JPS62152191A - Light source for wavelength multiple light communication - Google Patents

Light source for wavelength multiple light communication

Info

Publication number
JPS62152191A
JPS62152191A JP29374685A JP29374685A JPS62152191A JP S62152191 A JPS62152191 A JP S62152191A JP 29374685 A JP29374685 A JP 29374685A JP 29374685 A JP29374685 A JP 29374685A JP S62152191 A JPS62152191 A JP S62152191A
Authority
JP
Japan
Prior art keywords
plane
wavelength
optical
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29374685A
Other languages
Japanese (ja)
Other versions
JPH06101606B2 (en
Inventor
Hiroyuki Asakura
宏之 朝倉
Kiyokazu Hagiwara
萩原 清和
Minoru Nishioka
稔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29374685A priority Critical patent/JPH06101606B2/en
Publication of JPS62152191A publication Critical patent/JPS62152191A/en
Publication of JPH06101606B2 publication Critical patent/JPH06101606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize the oscillation frequency of LDs (light-emitting diodes and lasers), and to obtain a light source having high multiplicity by providing a plurality of the LDs, a plurality of optical fibers, one plane diffraction grating, one convergent rod lens and a plurality of reflecting mirrors on the outside and unifying these parts by means of an optical glass block. CONSTITUTION:Outputs from LDs are emitted from the terminals of optical fibers 2 arranged in the y-axis direction in order to avoid a crosstalk, and made parallel with a lens 3 and projected to a diffraction grating. There is predetermined relationship among the angle of incidence alpha, angle of diffraction betaand angle of off-plane phi on an X-N plane vertical to grooves for the grating and a wavelength lambda, and beta changes by l when alpha and phi are kept constant. When the focal distance of the lens 3 is represented by (f), DELTAx responds to DELTAx=DELTAbeta.f on a focal plane. When reflecting mirrors 6 are positioned on the focal plane, an external optical resonator is formed only to the specified wavelength of the LDs. When the mirrors 6 are moved in an x-y plane, resonance frequency alters, thus acquiring an LD light source oscillating in a certain constant wavelength clearance as a wavelength multiple light source.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光通信に用いる波長多重光通信用光源に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a light source for wavelength multiplexed optical communication used in optical communication.

従来の技術 波長多重光通信においては、多重度の数たけの波長の異
なる光源が必要になる。波長多重光通信用光源としては
0.8−1.3μm発振波長を有する発光ダイオードや
半導体レーザ(以下LD)の中から、各チャンネル間隔
に相当する波長のものを選別して用いていた。
Conventional technology In wavelength division multiplexing optical communication, light sources with different wavelengths are required as many times as there are multiplexing degrees. As a light source for wavelength-multiplexed optical communication, a light source with a wavelength corresponding to each channel spacing has been selected from among light emitting diodes and semiconductor lasers (hereinafter referred to as LD) having an oscillation wavelength of 0.8 to 1.3 μm.

これまでに実用化している波長多重光通信システムにお
いては、多重度は2から4波長程度のものであり、光源
の波長間隔も011−0.2μm間隔に設定し、光源と
なる発光ダイオードやLDの組成材料比を変化させたり
、材料自体をかえることによって希望の波長をえている
In the wavelength division multiplexing optical communication systems that have been put into practical use so far, the multiplicity is about 2 to 4 wavelengths, and the wavelength spacing of the light sources is set to 0.11-0.2 μm, and the light source is a light emitting diode or LD. The desired wavelength can be obtained by changing the composition material ratio or by changing the material itself.

発光ダイオードを光源とした場合、発光ダイオードのス
ペクトル幅が約30nmと広いために隣接チャンネル間
のクロストークを考慮した場合、発光波長間隔をせまく
することが困難である。また、光源に単一モード波長の
LDを用いた場合、そのスペクトル幅は数10MHz以
下であるためにチャンネル間がせばめられ、多重度も清
面的に高めることが可能となる。
When a light emitting diode is used as a light source, the spectral width of the light emitting diode is as wide as about 30 nm, so it is difficult to narrow the emission wavelength interval when considering crosstalk between adjacent channels. Furthermore, when an LD with a single mode wavelength is used as a light source, the spectral width is several tens of MHz or less, so the channels can be narrowed and the multiplicity can be increased in a simple manner.

他方、わずかに異なる周期構造を有するDFBレーザ(
Distributed  Feedback  La
5er)を1つのチップに集積し、アレイ化したものが
ある。(ハジメ オカダ他、ジャパニーズ ジャーナル
 オブ アプライド フィジックス 第12巻、198
4年12月(HajimeOkada(thJAPAN
ESEJOUNAL  OF  APPLIED  P
HYSIC3,Vol、12  DEC,1984)第
3図にその実例をしめす。周期の差によって波長の異な
る5つの光をえることが出来る。
On the other hand, a DFB laser with a slightly different periodic structure (
Distributed Feedback
5er) are integrated into one chip and formed into an array. (Hajime Okada et al., Japanese Journal of Applied Physics Vol. 12, 198
December 4th (Hajime Okada (thJAPAN)
ESEJOUNAL OF APPLIED P
HYSIC3, Vol. 12 DEC, 1984) An example is shown in Figure 3. Due to the difference in period, five types of light with different wavelengths can be obtained.

発明が解決しようとする問題点 しかし現在量も多く使用されているファプリーペロー型
の構造を有するLDでは同一プロセスで作成しても、そ
の発振波長はバラツキを生しる。
Problems to be Solved by the Invention However, in the LDs having the Fapley-Perot structure, which are currently widely used, the oscillation wavelengths vary even if they are manufactured using the same process.

このため、多重度の高い波長多重光通信システムを構成
するためには多くのLDのサンプルの中から必要とする
波長のものを選別するか、設計値に近い波長を有するL
Dを温度制御して設計値の波長にしている。このためL
Dの歩留りが悪くなってしまう、また波長間隔を広くす
るとLDの歩留りは良くなるが、各チャンネルにおいて
光ファイバーの伝送損失が異なるためにシステムとして
のパワーマージンが最悪のチャンネルによって決定され
てしまう。他の光学部品においても特性の変化が生じる
。このため部品によってはチャンネルで材料や構成を変
える必要が生じ、コストアンプとなってしまう。
Therefore, in order to configure a wavelength division multiplexing optical communication system with high multiplicity, it is necessary to select the required wavelength from among many LD samples, or to select an LD with a wavelength close to the design value.
The temperature of D is controlled to make it the designed wavelength. For this reason L
The yield of D will be poor.Although widening the wavelength interval will improve the yield of LD, since the transmission loss of the optical fiber differs in each channel, the power margin as a system will be determined by the worst channel. Changes in characteristics also occur in other optical components. For this reason, depending on the part, it may be necessary to change the material or configuration depending on the channel, which increases the cost.

第3図に示したDFBレーザアレイではその作成プロセ
スが複雑であり、導波路部に構成する溝のピッチをきわ
めて精密に制御しなければならず、素子の再現性や歩留
りに大きな問題がある。また素子がアレイ状になってい
るためにLDを同時駆動した場合、発熱しLDの温度上
昇をまねく。従って波長変化や出力レベルの低下を招く
In the DFB laser array shown in FIG. 3, the fabrication process is complicated, and the pitch of the grooves formed in the waveguide section must be controlled extremely precisely, which poses major problems in device reproducibility and yield. Furthermore, since the elements are arranged in an array, when the LDs are driven simultaneously, heat is generated and the temperature of the LD increases. This results in a change in wavelength and a decrease in output level.

本発明は上記問題に鑑み、LDの発振周波数を安定化し
、多重度の高い波長多重光通信用光源を提供するもので
ある。
In view of the above problems, the present invention provides a light source for wavelength division multiplexed optical communications that stabilizes the oscillation frequency of an LD and has a high degree of multiplexing.

問題点を解決するための手段 上記問題点を解決するために本発明の波長多重光通信用
光源は複数個のLDと外部に複数本の光ファイバーと1
枚の平面回折格子と1つの集束ロッドレンズと複数枚の
反射鏡を具備し各LDに対して特定波長の外部光共振器
を形成し、光学部品を光学ガラスブロックを用いて一体
化したものである。
Means for Solving the Problems In order to solve the above problems, the light source for wavelength multiplexed optical communication of the present invention includes a plurality of LDs, a plurality of external optical fibers, and one optical fiber.
It is equipped with two planar diffraction gratings, one focusing rod lens, and multiple reflecting mirrors to form an external optical resonator of a specific wavelength for each LD, and the optical components are integrated using an optical glass block. be.

作用 本発明は上記した構成によって、複数個のLDの発振周
波数を同時に独立に安定化制御することによって上記に
説明した問題点を解決しようとするものである。
Operation The present invention attempts to solve the above-described problems by stabilizing and controlling the oscillation frequencies of a plurality of LDs simultaneously and independently using the above-described configuration.

実施例 以下、本発明の1実施例における波長多重光通信用光源
について図面を参照しながら説明する。
Embodiment Hereinafter, a light source for wavelength multiplexed optical communication in an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の1実施例における波長多重光通信用光
源の構成図を示すものである。複数個のLDIからの出
力光は各おの光ファイバー2に入力される。光ファイバ
ーの各出射端はコリメートレンズ3の焦点面(x−y平
面)上に配置する。
FIG. 1 shows a configuration diagram of a light source for wavelength multiplexed optical communication in one embodiment of the present invention. Output light from the plurality of LDIs is input to each optical fiber 2. Each output end of the optical fiber is arranged on the focal plane (xy plane) of the collimating lens 3.

4は平面回折格子で溝はY方向に切られている。4 is a plane diffraction grating with grooves cut in the Y direction.

このため光ファイバー2の配列はLD間のクロストーク
をさけるために、Y方向では重ならないようにしなけれ
ばならない。第1図における実施例では、光ファイバー
2はすべてy軸方向に配列しであるが必ずしも同−X座
標上に配列する必要はなく、斜め方向に配列してもよい
。光ファイバー2よりでた光は、コリメートレンズ3に
より平行光となって平面回折格子4に入射される。いま
、平面回折格子4の溝に対に対して垂直な平面(X−N
面)での光入射角9回折角をα、βとし、またオフプレ
イン角をφとすると波長λの光は、d−CO3−−(s
inα+sinβ)=mλ            ・
・・・・・+11を満たす。但し、dは溝間隔、mは次
数である。
Therefore, the optical fibers 2 must be arranged so that they do not overlap in the Y direction in order to avoid crosstalk between LDs. In the embodiment shown in FIG. 1, the optical fibers 2 are all arranged in the y-axis direction, but they do not necessarily need to be arranged on the same -X coordinate, but may be arranged in an oblique direction. The light emitted from the optical fiber 2 is converted into parallel light by the collimating lens 3 and is incident on the plane diffraction grating 4 . Now, a plane (X-N
If the diffraction angles are α and β, and the off-plane angle is φ, then the light with wavelength λ is d-CO3--(s
in α + sin β) = mλ ・
...+11 is satisfied. However, d is the groove spacing, and m is the order.

もし、入射角とオフプレイン角が一定ならば、入射光の
波長λが変化すると回折角βが変化する。
If the incident angle and the off-plane angle are constant, the diffraction angle β changes as the wavelength λ of the incident light changes.

Δβ変化すると集光レンズ3の焦点面ではΔX=Δβ・
fに対応する。
When Δβ changes, at the focal plane of the condenser lens 3, ΔX=Δβ・
Corresponds to f.

rは集光レンズ3の焦点距離である。LDlの出力光は
光ファイバー2を通りレンズ3で平行光となって平面回
折格子4で回折される。回折された光は、集光レンズ3
の焦点面上で波長に対応した位置に集光される。FP型
LDにおいては、発振可能な縦モードが複数本存在する
ので、特定波長に対応する、レンズ3の焦点面上の位置
に反射鏡6を配置すると、LDlにおいてその特定波長
に対してだけ外部光共振器が形成される。従ってLDI
の発振波長は(1)式によって幾何学的に決定される。
r is the focal length of the condensing lens 3. The output light from the LD1 passes through an optical fiber 2, becomes parallel light by a lens 3, and is diffracted by a plane diffraction grating 4. The diffracted light is transmitted through the condensing lens 3
The light is focused at a position corresponding to the wavelength on the focal plane. In the FP type LD, there are multiple longitudinal modes that can oscillate, so if the reflector 6 is placed at a position on the focal plane of the lens 3 that corresponds to a specific wavelength, the LD1 can only generate external light for that specific wavelength. An optical resonator is formed. Therefore LDI
The oscillation wavelength of is determined geometrically by equation (1).

また、レンズ3の焦点面の反射鏡6の(x−y)面内の
位置を変えることによって、共振周波数が変化り、LD
Iの発振周波数も利得の範囲内で変化させることができ
る。従って、波長多重光通信用光源としである一定の波
長間隔で発振するLD光源が必要な場合、第1図に示さ
れるように反射鏡6を複数個を必要な波長位置に配列し
、しかも光ファイバーの出射端をy軸方向に分散して配
置することにより各LDIの回折光を集光レンズ5の焦
点面上においてy軸方向に分散して結像させ、各LDL
の利得の広がりによって生ずるスペクトルの裾の重りを
レンズ5の焦点面上で回避しながら、前記反射鏡6をx
−7面において2次元的に配列し、外部光共振器を形成
してやればよい。第2図にレンズ3の焦点面での各LD
1の結像スペクトルを示す。各LDが縦マルチモードで
発振していると1つのLDIの発振スペクトルはX方向
に分散して結像される。特定の縦モードスペクトルの結
像点に反射鏡6を配置すると、反射鏡6上に結像された
発振スペクトル像7を光源として再び元の光路を通りL
Dへ帰還される。第2図のa、  b、  c、  d
、  eのスペクトルは、第1図のLDla、b、c、
d、eの発光スペクトルに対応している。
Furthermore, by changing the position of the focal plane of the lens 3 in the (x-y) plane of the reflecting mirror 6, the resonance frequency changes, and the LD
The oscillation frequency of I can also be varied within the range of gain. Therefore, if an LD light source that oscillates at a certain wavelength interval is required as a light source for wavelength-multiplexed optical communication, a plurality of reflecting mirrors 6 should be arranged at the required wavelength positions as shown in FIG. The diffracted light of each LDI is dispersed and imaged in the y-axis direction on the focal plane of the condenser lens 5 by arranging the emission ends of each LDL in a dispersed manner in the y-axis direction.
While avoiding the weight at the tail of the spectrum caused by the broadening of the gain on the focal plane of the lens 5,
They may be arranged two-dimensionally in the -7 plane to form an external optical resonator. Figure 2 shows each LD at the focal plane of lens 3.
1 is shown. When each LD oscillates in longitudinal multimode, the oscillation spectrum of one LDI is imaged in a dispersed manner in the X direction. When the reflecting mirror 6 is placed at the imaging point of a specific longitudinal mode spectrum, the oscillation spectrum image 7 formed on the reflecting mirror 6 is used as a light source to redirect the light L through the original optical path.
Returned to D. a, b, c, d in Figure 2
, e spectra are LDla, b, c,
It corresponds to the emission spectra of d and e.

なお、本実施例では、平面回折格子4での1次の回折光
の帰還にはレンズ3と反射鏡6によって構成されたキャ
ノツアイ光学系を用いているために安定した光帰還が行
える。
In this embodiment, since the canopy-eye optical system composed of the lens 3 and the reflecting mirror 6 is used to return the first-order diffracted light from the plane diffraction grating 4, stable optical feedback can be achieved.

また、LDIの出力光は光ファイバー2によって外部光
共振器に導かれているために、LDアレイとは異なり、
各LDIを独立に温度制御することが可能となる。
Also, since the output light of the LDI is guided to the external optical resonator by the optical fiber 2, unlike the LD array,
It becomes possible to independently control the temperature of each LDI.

また、本実施例においてはコリメートレンズ3に集束ロ
ッドレンズを用いているため、レンズの一端面が焦点面
になっており、光ファイバー2及び帰還用反射鏡6はこ
の端面に所定の位置で接着すればよい。さらに平面回折
格子4及び集束ロッドレンズ3を光学ガラスブロック1
0に紫外線硬化樹脂等を用いて接着すると光学系はしっ
かりと固定され機械的な振動や衝撃に対して強くなるし
、光ファイバー2や反射鏡6の焦点方向の調整も不要と
なる。
In addition, in this embodiment, since a focusing rod lens is used as the collimating lens 3, one end surface of the lens becomes the focal plane, and the optical fiber 2 and the return reflector 6 are bonded to this end surface at a predetermined position. Bye. Further, a plane diffraction grating 4 and a focusing rod lens 3 are attached to the optical glass block 1.
If the optical system is bonded to the optical fiber 2 using an ultraviolet curing resin or the like, the optical system will be firmly fixed and will be resistant to mechanical vibrations and shocks, and there will be no need to adjust the focal direction of the optical fiber 2 or the reflecting mirror 6.

発明の効果 以上のように本発明は複数個のLDの外部に、1つのレ
ンズと一枚の平面回折格子と、前記LDからの出力光を
導く光ファイバーと、複数個の反射鏡を具備し、LD外
部に周波数選択性のある光共振器を構成し、複数個のL
Dを独立にかつ選択的に単一モード発振させることによ
って、周波数を安定化し、周波数間隔が狭く多重度の高
い波長多重光通信用の光源を提供することができうる。
Effects of the Invention As described above, the present invention includes one lens, one plane diffraction grating, an optical fiber that guides the output light from the LD, and a plurality of reflecting mirrors on the outside of a plurality of LDs. A frequency-selective optical resonator is configured outside the LD, and multiple L
By independently and selectively oscillating D in a single mode, it is possible to stabilize the frequency and provide a light source for wavelength division multiplexing optical communication with narrow frequency intervals and high multiplicity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における波長多重光通信用光
源の構成図、第2図はレンズの焦点面上のLDの発光ス
ペクトル図、第3図は従来の光源の斜視図である。 ■・・・・・・半導体レーザー、2・・・・・・光ファ
イバー、3・・・・・・集束ロッドレンズ、4・・・・
・・平面回折格子、6・・・・・・反射鏡、IO・・・
・・・光学ガラスブロック。
FIG. 1 is a block diagram of a light source for wavelength multiplexed optical communication according to an embodiment of the present invention, FIG. 2 is an emission spectrum diagram of an LD on the focal plane of a lens, and FIG. 3 is a perspective view of a conventional light source. ■... Semiconductor laser, 2... Optical fiber, 3... Focusing rod lens, 4...
...Plane diffraction grating, 6...Reflector, IO...
...Optical glass block.

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の半導体レーザ素子と前記半導体レーザ素
子の出力光を導波する複数本の光ファイバーと、前記複
数本の光ファイバーからの出力光を平行光にする1つの
1/4ピッチ集束ロッドレンズと、前記1/4ピッチ集
束ロッドレンズによってコリメートされた前記複数本の
光ファイバからの出力光を、発振波長に応じた方向へ分
散させる平面回折格子と、前記平面回折格子で分散され
た光を選択的に前記光ファイバーの出射部へ帰還させる
反射鏡と、前記反射鏡と上記光ファイバーの出射端を前
記1/4ピッチ集束ロッドレンズの同一焦点面上に配置
したリトロー型光学系とを有し、前記1/4ピッチ集束
ロッドレンズと前記平面回折格子と前記光ファイバー、
前記反射鏡を光学ガラスブロックを用いて一体化したこ
とを特徴とする波長多重光通信用光源。
(1) A plurality of semiconductor laser elements, a plurality of optical fibers that guide the output light of the semiconductor laser elements, and one 1/4 pitch focusing rod lens that converts the output light from the plurality of optical fibers into parallel light. a plane diffraction grating that disperses the output light from the plurality of optical fibers collimated by the 1/4 pitch focusing rod lens in a direction according to the oscillation wavelength; and a plane diffraction grating that disperses the light dispersed by the plane diffraction grating. It has a reflecting mirror that selectively returns the optical fiber to the output part, and a Littrow optical system in which the reflecting mirror and the output end of the optical fiber are arranged on the same focal plane of the 1/4 pitch focusing rod lens, the 1/4 pitch focusing rod lens, the plane diffraction grating, and the optical fiber;
A light source for wavelength multiplexed optical communication, characterized in that the reflecting mirror is integrated using an optical glass block.
(2)光ファイバーからの出射光が平面回折格の溝に対
する法線に対して斜めに入射するように光ファイバーを
集束ロッドレンズの焦点面に配列した特許請求の範囲第
1項記載の波長多重光通信用光源。
(2) Wavelength multiplexing optical communication according to claim 1, wherein the optical fibers are arranged in the focal plane of the focusing rod lens so that the light emitted from the optical fibers is incident obliquely to the normal to the groove of the flat diffraction grating. light source.
JP29374685A 1985-12-26 1985-12-26 Light source for WDM optical communication Expired - Fee Related JPH06101606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29374685A JPH06101606B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29374685A JPH06101606B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Publications (2)

Publication Number Publication Date
JPS62152191A true JPS62152191A (en) 1987-07-07
JPH06101606B2 JPH06101606B2 (en) 1994-12-12

Family

ID=17798699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29374685A Expired - Fee Related JPH06101606B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Country Status (1)

Country Link
JP (1) JPH06101606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072069A (en) * 2002-07-04 2004-03-04 Arima Optoelectronics Corp Resonant cavity system of tunable multiple-wavelength semiconductor laser
KR100485212B1 (en) * 2002-12-12 2005-04-25 한국전자통신연구원 Tunable Wavelength Semiconductor Laser Diode
CN106886086A (en) * 2008-10-27 2017-06-23 通快光子学公司 Laser beam interleaving

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072069A (en) * 2002-07-04 2004-03-04 Arima Optoelectronics Corp Resonant cavity system of tunable multiple-wavelength semiconductor laser
KR100485212B1 (en) * 2002-12-12 2005-04-25 한국전자통신연구원 Tunable Wavelength Semiconductor Laser Diode
CN106886086A (en) * 2008-10-27 2017-06-23 通快光子学公司 Laser beam interleaving
CN106886086B (en) * 2008-10-27 2021-06-04 通快光子学公司 Laser beam interleaving

Also Published As

Publication number Publication date
JPH06101606B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
EP0304462B1 (en) Apparatus for optical wavelength division multiplexing
US8395765B2 (en) Wavelength monitor
US7042917B2 (en) Laser apparatus with active thermal tuning of external cavity
US5444724A (en) Tunable wavelength light source incorporated optical filter using interferometer into external cavity
US5859945A (en) Array type light emitting element module and manufacturing method therefor
US4993032A (en) Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers
US4913525A (en) Frequency stabilized light source
US6678432B2 (en) Optical integrated device, semiconductor laser module and optical transmitter
US7009716B2 (en) System for monitoring optical output/wavelength
KR100679241B1 (en) Tunable Multiplexer, Demultiplexer And Tunable Laser with Optical Deflector
US6865037B2 (en) System and method for adjusting the optical path length of an optical path
US6496523B1 (en) Optical feedback assembly
US6038242A (en) Multiwavelength light source
US6731661B2 (en) Tuning mechanism for a tunable external-cavity laser
KR100485212B1 (en) Tunable Wavelength Semiconductor Laser Diode
JPS62152191A (en) Light source for wavelength multiple light communication
JPS62142426A (en) Light-source for wavelength multiplex light communication
US7012939B2 (en) Wavelength stabilization module having light-receiving element array and method of manufacturing the same
JPS62154685A (en) Light source for wavelength multiplex optical communication
JPS62134987A (en) Light source for wavelength multiplex optical communication
JPS62154684A (en) Light source for wavelength multiplex optical communication
JP2004253782A (en) External resonator type laser module
KR100341388B1 (en) Intergrated optic wavelength monitoring device
WO2001035505A1 (en) High resolution wavelength locking technique for one- and two-dimensional arrays of semiconductor diode lasers
KR100349661B1 (en) structure of microcavity filter integrated laser diodes for wavelength locking

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees