JPS63168070A - Laser diode module - Google Patents

Laser diode module

Info

Publication number
JPS63168070A
JPS63168070A JP61315428A JP31542886A JPS63168070A JP S63168070 A JPS63168070 A JP S63168070A JP 61315428 A JP61315428 A JP 61315428A JP 31542886 A JP31542886 A JP 31542886A JP S63168070 A JPS63168070 A JP S63168070A
Authority
JP
Japan
Prior art keywords
laser diode
light
waveguide
lens
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315428A
Other languages
Japanese (ja)
Inventor
Sadasuke Kimura
禎祐 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61315428A priority Critical patent/JPS63168070A/en
Publication of JPS63168070A publication Critical patent/JPS63168070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To stabilize an oscillating frequency by a method wherein primary diffraction light coming from a reflector type grading, out of the light generated by a diode, is applied back to the diode for the feedback of a selected wavelength to the diode. CONSTITUTION:The light oscillated by a diode 6 is diffused while travelling through a waveguide 2. The diffused light is converted into a parallel beam by a lens 3, and the parallel beam is supplied into a reflector type grading 5. The grading 5 is of a planar type and arranged at such an angle that a primary diffraction light 9 will travel the course back to a lens 3. The primary diffraction light 9 is converged in the lens 3, and then fed back into the laser diode 6. This means that a light with its wavelength specified by the grading 5 is fed back into the laser diode 6, which contributes to the stabilization of oscillating frequency.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、レーザダイオードに関し、特にその発振波
長を安定化するモジュールに関する。
The present invention relates to a laser diode, and particularly to a module that stabilizes its oscillation wavelength.

【従来の技術】[Conventional technology]

従来より、レーザダイオードの発振波長を安定化するに
は発生したレーザ光より波長選択した光を逆注入すれば
よいことが知られている。そこで、これを実現するには
、複雑な光学系をレーザダイオードとは別に設ける必要
がある。
Conventionally, it has been known that in order to stabilize the oscillation wavelength of a laser diode, it is sufficient to inject light whose wavelength is selected from the generated laser light. Therefore, in order to realize this, it is necessary to provide a complicated optical system separately from the laser diode.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかし、このようにレーザダイオードとは別に複雑な光
学系を設けるのでは、機械的にも安定しないし、また全
体として大型化してしまう。 この発明は、機械的安定度が高く、しかも小型化できる
、発振波長安定化レーザダイオードモジュールを提供す
ることを目的とする。
However, if such a complicated optical system is provided separately from the laser diode, it will not be mechanically stable and the overall size will increase. An object of the present invention is to provide an oscillation wavelength stabilized laser diode module that has high mechanical stability and can be downsized.

【問題点を解決するための手段】[Means to solve the problem]

この発明によるレーザダイオードモジュールは、基板に
形成された平面状導波路と、該導波路の一端に固定され
たレーザダイオードチップと、該レーザダイオードチッ
プから導波路内に入射したレーザ光を平行光にするため
の上記導波路内に設けられたレンズと、該平行光の1次
回折光が元の経路を辿って上記レーザダイオードチップ
内に戻るような角度に上記導波路の端面に形成された反
射型グレーティングとからなる。
A laser diode module according to the present invention includes a planar waveguide formed on a substrate, a laser diode chip fixed to one end of the waveguide, and a laser beam incident from the laser diode chip into the waveguide into parallel light. a reflective lens formed on the end face of the waveguide at an angle such that the first-order diffracted light of the parallel light returns to the laser diode chip along its original path; It consists of a grating.

【作  用】[For production]

レーザダイオードから発生した光の内、反射型グレーテ
ィングで得た1次回折光がレーザダイオードに逆注入さ
れる。そのため、波長選択された光が逆注入されること
になり、発振波長が安定化されることになる。 そして、この光学系は1チツプの平面状導波路にすべて
形成されるので、小型化が可能であるとともに、機械的
にも安定度が高い。機械的に安定であることは発振波長
の安定化をもたらす。
Of the light generated from the laser diode, the first-order diffracted light obtained by the reflective grating is back-injected into the laser diode. Therefore, wavelength-selected light is injected back, and the oscillation wavelength is stabilized. Since this optical system is entirely formed on a single-chip planar waveguide, it can be downsized and has high mechanical stability. Mechanical stability leads to stabilization of the oscillation wavelength.

【実 施 例】【Example】

図において、基板1の上面に平面状の導波路2が形成さ
れており、この導波路2内にレンズ3とレンズ4とが設
けられている。さらに、導波路2の一つの端面には反射
型のグレーティング5が形成されている。そして、他の
端面にはレーザダイオードチップ6が取り付けられ、さ
らに別の端面にはフォトダイオードチップ7が取り付け
られている。 レーザダイオードチップ6からの発振光は導波路2に入
射して拡散光となるが、この拡散光がレンズ3によって
平行光とされ、平行光となった発振光8が端面の反射型
グレーティング5に入射させられる。このグレーティン
グ5は平面型で、1次回折光りが、入射光の経路を再び
辿ってレンズ3に入るような角度に配置されている。こ
のレンズ3に戻ってきた1次回折光りは、レンズ3によ
って集束され、レーザダイオードチップ6に逆注入され
る。すなわち、グレーティング5によって波長選択され
た光がレーザダイオードチップ6に逆注入されることに
なり、その発振波長が安定する。 他方、この反射型グレーティング5により回折された0
次回折光10は、レンズ4で集束され、フォトダイオー
ドチップ7に入射する。したがって、このフォトダイオ
ードチップ7の出力によりレーザダイオードチップ6の
発振光の出力の大きさを知ることができる。そこで、こ
のフォトダイオードチップ7の出力を、このレーザダイ
オードモジュール全体を駆動する駆動回路のAPC(A
utomatic Power Control)回路
(図示しない)に送ってレーザ出力が一定になるよう制
御する。 このように1次回折光をレーザダイオードチップ6に逆
注入することに加えて、そのための光学系の全体を導波
路2内に組み込み、外部環境の変化に対するレーザダイ
オードチツプ6と光学系の機械的安定度を高めるように
したので、発振波長を安定化できる。
In the figure, a planar waveguide 2 is formed on the upper surface of a substrate 1, and a lens 3 and a lens 4 are provided within this waveguide 2. Furthermore, a reflective grating 5 is formed on one end face of the waveguide 2 . A laser diode chip 6 is attached to the other end face, and a photodiode chip 7 is attached to the other end face. The oscillated light from the laser diode chip 6 enters the waveguide 2 and becomes diffused light. This diffused light is made into parallel light by the lens 3, and the oscillated light 8, which becomes the parallel light, is transmitted to the reflective grating 5 on the end face. It is made incident. This grating 5 is a planar type, and is arranged at an angle such that the first-order diffracted light retraces the path of the incident light and enters the lens 3. The first-order diffracted light that has returned to the lens 3 is focused by the lens 3 and is injected back into the laser diode chip 6. That is, the light whose wavelength has been selected by the grating 5 is injected back into the laser diode chip 6, and its oscillation wavelength is stabilized. On the other hand, the 0 diffracted by this reflective grating 5
The next diffraction light 10 is focused by the lens 4 and enters the photodiode chip 7. Therefore, the magnitude of the output of the oscillated light of the laser diode chip 6 can be determined from the output of the photodiode chip 7. Therefore, the output of the photodiode chip 7 is transferred to the APC (APC) of the drive circuit that drives the entire laser diode module.
The output signal is sent to an automatic power control circuit (not shown) to control the laser output to be constant. In addition to injecting the first-order diffracted light back into the laser diode chip 6 in this way, the entire optical system for this purpose is built into the waveguide 2 to ensure mechanical stability of the laser diode chip 6 and the optical system against changes in the external environment. By increasing the wavelength, the oscillation wavelength can be stabilized.

【発明の効果】【Effect of the invention】

この発明によれば、1チツプの平面状導波路で発振波長
安定化レーザダイオードモジュールを構成することがで
きるので、非常に小型化ができるとともに機械的な安定
度も非常に高いものとすることができる。したがって機
械的安定度が高いことから発振波長を一層安定化できる
According to this invention, an oscillation wavelength-stabilized laser diode module can be configured with a single-chip planar waveguide, so it can be extremely miniaturized and has extremely high mechanical stability. can. Therefore, since the mechanical stability is high, the oscillation wavelength can be further stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例の模式的な斜視図である。 1・・・基板、2・・・導波路、3.4・・・レンズ、
5・・・反射型グレーティング、6・・・レーザダイオ
ードチッ1.7・・・フォトダイオードチップ、8・・
・発振光、9・・・1次回折光、10・・・0次回折光
The figure is a schematic perspective view of an embodiment of the present invention. 1... Substrate, 2... Waveguide, 3.4... Lens,
5...Reflection grating, 6...Laser diode chip 1.7...Photodiode chip, 8...
- Oscillation light, 9...1st order diffracted light, 10...0th order diffracted light.

Claims (1)

【特許請求の範囲】[Claims] (1)基板に形成された平面状導波路と、該導波路の一
端に固定されたレーザダイオードチップと、該レーザダ
イオードチップから導波路内に入射したレーザ光を平行
光にするための上記導波路内に設けられたレンズと、該
平行光の1次回折光が元の経路を辿って上記レーザダイ
オードチップ内に戻るような角度に上記導波路の端面に
形成された反射型グレーティングとからなるレーザダイ
オードモジュール。
(1) A planar waveguide formed on a substrate, a laser diode chip fixed to one end of the waveguide, and the guide for collimating laser light incident from the laser diode chip into the waveguide. A laser comprising a lens provided in a waveguide, and a reflective grating formed on an end face of the waveguide at an angle such that the first-order diffracted light of the parallel light returns to the laser diode chip following the original path. diode module.
JP61315428A 1986-12-29 1986-12-29 Laser diode module Pending JPS63168070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315428A JPS63168070A (en) 1986-12-29 1986-12-29 Laser diode module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315428A JPS63168070A (en) 1986-12-29 1986-12-29 Laser diode module

Publications (1)

Publication Number Publication Date
JPS63168070A true JPS63168070A (en) 1988-07-12

Family

ID=18065256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315428A Pending JPS63168070A (en) 1986-12-29 1986-12-29 Laser diode module

Country Status (1)

Country Link
JP (1) JPS63168070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485212B1 (en) * 2002-12-12 2005-04-25 한국전자통신연구원 Tunable Wavelength Semiconductor Laser Diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485212B1 (en) * 2002-12-12 2005-04-25 한국전자통신연구원 Tunable Wavelength Semiconductor Laser Diode

Similar Documents

Publication Publication Date Title
US4923270A (en) Apparatus for optical wavelength division multiplexing
GB2283613A (en) Surface-emitting laser diode array and photodetector array
JPS6254991A (en) Semiconductor laser
US5384799A (en) Frequency stabilized laser with electronic tunable external cavity
JPH01184971A (en) Slab guiding light emission semiconductor laser
JPS63244783A (en) Wavelength conversion element
JPS625677A (en) Frequency-stabilized semiconductor laser element
JPS63168070A (en) Laser diode module
JPS60207389A (en) Semiconductor laser device
JPH0745890A (en) External cavity semiconductor laser
JPH02189529A (en) Optically bistable semiconductor laser device
EP0176329A3 (en) Laser diodes
JPH01208884A (en) Variable wavelength uniaxial mode laser diode
JPS5793314A (en) Semiconductor laser optical device
GB2402752A (en) Optical component having semi reflective surfaces
JP2527007B2 (en) Optical functional element
US7065120B2 (en) Integrated laser with Perot-Fabry cavity
EP0138567A3 (en) Semiconductor diode lasers
JPH0389574A (en) Second harmonic generator
JPS6410425A (en) Optical information recording and reproducing device
JPS62154685A (en) Light source for wavelength multiplex optical communication
JP2841570B2 (en) External cavity semiconductor laser and optical transmission device using the same
GB2313234A (en) Laser diode array
JPS62152191A (en) Light source for wavelength multiple light communication
JPH01231387A (en) Semiconductor light emitting device