + 25 ° C. is used as a reference. Is flat within ± 15%,
Another object of the present invention is to provide a dielectric ceramic composition which has a small dielectric loss of 1.2% or less, a small grain size of 1 μm or less, and can be sintered at a relatively low temperature of 1250 ° C. or less.

【0010】[0010]

【課題を解決するための手段】この発明は、不純物とし
てのアルカリ金属酸化物の含有量が0.03重量%以下
のBaTiO3 100重量部に対し、Nb2 5 を0.
5〜3.0重量部と、Co2 3 を0.1〜1.0重量
部と、MnO2 を0.05〜0.5重量部と、BaO−
2 3 −Li2 O−SiO2 を主成分とする酸化物ガ
ラスを0.05〜2.0重量部とを含有し、そのグレイ
ンサイズが1μm以下である、誘電体磁器組成物であ
る。
According to the present invention, Nb 2 O 5 is added to 100 parts by weight of BaTiO 3 containing 0.03% by weight or less of alkali metal oxide as an impurity.
And 5 to 3.0 parts by weight, and the Co 2 O 3 0.1 to 1.0 parts by weight, and the MnO 2 0.05 to 0.5 parts by weight, BaO-
The B 2 O 3 -Li 2 O- SiO 2 oxide glass mainly containing a 0.05 to 2.0 parts by weight, the gray
It is a dielectric porcelain composition having a size of 1 μm or less .

【0011】[0011]

【発明の効果】この発明によれば、+25℃における静
電容量を基準とした時、−55℃〜+125℃の広い温
度範囲にわたって静電容量の温度変化率が±15%以内
と平坦で、かつ誘電損失が1.2%以下と小さい、誘電
体磁器組成物が得られる。また、この組成物は、このよ
うな平坦な温度特性であるにもかかわらず、その誘電率
が3000以上と高い値を示している他、グレインサイ
ズが1μm以下と小さく、1250℃以下という比較的
低い温度で焼結することが可能である。
According to the present invention, when the capacitance at + 25 ° C. is used as a reference, the temperature change rate of the capacitance is flat within ± 15% over a wide temperature range from −55 ° C. to + 125 ° C. A dielectric ceramic composition having a small dielectric loss of 1.2% or less can be obtained. In addition, despite having such a flat temperature characteristic, this composition shows a high dielectric constant of 3000 or more, and a small grain size of 1 μm or less, and a relatively small grain size of 1250 ° C. or less. It is possible to sinter at low temperatures.

【0012】したがって、磁器誘電体層の厚みを薄くす
ることができる。そして、内部電極として30Ag−7
0Pd(数字は重量%)の使用が可能であり、安価かつ
小型大容量で温度特性の良好な積層セラミックコンデン
サを得ることができる。
Therefore, the thickness of the ceramic dielectric layer can be reduced. And 30Ag-7 as an internal electrode
It is possible to use 0Pd (the number is% by weight), and it is possible to obtain a low-cost, small-sized, large-capacity multilayer ceramic capacitor having good temperature characteristics.

【0013】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0014】[0014]

【実施例】(実施例1)まず、出発原料として、種々の
純度のTiCl4 とBa(NO3 2 とを準備し、これ
らの原料をBaイオンとTiイオンとのモル比が1.0
00となるように秤量して秤量物を得た。この秤量物を
蓚酸によって、BaTiO(C2 4 )・4H2 Oとし
て沈殿させ沈殿物を得た。この沈殿物を700℃以上の
温度で加熱分解して、BaTiO3 を合成した。この合
成物を、平均粒子径が1μm以下になるまで、乾式粉砕
機によって粉砕した。このようにして、表1に示すA〜
Eの純度の異なった5種類のBaTiO3 を得た。
EXAMPLES (Example 1) First, TiCl 4 and Ba (NO 3 ) 2 of various purities were prepared as starting materials, and these materials were prepared by adjusting the molar ratio of Ba ion to Ti ion to 1.0.
The sample was weighed to obtain 00 to obtain a weighed product. The weighed material was precipitated as BaTiO (C 2 O 4 ) · 4H 2 O with oxalic acid to obtain a precipitate. This precipitate was thermally decomposed at a temperature of 700 ° C. or more to synthesize BaTiO 3 . This synthesized product was pulverized by a dry pulverizer until the average particle diameter became 1 μm or less. Thus, A to A shown in Table 1
Five types of BaTiO 3 having different purity of E were obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】次いで、Nb2 5 ,Co2 3 ,MnO
2 およびBaO−B2 3 −Li2 O−SiO2 を主成
分とする酸化物ガラスを表2に示した組成割合になるよ
うに秤量し、酢酸ビニル系バインダを加えて、16時間
湿式混合を行って混合物を得た。
Next, Nb 2 O 5 , Co 2 O 3 , MnO
2 and an oxide glass containing BaO-B 2 O 3 -Li 2 O-SiO 2 as a main component were weighed so as to obtain the composition proportions shown in Table 2, the addition of vinyl acetate based binder, 16 hours wet mixing To obtain a mixture.

【0017】[0017]

【表2】 [Table 2]

【0018】さらに、得られた混合物を乾燥し、造粒し
た後、2000kg/cm2 の圧力で直径10mm、厚
さ0.5mmの円板状にプレス成形して成形体を得た。
その後、この成形体を、表3に示す焼成温度で2時間焼
成し、円板状の磁器を得た。
Further, the obtained mixture was dried and granulated, and then press-formed into a disk having a diameter of 10 mm and a thickness of 0.5 mm at a pressure of 2000 kg / cm 2 to obtain a formed body.
Thereafter, the molded body was fired at the firing temperature shown in Table 3 for 2 hours to obtain a disc-shaped porcelain.

【0019】得られた磁器表面を走査型電子顕微鏡に
て、倍率1500倍で観察し、グレインサイズを測定し
た。
The surface of the obtained porcelain was observed with a scanning electron microscope at a magnification of 1500 times, and the grain size was measured.

【0020】そして、得られた磁器の主表面に銀電極を
焼き付けして測定試料(コンデンサ)とし、その室温で
の誘電率(ε),誘電損失(tanδ)および温度変化
に対する静電容量の変化率を測定した。
Then, a silver electrode is baked on the main surface of the obtained porcelain to obtain a measurement sample (capacitor), and its dielectric constant (ε), dielectric loss (tan δ) at room temperature, and change in capacitance with temperature change. The rate was measured.

【0021】この場合、誘電率(ε)および誘電損失
(tanδ)は、温度25℃,1kHz,1Vrmsの
条件で測定した。また、温度変化に対する静電容量の変
化率については、25℃での静電容量(C25)を基準と
して、−55℃と+125℃での温度変化率(ΔC/C
25)と、−55℃〜+125℃の間における温度変化率
が最大である値の絶対値、いわゆる最大変化率(|ΔC
/C25max )とを示した。さらに、周波数1kHzで
200V/mmの電圧を印加した時の誘電損失(tan
δ)を測定した。
In this case, the dielectric constant (ε) and the dielectric loss (tan δ) were measured at a temperature of 25 ° C., 1 kHz, and 1 Vrms. The rate of change of capacitance with respect to temperature change is based on the capacitance (C 25 ) at 25 ° C., and the rate of change of temperature (ΔC / C at −55 ° C. and + 125 ° C.).
25 ) and the absolute value of the value at which the rate of temperature change between -55 ° C and + 125 ° C is the maximum, the so-called maximum rate of change (| ΔC
/ C 25 | max ). Further, the dielectric loss (tan) when a voltage of 200 V / mm was applied at a frequency of 1 kHz.
δ) was measured.

【0022】以上の各試験の結果を、表3に合わせて示
す。
The results of the above tests are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】次に、添加物である酸化物の添加量の範囲
を限定した理由を説明する。
Next, the reason why the range of the additive amount of the oxide as an additive is limited will be described.

【0025】すなわち、Nb2 5 について、その範囲
を0.5〜3.0重量部としたのは、試料番号1のよう
に、0.5重量部未満では焼結温度が高く、誘電損失が
大きくなる。また、静電容量の温度変化率が、−55℃
〜+125℃の温度範囲で±15%よりも大きな値とな
る。また、試料番号5のように、3.0重量部を超える
と誘電率が低下する。
That is, the range of 0.5 to 3.0 parts by weight of Nb 2 O 5 is that the sintering temperature is high when the amount is less than 0.5 part by weight, and the dielectric loss Becomes larger. Further, the temperature change rate of the capacitance is −55 ° C.
The value is larger than ± 15% in a temperature range of up to + 125 ° C. Further, as in Sample No. 5, when the content exceeds 3.0 parts by weight, the dielectric constant decreases.

【0026】Co2 3 について、その範囲を0.1〜
1.0重量部としたのは、試料番号12のように、0.
1重量部未満では、静電容量の温度変化率が、−55℃
〜+125℃の温度範囲で±15%よりも大きな値とな
る。また、試料番号13のように、1.0重量部を超え
ると、誘電損失が著しく大きくなり、静電容量の温度変
化率も大きくなる。
The range of Co 2 O 3 is from 0.1 to
The amount of 1.0 part by weight was 0.1% as in Sample No. 12.
When the amount is less than 1 part by weight, the temperature change rate of the capacitance is −55 ° C.
The value is larger than ± 15% in a temperature range of up to + 125 ° C. If the amount exceeds 1.0 part by weight, as in Sample No. 13, the dielectric loss becomes extremely large, and the temperature change rate of the capacitance becomes large.

【0027】MnO2 について、その範囲を0.05〜
0.5重量部としたのは、試料番号19のように、0.
05重量部未満では、焼結性を向上させる効果が乏し
く、静電容量の温度変化率が大きくなる。また、試料番
号20のように、0.5重量部を超えると、誘電率が2
800を超えず、誘電損失が大きくなる。
For MnO 2 , the range is from 0.05 to
The amount of 0.5 part by weight was 0.1% as in Sample No. 19.
If the amount is less than 05 parts by weight, the effect of improving the sinterability is poor, and the temperature change rate of the capacitance becomes large. Further, as shown in Sample No. 20, if it exceeds 0.5 parts by weight, the dielectric constant becomes 2
It does not exceed 800, and the dielectric loss increases.

【0028】酸化物ガラスについて、その範囲を0.0
5〜2.0重量部としたのは、この組成範囲内では焼結
性が改善され、電圧依存性が小さくなるが、試料番号8
のように、0.05重量部未満では焼結性が悪くなり、
交流電圧依存性が大きくなる。また、試料番号9のよう
に、2.0重量部を超えると、誘電率が3000より低
くなる。
For oxide glass, the range is 0.0
The reason for setting the amount to 5 to 2.0 parts by weight is that the sinterability is improved and the voltage dependency is reduced within this composition range.
If less than 0.05 parts by weight, the sinterability becomes poor,
The AC voltage dependency increases. When the amount exceeds 2.0 parts by weight as in Sample No. 9, the dielectric constant becomes lower than 3000.

【0029】さらに、アルカリ金属の含有量を0.03
重量%以下としたのは、試料番号21のように、0.0
3重量%を超えると誘電率が3000を超えない。
Further, the content of the alkali metal is set to 0.03
The weight percentage is set to 0.0% or less, as in Sample No. 21.
If it exceeds 3% by weight, the dielectric constant does not exceed 3000.

【0030】このように、BaTiO3 ,Nb2 5
Co2 3 系の高誘電率組成物においては、主成分であ
るBaTiO3 中に不純物として存在するSrO,Ca
Oなどのアルカリ土類金属酸化物、Na2 O,K2 Oな
どのアルカリ金属酸化物、その他Al2 3 ,SiO2
などの酸化物のうち、Na2 O,K2 Oなどのアルカリ
金属酸化物の含有量が、組成物の電気的特性に大きく影
響することを、本発明者らは見いだした。
As described above, BaTiO 3 , Nb 2 O 5 ,
In the Co 2 O 3 -based high dielectric constant composition, SrO, Ca present as an impurity in BaTiO 3 as a main component is used.
Alkaline earth metal oxides such as O, alkali metal oxides such as Na 2 O and K 2 O, other Al 2 O 3 , SiO 2
The present inventors have found that among such oxides, the content of an alkali metal oxide such as Na 2 O or K 2 O greatly affects the electrical characteristics of the composition.

【0031】(実施例2)実施例1の試料番号8および
16の誘電体セラミック原料粉末を用意した。この誘電
体セラミック原料粉末に、ポリビニルブチラール系バイ
ンダおよびエタノールなどの有機溶剤を加え、ボールミ
ルによって湿式混合して、セラミック・スラリーを調整
した。その後、このセラミック・スラリーを、ドクター
ブレード法によってシート成形し、厚み12μmの矩形
のグリーンシートを得た。
(Example 2) Dielectric ceramic raw material powders of Sample Nos. 8 and 16 of Example 1 were prepared. An organic solvent such as a polyvinyl butyral-based binder and ethanol was added to the dielectric ceramic raw material powder, and the mixture was wet-mixed with a ball mill to prepare a ceramic slurry. Thereafter, the ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular green sheet having a thickness of 12 μm.

【0032】次に、このセラミック・グリーンシート上
に、Pdを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。そして、
導電ペースト層が形成されたセラミック・グリーンシー
トを、導電ペースト層の引き出されている側が互い違い
となるように複数枚積層し、積層体を得た。
Next, a conductive paste mainly composed of Pd was printed on the ceramic green sheet to form a conductive paste layer for forming internal electrodes. And
A plurality of ceramic green sheets on which the conductive paste layer was formed were laminated such that the side from which the conductive paste layer was drawn out was alternated, to obtain a laminate.

【0033】得られた積層体を空気中において、表4に
示す温度で2時間焼成した。焼成後、得られたセラミッ
ク焼結体の両端面に銀ペーストを塗布し、大気中におい
て750℃の温度で焼き付け、内部電極と電気的に接続
された外部電極を形成した。
The obtained laminate was fired in air at a temperature shown in Table 4 for 2 hours. After firing, a silver paste was applied to both end surfaces of the obtained ceramic sintered body and baked at 750 ° C. in the air to form external electrodes electrically connected to the internal electrodes.

【0034】上述のようにして得られた積層コンデンサ
の外形寸法は、幅3.2mm,長さ1.6mm,厚さ
1.2mmであり、内部電極間に介在する誘電体セラミ
ック層の厚みは8μmである。また、有効誘電体セラミ
ック層の総数は19であり、一層当たりの対向電極の面
積は2.1mm2 である。
The external dimensions of the multilayer capacitor obtained as described above are 3.2 mm in width, 1.6 mm in length and 1.2 mm in thickness, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 8 μm. The total number of effective dielectric ceramic layers is 19, and the area of the counter electrode per layer is 2.1 mm 2 .

【0035】静電容量(C)および誘電損失(tan
δ)を測定するために、自動ブリッジ式測定器を用い
て、各試料の積層コンデンサに1kHz,1Vrmsの
電圧を印加した。次に、25℃,125℃の絶縁抵抗
(R)を測定するために、絶縁抵抗計を用いて、16V
での電圧を2分間印加した。そして、静電容量(C)と
絶縁抵抗(R)との積、すなわちCR積を求めた。
The capacitance (C) and the dielectric loss (tan)
In order to measure δ), a voltage of 1 kHz and 1 Vrms was applied to the multilayer capacitor of each sample using an automatic bridge type measuring device. Next, in order to measure the insulation resistance (R) at 25 ° C. and 125 ° C., an insulation resistance meter was used to measure 16V.
Was applied for 2 minutes. Then, the product of the capacitance (C) and the insulation resistance (R), that is, the CR product was obtained.

【0036】また、温度変化に対する静電容量の変化率
を測定した。さらに、1kHz,1Vrmsの電圧を印
加した上に、直流電圧を16V重畳した時の静電容量の
変化率を測定した。なお、温度変化に対する静電容量の
変化率については、25℃での静電容量(C25)を基準
として、−55℃と+125℃での温度変化率(ΔC/
25)と、−55℃〜+125℃の間における温度変化
率が最大である値の絶対値、いわゆる最大変化率(|Δ
C/C25max )とを示した。
Further, the rate of change of the capacitance with respect to the temperature change was measured. Further, the rate of change in capacitance when a DC voltage of 16 V was superimposed on a voltage of 1 kHz and 1 Vrms was measured. The rate of change of capacitance with respect to temperature change is based on the capacitance (C 25 ) at 25 ° C., and the rate of change of temperature at −55 ° C. and + 125 ° C. (ΔC /
C 25 ) and the absolute value of the value at which the temperature change rate between -55 ° C. and + 125 ° C. is the maximum, the so-called maximum change rate (| Δ
C / C 25 | max ).

【0037】以上の各試験の結果を、表4に合わせて示
す。
The results of the above tests are shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】表4から明らかなように、本発明の範囲内
にある試料番号16の積層セラミックコンデンサは、大
きな誘電率が得られるにもかかわらず、静電容量の変化
率が小さく平坦な温度特性を示し、誘電損失も小さい。
また、この積層セラミックコンデンサは、絶縁抵抗にも
優れ、直流電圧を重畳した時の容量変化率も小さい。
As is clear from Table 4, the multilayer ceramic capacitor of Sample No. 16 falling within the scope of the present invention has a small capacitance change rate and a flat temperature characteristic despite obtaining a large dielectric constant. And the dielectric loss is also small.
The multilayer ceramic capacitor also has excellent insulation resistance and a small rate of change in capacitance when a DC voltage is superimposed.

【0040】このように、本発明の組成による積層セラ
ミックコンデンサは、誘電体セラミック層が8μmと薄
くなっても、十分に対応でき、小型大容量の積層セラミ
ックコンデンサとして期待できる。さらに、焼成温度が
1250℃以下と低いため、内部電極として30Ag−
70Pd(数字は重量%)の使用が可能である。
As described above, the multilayer ceramic capacitor according to the composition of the present invention can sufficiently cope with the dielectric ceramic layer as thin as 8 μm and can be expected as a small-sized and large-capacity multilayer ceramic capacitor. Furthermore, since the firing temperature is as low as 1250 ° C. or less, 30 Ag-
It is possible to use 70 Pd (the number is% by weight).

【0041】これに対して、本発明の範囲外の試料番号
8の積層セラミックコンデンサは、誘電体セラミック層
が8μmと薄くなると、大きな誘電率が得られるもの
の、静電容量の温度変化率が大きく、EIA規格に規定
するX7R特性を満足しない。また、この積層セラミッ
クコンデンサは、誘電損失も大きく、直流電圧を重畳し
た時の容量変化率も大きい。さらに、このコンデンサ
は、高温(125℃)での絶縁抵抗が低く、焼成温度も
高い。
On the other hand, the multilayer ceramic capacitor of Sample No. 8, which is out of the scope of the present invention, has a large dielectric constant when the dielectric ceramic layer is thinned to 8 μm, but has a large capacitance temperature change rate. , Does not satisfy the X7R characteristics defined in the EIA standard. Further, this multilayer ceramic capacitor has a large dielectric loss and a large capacitance change rate when a DC voltage is superimposed. Further, this capacitor has a low insulation resistance at a high temperature (125 ° C.) and a high firing temperature.

【0042】なお、上記実施例では、BaTiO3 とし
て蓚酸法によって作製したものを用いたが、これに限定
されるものではなく、アルコキシド法や共沈法によって
作製されたBaTiO3 や、たとえば、BaCO3 とT
iO2 の粉末を用いて作製したBaTiO3 でも同様の
効果が得られる。また、Nb2 5 ,Co2 3 ,Mn
2 などの添加物を、酸化物粉末として添加したが、N
b,Co,Mnを、酸化物換算で本発明の請求範囲にな
るように配合すれば、溶液による添加でも同様の効果が
得られる。
In the above embodiment, BaTiO 3 produced by the oxalic acid method was used. However, the present invention is not limited to this. BaTiO 3 produced by the alkoxide method or the coprecipitation method, for example, BaCO 3 is used. 3 and T
The same effect can be obtained with BaTiO 3 produced using iO 2 powder. Also, Nb 2 O 5 , Co 2 O 3 , Mn
Additives such as O 2 were added as oxide powder,
When b, Co, and Mn are blended so as to fall within the scope of the present invention in terms of oxides, the same effect can be obtained by adding a solution.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−224105(JP,A) 特開 昭59−154704(JP,A) 特開 昭63−102105(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/00 - 3/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-224105 (JP, A) JP-A-59-154704 (JP, A) JP-A-63-102105 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H01B 3/00-3/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不純物としてのアルカリ金属酸化物の含
有量が0.03重量%以下のBaTiO3 100重量部
に対し、 Nb2 5 を0.5〜3.0重量部、 Co2 3 を0.1〜1.0重量部、 MnO2 を0.05〜0.5重量部、およびBaO−B
2 3 −Li2 O−SiO2 を主成分とする酸化物ガラ
スを0.05〜2.0重量部含有し、 そのグレインサイズが1μm以下である 、誘電体磁器組
成物。
1. Nb 2 O 5 is added in an amount of 0.5 to 3.0 parts by weight, and Co 2 O 3 is added to 100 parts by weight of BaTiO 3 having an alkali metal oxide content of 0.03% by weight or less as an impurity. 0.1 to 1.0 part by weight, 0.05 to 0.5 part by weight of MnO 2 , and BaO-B
A dielectric ceramic composition containing 0.05 to 2.0 parts by weight of an oxide glass containing 2 O 3 —Li 2 O—SiO 2 as a main component and having a grain size of 1 μm or less .
JP3183215A 1991-06-26 1991-06-26 Dielectric porcelain composition Expired - Lifetime JP3064518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183215A JP3064518B2 (en) 1991-06-26 1991-06-26 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183215A JP3064518B2 (en) 1991-06-26 1991-06-26 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH056710A JPH056710A (en) 1993-01-14
JP3064518B2 true JP3064518B2 (en) 2000-07-12

Family

ID=16131799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183215A Expired - Lifetime JP3064518B2 (en) 1991-06-26 1991-06-26 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3064518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646081A (en) * 1995-04-12 1997-07-08 Murata Manufacturing Co., Ltd. Non-reduced dielectric ceramic compositions
JP5067541B2 (en) 2007-03-30 2012-11-07 Tdk株式会社 Dielectric ceramic composition, composite electronic component and multilayer ceramic capacitor
DE102010002943A1 (en) 2010-03-17 2011-09-22 Robert Bosch Gmbh Arrangement with an electrical and / or electronic module and a circuit carrier

Also Published As

Publication number Publication date
JPH056710A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JP3024536B2 (en) Multilayer ceramic capacitors
JP2001006966A (en) Ceramic capacitor and its manufacture
US5264402A (en) Non-reducible dielectric ceramic composition
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3250923B2 (en) Dielectric porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP3064519B2 (en) Dielectric porcelain composition
JP3362408B2 (en) Dielectric porcelain composition
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP2902925B2 (en) Dielectric porcelain composition
JPH06227861A (en) Dielectric ceramic composition
JP3106371B2 (en) Dielectric porcelain composition
JP3250917B2 (en) Dielectric porcelain composition
JP2789110B2 (en) High dielectric constant porcelain composition
JP3250927B2 (en) Dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3228649B2 (en) Dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2958820B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12