JPS63167116A - Supporting device for pulley shaft of continuously variable transmission - Google Patents

Supporting device for pulley shaft of continuously variable transmission

Info

Publication number
JPS63167116A
JPS63167116A JP31296286A JP31296286A JPS63167116A JP S63167116 A JPS63167116 A JP S63167116A JP 31296286 A JP31296286 A JP 31296286A JP 31296286 A JP31296286 A JP 31296286A JP S63167116 A JPS63167116 A JP S63167116A
Authority
JP
Japan
Prior art keywords
pulley
ball
ball bearing
curvature
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31296286A
Other languages
Japanese (ja)
Other versions
JPH0830526B2 (en
Inventor
Yasuto Sakai
康人 坂井
Minoru Okamura
岡村 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP61312962A priority Critical patent/JPH0830526B2/en
Publication of JPS63167116A publication Critical patent/JPS63167116A/en
Publication of JPH0830526B2 publication Critical patent/JPH0830526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To restrict the displacement in the axial direction multually between an inner ring and an outer ring to the minimum limit, by forming the curvature of ball receiving parts of the inner ring and the outer ring in a ball bearing, which is set in the vicinity of a pulley of a pulley shaft, approaching the curvature of a ball. CONSTITUTION:A ball bearing 51 is set to the neighboring side case of a fixed pulley 37a of a secondary pulley 37. The ball bearing 51, comprising an inner ring 51a, outer ring 51b and balls 51c, stops the inner ring 51a to a subshaft 35 while fits the outer ring 51b to a side case recessed part 8a, while the ball bearing is mounted stopping its falling off by a plate 53. And the ball bearing, which forms curvatures of both ball receiving parts 51d, 51e approaching that of the ball 51c, restricts the displacement in the axial direction.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車両のベルト式無段変速機のプーリ軸支持装
置に関し、詳しくは、ベルトによるラジアル荷重とギヤ
によるスラスト荷重を同時に受けるベアリングの構造に
関する。
The present invention relates to a pulley shaft support device for a belt-type continuously variable transmission for a vehicle, and more particularly to a bearing structure that simultaneously receives a radial load from a belt and a thrust load from a gear.

【従来の技術】[Conventional technology]

従来、この種のベルト式無段変速機のギヤトレーンに関
しては、例えば特開昭59−175664号公報の先行
技術がある。ここで、主軸のプライマリプーリと副軸の
セカンダリブーりの間にベルトが巻付けられており、副
軸は更に中間減速ギヤを介して伝動構成される。ここで
、ギヤは普通のギヤであってドライブ時の軸方向反力を
セカンダリブーり側に作用し、セカンダリプーリの近傍
でそのプーリ片側を位置決めすると共に副軸を支持する
ボールベアリングで、ベルトによろラジアル荷重と上記
ギヤによるスラスト荷重を受けることが示しである。
Conventionally, regarding the gear train of this type of belt-type continuously variable transmission, there is a prior art, for example, disclosed in Japanese Patent Application Laid-Open No. 175664/1983. Here, a belt is wound between the primary pulley of the main shaft and the secondary pulley of the subshaft, and the subshaft is further configured to transmit power via an intermediate reduction gear. Here, the gear is an ordinary gear that applies axial reaction force during driving to the secondary pulley side, positions one side of the pulley near the secondary pulley, and supports the secondary shaft with a ball bearing that supports the belt. It is shown that it is subjected to a radial load and a thrust load due to the above gear.

【発明が解決しようとする問題点】  ′ところで、ボ
ールベアリングは、一般にボールの直径dに対しインナ
レースのボール受け部の曲率半径R+は0.51d以上
であり、アウタレースのボール受け部の曲率半径ROは
0.53d以上に設定され、インナレースとアウタレー
スの軸方向のずれが多少生じてもそれを吸収可能になっ
ている。 従って、かかるボールベアリングを上記セカンダリプー
リの軸の支持に用いると、ギヤのスラスト荷重でベアリ
ングの部分で軸方向にずれてセカンダリプーリが片側に
移動し、プライマリブーりに対するセカンダリプーリの
芯ずれ(ミスアライメント)が必要以上に大きくなる。 そしてこの芯ずれは、ギヤの駆動力に伴うスラスト荷重
の変化に対し変動する。 ここで、プライマリプーリとセカンダリプーリの芯ずれ
は最小限に設定されている。即ち、この芯ずれが大きい
とベルトが蛇行し、多数の一列状態のエレメントに掛け
であるリングの側縁がエレメントに接して損傷し、この
ためベルトの耐久性を損うからである。従って、上述の
ボールベアリングにお
[Problems to be Solved by the Invention] 'By the way, in ball bearings, the radius of curvature R+ of the ball receiving part of the inner race is generally 0.51d or more relative to the diameter d of the ball, and the radius of curvature of the ball receiving part of the outer race is RO is set to 0.53d or more, so that even if there is some axial deviation between the inner race and the outer race, it can be absorbed. Therefore, when such a ball bearing is used to support the shaft of the secondary pulley, the thrust load of the gear causes the bearing to shift in the axial direction, causing the secondary pulley to move to one side, causing misalignment (misalignment) of the secondary pulley with respect to the primary pulley. alignment) becomes larger than necessary. This misalignment varies as the thrust load changes with the driving force of the gear. Here, misalignment between the primary pulley and the secondary pulley is set to a minimum. That is, if this misalignment is large, the belt will meander, and the side edges of the ring that hangs over a large number of elements arranged in a row will come into contact with the elements and be damaged, thereby impairing the durability of the belt. Therefore, the above ball bearing

【プる軸方向変位を抑えてブーりの芯ずれの増大を防ぐことが望まれる。 本発明は、このような点に鑑みてなされたもので、プーリを位置決めしてラジアル荷重とスラスト荷重を受けるボールベアリングの軸方向変位を規制して、ベルトの耐久性の向上を図るようにした無段変速機のプーリ軸支持装置を提供することを目的としている。 【問題点を解決するための手段】[It is desirable to suppress the axial displacement of the bobbin to prevent an increase in the misalignment of the bobbin. The present invention was made in view of these points, and aims to improve the durability of the belt by positioning the pulley and regulating the axial displacement of the ball bearing that receives the radial load and thrust load. The object of the present invention is to provide a pulley shaft support device for a continuously variable transmission. [Means to solve the problem]

上記目的を達成するため、本発明は、ブーり軸のプーリ
近傍にボールベアリングを設置し、該ボールベアリング
によりブーりの片側を位置決めすると共に0転自在に支
持して、ベルトによるラジアル荷重とギヤによるスラス
ト荷重を受ける構成において、上記ボールベアリングの
インナレースとアウタレースのボール受け部の曲率をボ
ールの曲率に近似させて、インナレースとアウタレース
相互の軸方向変位を最小限にするように構成されている
In order to achieve the above object, the present invention installs a ball bearing in the vicinity of the pulley of the booby shaft, and uses the ball bearing to position one side of the boob and to support it so that it can freely rotate, thereby reducing the radial load caused by the belt and the gear. In a configuration that receives a thrust load due to the above-mentioned ball bearing, the curvature of the ball receiving portions of the inner race and outer race of the ball bearing is made to approximate the curvature of the ball to minimize mutual axial displacement between the inner race and the outer race. There is.

【作   用】[For production]

上記構成に基づき、プーリ近傍に設置されて位置決めも
兼ねているボールベアリングのインナレースとアウタレ
ース相互の軸方向変位が非常に小さく設定されているの
で、ギヤによるスラスト荷重がかかってもブーりの移動
、即ちプライマリブーりとセカンダリプーリ相互の芯ず
れの増大を生じないようになる。 こうして本発明では、プーリを位置決め支持するボール
ベアリングの位置決め機能が強化されて、ベルトの耐久
性を向上することが可能となる。
Based on the above configuration, the mutual axial displacement between the inner race and outer race of the ball bearing, which is installed near the pulley and also serves as positioning, is set to be extremely small, so even if a thrust load from the gear is applied, the boot will move. In other words, an increase in misalignment between the primary pulley and the secondary pulley is prevented. In this way, in the present invention, the positioning function of the ball bearing that positions and supports the pulley is strengthened, and the durability of the belt can be improved.

【実 施 例】【Example】

以下、図面を参照して本発明の一実施例を具体的に説明
する。 第1図において、本発明が適用されるものとして、電磁
粉式クラッチと組合わせたベルト式無段変速機の伝動系
の一例について説明すると、符号1は電磁粉式クラッチ
、2は無段変速機であり、無段変速機2は大別すると、
入力側から前後進の切換部3.プーリ比変換部4および
終減速部5が伝動構成されて成る。そして、クラッチハ
ウジング6の一方に電磁粉式クラッチ1が収容され、そ
のクラッチハウジング・6の他方と、そこに接合される
メインケース7、更にメインケース7のクラッチハウジ
ング6と反対の側に接合されるサイドケース8の内部に
、無段変速機2の切換部3.ブーり比変換部4および終
減速部5が組付けられている。 ′r!!i磁粉式クラッチ1は、エンジンからのクラン
ク軸10にドライブプレート11を介して一体結合する
リング状のドライブメンバ12.変速機入力軸13に回
転方向に一体的にスプライン結合するディスク状のドリ
ブンメンバ14を有する。そして、ドリブンメンバ14
の外周部側にコイル15が内蔵されて両メンバ12.1
4の間に円周に沿いギャップ16が形成され、このギャ
ップ1Gはその内側の電磁粉を有するパウダ室17と連
通している。また、コイル15を具備するドリブンメン
バ14のハブ部のスリップリング18には給電用ブラシ
19が潜接し、スリップリング18から更にドリブンメ
ンバ14内部を通りコイル15に結線されてクラッヂ電
流回路が構成されている。 こうして、コイル15にクラッチ電流を流すと、ギャッ
プ1Gを介してドライブおよびドリブンメンバ12.1
4の間に生じる磁力線により、そのギャップ16に電磁
粉が鎖状に結合して集積し、これによる結合力でドライ
ブメンバ12に対しドリブンメンバ14が滑りながら一
体結合して、クラッチ接続状態になる。一方、クラッチ
電流をカットすると、電磁粉によるドライブおよびドリ
ブンメンバ12゜14の結合力が消失してクラッチ切断
状態になる。 そして、この場合のクラッチ電流の制御を無段変速機2
の切換部3の操作に連動して行うようにすれば、パーキ
ング(P)またはニュートラル(N)レンジから前進の
ドライブ(D)、スポーティドライブ(Ds)または後
退のリバース(R)レンジへの切換時に自動的にクラッ
チ1が接断して、クラッチペダル操作が不要になる。 次いで、無段変速112において切換部3は、゛上記ク
ラッチ1からの入力軸13とこれに同軸上に配置された
主軸20との間に設けられる。即ら、入力軸13に前進
被係合側を兼ねた後進ドライブ用のギヤ21が形成され
、主軸20には後進被係合側のギヤ22が回転自在に嵌
合してあり、これらのギヤ21゜22が軸23で支持さ
れたカウンタギヤ24、軸25で支持されたアイドラギ
ヤ2Gを介して噛合い構成される。そして、主軸20と
ギヤ21および22との間に切換機構27が設けられる
。ここで、常時噛合っている上記ギr21.24.26
.22はクラッチ1のコイル15を有するドリブンメン
バ14に連結しており、クラッヂ切断時のこの部分の慣
性マスが比較的大きい点に対応して、切換機構27は主
軸20のハブ28にスプライン嵌合するスリーブ29が
、シンクロ機構30、31を介して各ギヤ21.22に
噛合い結合するように構成されている。 これにより、スリーブ29をシンクロ機構30を介して
ギヤ21側に噛合わすと、入力軸13に対し主軸20が
直結して前進状態になる。一方、スリーブ29を逆にシ
ンクロ機構31を介してギヤ22側に噛合わせると、入
力軸13はギヤ21.24.26.22を介し主軸20
に連結され、エンジン動力が減速逆転して後進状態にな
る。 プーリ比変換部4は、上記主軸20に対し副軸35が平
行配置され、これらの両輪20.35にそれぞれプライ
マリプーリ3G、セカンダリプーリ37が設けられ、n
つ両プーリ36.37の間にエンドレスの駆動ベルト3
4が掛は渡しである。プーリ36.37はいずれも2分
割に構成され、一方の固定プーリ36a。 37aに対し、他方の可動プーリ36b、37bがプー
リn隔を可変にすべく移動可能にされ、可動プーリ36
b、37bには、それ自体ピストンを兼ねた油圧サーボ
装[238,39が付設され、更にセカンダリプーリ3
7の可動プーリ37bには、プーリ間隔を狭くする方向
にスプリング40が付勢されている。 また、油圧制御系として作動源のオイルポンプ41がプ
ライマリプーリ36の隣りに設置される。このオイルポ
ンプ41は高圧用のギヤポンプであり、ポンプ駆動軸4
2がプライマリプーリ36.主軸20および入力軸13
の内部を貫通してクランクLI1410に直結し、エン
ジン運転中宮に油圧を生じるようになっている。そして
、このオイルポンプ41の油圧を制御して各油圧サーボ
装[38,39に給排油し、プライマリプーリ36とセ
カンダリプーリ37のプーリ間隔を逆の関係に変化して
、駆動ベルト34のプーリ36.37におけるプーリ比
を無段階に変換し、無段変速した動力を副軸35に出力
する。 終減速部5は、上記プーリ変換部4の高速段側最小プー
リ比が例えば0.5と非常に小さく、このためR1軸3
5の回転数が大きい点に鑑み、副軸35に対し1組の中
間減速ギヤ43を介して出力軸44が連結される。そし
て、この出力軸44のドライブギヤ45にファイナルギ
ヤ46が噛合い、ファイナルギヤ46から差動機構47
を介して左右の駆動輪の車軸48゜49に伝動構成され
る。 一方、セカンダリブーり側の支持装置について述べると
、副軸35においてギヤ43のドライブギヤ43aの隣
りのクラッチハウジング側にローラベアリング50が設
置される。また、セカンダリプーリ37の固定プーリ3
7aの隣りのサイドケース側にボールベアリング51が
設置される。ボールベアリング51はインナレース51
a、アウタレース51bおよびボール51cから成り、
インナレース51aを副軸35の段部35aに係止する
と共にロックナツト52で締結し、アウタレース51b
をサイドケース凹部8aに嵌合すると共にプレート53
で央止めして取付けられるのであり、ローラベアリング
50についても略同株に取付けである。ここで、ギヤ4
3はヘリカルギヤであるから、ドライブギヤ43aのド
ライブ([))時には軸方向反力であるスラスト荷重F
sは実線の矢印のようにプーリ側に作用し、減速および
後進(R)時にはそのスラスト荷重Fsが破線の矢印の
ように逆向きに作用する。 そして上記両ベアリング50.51により、セカンダリ
プーリ37と副軸35の軸方向の位置決めを行うと共に
、回転自在に支持する。またボールベアリング51では
、ベルト張力によるラジアル荷重FRの大部分と、減速
等に比べて大きいドライブ時のスラスト荷重Fsとを受
けるようになっている。 従って、ドライブ時のスラスト荷重FSによるボールベ
アリング51の軸方向変位が直接的に、プライマリおよ
びセカンダリプーリ36.37の中心Op。 O5のずれに影響する。 そこで、ボールベアリング51自体の構成が第2図物の
ようになっている。即ち、ボール51cの直径をd、イ
ンナレース51aのボール受け部51dの曲率半径をR
1,アウタレース51bのボール受け部51eの曲率半
径をROとすると、ベアリングとして成立するには、R
i 、 Ro > d/2である。 そこで一般的には、Ri > 0,51d、 Ro >
 0.53d程度に設定されて、インナレース51aと
アウタレース51bの多少の軸方向変位を吸収する構成
になっている。しかるに、両ボール受け部51d 、 
51cの曲率をボール51cのものに近似させて、軸方
向変位を規制しており、その曲率半径Ri 、ROは上
記一般的なもの以下の Ri −0,501〜0.51d Ro −0,501〜0.526 のように設定される。これにより軸方向変位は、第2図
(ロ)のように破線の従来例に比べて実線のように小さ
い特性になっている。 また第2図(C)は、本発明による計測データであって
、インナレースの曲率半径Ri = 0.5056とし
て無段変速機の最小変速比全開走行時相当の軸方向荷重
とラジアル荷重を作用させたときの軸方向変位を示す。 これによると、アウタレースの曲率半径ROが小さけれ
ば小さい程変位は小さくなる傾向にある。しかし、前に
述べたように、理論的にはRo > 0,50dでなけ
ればならないので、上述のような範囲の値が導き出され
る。 上記構成により、クラッチ1の係合によりエンジン動力
が前後進切換部3を介してプーリ比変換部4のプライマ
リプーリ36に入力し、両プーリ36゜37とベルト3
4で無段変速した動力が副軸35に出力し、これがギヤ
43以降の車輪側に伝達して車両走行する。このとき、
伝達トルクに応じて変化したラジアル荷重FRとスラス
ト荷IFsとをボールベアリング51で受けているが、
このボールベアリング51の軸方向変位が最小に規制さ
れていることで、セカンダリプーリ37のスラスト荷I
Fsによる移動も規制される。そこで、プーリ36.3
7の芯ずれは設計された初期値に保持され、ベルト34
の必要以上の蛇行が防止されるのである。 なお、ボールベアリングの部分に、軸方向変位の少ない
ものとして3点または4点の多点接触ベアリングを用い
ることも考えられるが、大きいベルトによるラジアル荷
重に対する対策を考慮する必要がある。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. In FIG. 1, an example of a transmission system of a belt-type continuously variable transmission combined with an electromagnetic powder clutch to which the present invention is applied will be described. Reference numeral 1 denotes an electromagnetic powder clutch, and 2 indicates a continuously variable transmission. The continuously variable transmission 2 can be roughly divided into:
Switching section for forward and backward movement from the input side 3. The pulley ratio conversion section 4 and the final reduction section 5 are configured to be transmission-driven. The electromagnetic powder clutch 1 is housed in one side of the clutch housing 6, the main case 7 is connected to the other side of the clutch housing 6, and the main case 7 is connected to the opposite side of the clutch housing 6. The switching section 3. of the continuously variable transmission 2 is installed inside the side case 8. A boolean ratio conversion section 4 and a final reduction section 5 are assembled. 'r! ! i The magnetic powder type clutch 1 includes a ring-shaped drive member 12. which is integrally connected to a crankshaft 10 from an engine via a drive plate 11. It has a disk-shaped driven member 14 that is integrally spline-coupled to the transmission input shaft 13 in the rotational direction. And driven member 14
A coil 15 is built in on the outer peripheral side of both members 12.1.
4, a gap 16 is formed along the circumference, and this gap 1G communicates with a powder chamber 17 containing electromagnetic powder inside the gap 1G. In addition, a power supply brush 19 is in latent contact with a slip ring 18 of the hub portion of the driven member 14 equipped with the coil 15, and is further connected to the coil 15 through the inside of the driven member 14 from the slip ring 18 to form a crudge current circuit. ing. In this way, when a clutch current is applied to the coil 15, the drive and driven member 12.1 are connected through the gap 1G.
4, electromagnetic powder is combined and accumulated in the gap 16 in a chain shape, and the resulting binding force causes the driven member 14 to slide and integrally connect to the drive member 12, resulting in a clutch connected state. . On the other hand, when the clutch current is cut, the drive by electromagnetic powder and the coupling force between the driven members 12 and 14 are lost, resulting in a clutch disconnected state. In this case, the clutch current is controlled by the continuously variable transmission 2.
If this is done in conjunction with the operation of the switching unit 3, switching from the parking (P) or neutral (N) range to the forward drive (D), sporty drive (Ds) or reverse (reverse) range can be performed. Clutch 1 is automatically connected and disconnected at times, making it unnecessary to operate the clutch pedal. Next, in the continuously variable transmission 112, the switching section 3 is provided between the input shaft 13 from the clutch 1 and the main shaft 20 disposed coaxially therewith. That is, the input shaft 13 is formed with a reverse drive gear 21 that also serves as a forward engaged side, and a reverse engaged side gear 22 is rotatably fitted to the main shaft 20. 21 and 22 are meshed through a counter gear 24 supported by a shaft 23 and an idler gear 2G supported by a shaft 25. A switching mechanism 27 is provided between the main shaft 20 and the gears 21 and 22. Here, the above gear r21.24.26 which is always engaged
.. 22 is connected to the driven member 14 having the coil 15 of the clutch 1, and corresponding to the fact that the inertia mass of this part is relatively large when the clutch is disconnected, the switching mechanism 27 is spline-fitted to the hub 28 of the main shaft 20. A sleeve 29 is configured to be meshed and coupled to each gear 21, 22 via a synchronizing mechanism 30, 31. Thereby, when the sleeve 29 is engaged with the gear 21 side via the synchronizing mechanism 30, the main shaft 20 is directly connected to the input shaft 13, and the main shaft 20 is in a forward moving state. On the other hand, when the sleeve 29 is reversely engaged with the gear 22 side via the synchronizing mechanism 31, the input shaft 13 is connected to the main shaft 22 via the gears 21, 24, 26, 22.
The engine power is decelerated and reversed to create a reverse state. In the pulley ratio conversion unit 4, a subshaft 35 is arranged parallel to the main shaft 20, and a primary pulley 3G and a secondary pulley 37 are provided on both wheels 20.35, respectively.
An endless drive belt 3 between both pulleys 36 and 37
The fourth stage is a handover. The pulleys 36 and 37 are each divided into two parts, one of which is a fixed pulley 36a. With respect to 37a, the other movable pulleys 36b and 37b are movable to make the pulley n interval variable, and the movable pulley 36
b, 37b are equipped with hydraulic servo devices [238, 39 that also serve as pistons, and are further equipped with secondary pulleys 3
A spring 40 is applied to the movable pulley 37b of No. 7 in a direction to narrow the pulley interval. Further, as a hydraulic control system, an oil pump 41 as an operating source is installed next to the primary pulley 36. This oil pump 41 is a high-pressure gear pump, and the pump drive shaft 4
2 is the primary pulley 36. Main shaft 20 and input shaft 13
It penetrates through the inside of the engine and is directly connected to the crank LI1410 to generate oil pressure during engine operation. Then, the oil pressure of the oil pump 41 is controlled to supply and drain oil to each hydraulic servo device [38, 39], and the pulley spacing between the primary pulley 36 and the secondary pulley 37 is changed to an inverse relationship, so that the pulley of the drive belt 34 The pulley ratio at 36.37 is converted steplessly, and steplessly variable power is output to the subshaft 35. In the final reduction section 5, the minimum pulley ratio on the high speed stage side of the pulley conversion section 4 is very small, for example 0.5, and therefore the R1 shaft 3
In view of the fact that the rotational speed of the motor 5 is high, an output shaft 44 is connected to the subshaft 35 via a set of intermediate reduction gears 43 . A final gear 46 meshes with the drive gear 45 of the output shaft 44, and the final gear 46 is connected to the differential mechanism 47.
Power is transmitted to the axles 48° and 49 of the left and right drive wheels via. On the other hand, regarding the support device on the secondary boot side, a roller bearing 50 is installed on the clutch housing side of the subshaft 35 adjacent to the drive gear 43a of the gear 43. In addition, the fixed pulley 3 of the secondary pulley 37
A ball bearing 51 is installed on the side case side next to 7a. Ball bearing 51 is inner race 51
a, an outer race 51b and a ball 51c;
The inner race 51a is locked to the stepped portion 35a of the subshaft 35 and fastened with the lock nut 52, and the outer race 51b
is fitted into the side case recess 8a, and the plate 53
The roller bearings 50 are also mounted on approximately the same stock. Here, gear 4
Since 3 is a helical gear, when the drive gear 43a is driven ([)], the thrust load F, which is an axial reaction force, is
s acts on the pulley side as shown by the solid line arrow, and during deceleration and backward movement (R), the thrust load Fs acts in the opposite direction as shown by the broken line arrow. The two bearings 50 and 51 position the secondary pulley 37 and the subshaft 35 in the axial direction and support them rotatably. Further, the ball bearing 51 receives most of the radial load FR due to belt tension and the thrust load Fs during driving, which is larger than that during deceleration or the like. Therefore, the axial displacement of the ball bearing 51 due to the thrust load FS during driving is directly caused by the center Op of the primary and secondary pulleys 36 and 37. Affects O5 deviation. Therefore, the configuration of the ball bearing 51 itself is as shown in Figure 2. That is, the diameter of the ball 51c is d, and the radius of curvature of the ball receiving portion 51d of the inner race 51a is R.
1. If the radius of curvature of the ball receiving portion 51e of the outer race 51b is RO, then R is required to function as a bearing.
i, Ro > d/2. Therefore, in general, Ri > 0,51d, Ro >
It is set to about 0.53d, and is configured to absorb some axial displacement of the inner race 51a and the outer race 51b. However, both ball receiving parts 51d,
The curvature of the ball 51c is approximated to that of the ball 51c to regulate the axial displacement, and the radius of curvature Ri and RO are less than the general ones mentioned above, Ri -0,501 to 0.51d Ro -0,501 It is set as ~0.526. As a result, the axial displacement has a smaller characteristic as shown by the solid line as compared to the conventional example shown by the broken line as shown in FIG. 2(b). Further, FIG. 2(C) shows measurement data according to the present invention, in which the radius of curvature Ri of the inner race is set to 0.5056, and an axial load and a radial load equivalent to when the continuously variable transmission is running with the minimum gear ratio fully open are applied. This shows the axial displacement when the According to this, the smaller the radius of curvature RO of the outer race, the smaller the displacement tends to be. However, as mentioned earlier, theoretically Ro should be > 0,50d, leading to values in the range described above. With the above configuration, when the clutch 1 is engaged, the engine power is input to the primary pulley 36 of the pulley ratio converting unit 4 via the forward/reverse switching unit 3, and the engine power is input to the primary pulley 36 of the pulley ratio converting unit 4.
4, the continuously variable power is output to the subshaft 35, which is transmitted to the wheels after the gear 43, and the vehicle runs. At this time,
The ball bearing 51 receives the radial load FR and the thrust load IFs that change according to the transmitted torque.
By restricting the axial displacement of the ball bearing 51 to a minimum, the thrust load I of the secondary pulley 37 is reduced.
Movement by Fs is also regulated. Therefore, pulley 36.3
The misalignment of belt 34 is maintained at the designed initial value.
This prevents unnecessary meandering. Note that it is possible to use a three-point or four-point multi-point contact bearing for the ball bearing part to reduce axial displacement, but it is necessary to consider countermeasures against the radial load caused by the large belt.

【発明の効果】【Effect of the invention】

以上述べてきたように、本発明によれば、ブーりの近傍
で位置決めしながら支持し、かつラジアルとスラスト荷
重を受けるボールベアリングの位置決め機能が強化され
て、プーリの芯ずれ増大を防ぐので、ベルトの耐久性を
向上し得る。 ボールベアリングの構成で対処しているので、専用のス
ラスト受け対策が不要になる。
As described above, according to the present invention, the positioning function of the ball bearing, which supports the ball bearing while positioning it in the vicinity of the booth and receives radial and thrust loads, is strengthened, and an increase in misalignment of the pulley is prevented. The durability of the belt can be improved. Since this is handled by a ball bearing configuration, there is no need for a dedicated thrust countermeasure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のブーり軸支持装置の実施例を示す縦断
面図、第2図物はボールベアリングの断面図、■)はベ
アリング特性図、(C)は計測図である。 35・・・酵1軸、37・・・セカンダリプーリ、51
・・・ボールベアリング、51a・・・インナレース、
51b・・・アウタレース、51c・・・ボール。 第2図 (Q) 引 (b) d#つ向荷重
FIG. 1 is a longitudinal sectional view showing an embodiment of the bobbin shaft support device of the present invention, FIG. 2 is a sectional view of a ball bearing, ■) is a bearing characteristic diagram, and (C) is a measurement diagram. 35...1 shaft, 37...Secondary pulley, 51
...Ball bearing, 51a...Inner race,
51b...outer lace, 51c...ball. Figure 2 (Q) Pull (b) d# direction load

Claims (2)

【特許請求の範囲】[Claims] (1)プーリ軸のプーリ近傍にボールベアリングを設置
し、該ボールベアリングによりプーリの片側を位置決め
すると共に回転自在に支持して、ベルトによるラジアル
荷重とギヤによるスラスト荷重を受ける構成において、 上記ボールベアリングのインナレースとアウタレースの
ボール受け部の曲率をボールの曲率に近似させて、イン
ナレースとアウタレース相互の軸方向変位を最小限にす
ることを特徴とする無段変速機のプーリ軸支持装置。
(1) In a configuration in which a ball bearing is installed near the pulley of the pulley shaft, one side of the pulley is positioned and rotatably supported by the ball bearing, and receives the radial load from the belt and the thrust load from the gear. A pulley shaft support device for a continuously variable transmission, characterized in that the curvature of the ball receiving portion of the inner race and the outer race is approximated to the curvature of the ball, thereby minimizing mutual axial displacement between the inner race and the outer race.
(2)上記ボールベアリングのインナレースのボール受
け部曲率半径はボール直径の50.1〜51%に、アウ
タレースのボール受け部曲率半径はボール直径の50.
1〜52%に設定することを特徴とする特許請求の範囲
第1項記載の無段変速機のプーリ軸支持装置。
(2) The radius of curvature of the ball receiving portion of the inner race of the above ball bearing is 50.1 to 51% of the ball diameter, and the radius of curvature of the ball receiving portion of the outer race is 50.1% to 51% of the ball diameter.
A pulley shaft support device for a continuously variable transmission according to claim 1, wherein the pulley shaft support device is set to 1 to 52%.
JP61312962A 1986-12-26 1986-12-26 Pulley shaft support device for continuously variable transmission Expired - Fee Related JPH0830526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312962A JPH0830526B2 (en) 1986-12-26 1986-12-26 Pulley shaft support device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312962A JPH0830526B2 (en) 1986-12-26 1986-12-26 Pulley shaft support device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS63167116A true JPS63167116A (en) 1988-07-11
JPH0830526B2 JPH0830526B2 (en) 1996-03-27

Family

ID=18035581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312962A Expired - Fee Related JPH0830526B2 (en) 1986-12-26 1986-12-26 Pulley shaft support device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH0830526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250205A (en) * 2005-03-09 2006-09-21 Toyota Motor Corp Gear device
EP2273139A1 (en) * 2002-07-23 2011-01-12 NSK Ltd. Continuously variable belt transmission with rolling bearings
CN114738377A (en) * 2022-05-12 2022-07-12 镇江沃尔夫重工部件有限公司 High-bearing ball bearing, design forming method and processing equipment thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357308B1 (en) 2002-04-23 2009-12-23 NSK Ltd., Rolling element bearing with ring or rolling elements made of chromium steel
US7488113B2 (en) 2003-04-16 2009-02-10 Nsk Ltd. Roller bearing for belt-type stepless speed changer
JP2009108893A (en) * 2007-10-29 2009-05-21 Ntn Corp Ball bearing
JP2012177479A (en) * 2012-05-07 2012-09-13 Ntn Corp Ball bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPS57149323U (en) * 1981-03-17 1982-09-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPS57149323U (en) * 1981-03-17 1982-09-20

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273139A1 (en) * 2002-07-23 2011-01-12 NSK Ltd. Continuously variable belt transmission with rolling bearings
JP2006250205A (en) * 2005-03-09 2006-09-21 Toyota Motor Corp Gear device
CN114738377A (en) * 2022-05-12 2022-07-12 镇江沃尔夫重工部件有限公司 High-bearing ball bearing, design forming method and processing equipment thereof
CN114738377B (en) * 2022-05-12 2024-01-23 镇江沃尔夫重工部件有限公司 High-load ball bearing, design forming method and processing equipment thereof

Also Published As

Publication number Publication date
JPH0830526B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US4973288A (en) Belt drive continuously variable speed transmission
US5052990A (en) Transmission using ball and screw mechanical actuators
EP0851149B1 (en) A planetary gear mechanism
EP1691108B1 (en) Metal belt
US20080200298A1 (en) Forward and rearward motion switching mechanism using brake band
JPS63167116A (en) Supporting device for pulley shaft of continuously variable transmission
US5580324A (en) Driven pulley with a clutch
US5957797A (en) Automatic change transmission utilizing continuous elastic drive belt and method
US4550629A (en) Continuously variable speed transmission for motor vehicles
US6332856B1 (en) Continuously variable transmission
JPH07122452B2 (en) V-belt type continuously variable transmission
JP3901304B2 (en) Transmission device with belt type continuously variable transmission
JP2744038B2 (en) Belt-type continuously variable transmission
JPH02180336A (en) Belt type continuous transmission
US11512763B2 (en) Belt-type continuously variable transmission
JPH0833170B2 (en) Belt type continuously variable transmission
JPS6213854A (en) V belt driven continuously variable transmission
US11585415B2 (en) Continuously variable transmission
JP4700165B2 (en) Belt type continuously variable transmission
JP3010954B2 (en) Belt-type continuously variable transmission for vehicles
JP2766646B2 (en) V-belt type continuously variable transmission
JPH083734Y2 (en) Continuously variable transmission
JPH02180340A (en) Belt type continuous transmission
JPH02154849A (en) Belt type continuously variable transmission
JP3002474B2 (en) Friction clutch operating device for automatic transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees