JPS63166160A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPS63166160A
JPS63166160A JP61315591A JP31559186A JPS63166160A JP S63166160 A JPS63166160 A JP S63166160A JP 61315591 A JP61315591 A JP 61315591A JP 31559186 A JP31559186 A JP 31559186A JP S63166160 A JPS63166160 A JP S63166160A
Authority
JP
Japan
Prior art keywords
flat plate
solid electrolyte
electrode
fuel cell
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315591A
Other languages
Japanese (ja)
Inventor
Masaru Ishibashi
勝 石橋
Masao Sumi
角 正夫
Hiroshi Sakai
広 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61315591A priority Critical patent/JPS63166160A/en
Publication of JPS63166160A publication Critical patent/JPS63166160A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2435High-temperature cells with solid electrolytes with monolithic core structure, e.g. honeycombs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To form a flat plate type solid electrolyte fuel cell in which large current is easily taken out, size increase is easy, and gas sealing is simple by stacking specific modules formed by connecting two flat plates with a through hole cylinder. CONSTITUTION:A module 27 consists of porous ceramic cylinders 23 each of which connects a conductive ceramic flat plate 21a also serving as a fuel electrode and a conductive ceramic flat plate 21b also serving as an interconnector, a solid electrolyte 26 which is in contact with the outsides of the plate 21a and the cylinder 23 and formed by sol-gel pouring method of stabilized zirconia, an oxygen electrode 25 formed outside the plate 21b and the cylinder 23, and a support structure 24 which supports the electrode 25 and the electrolyte 26. The required number of modules are stacked so that cylinders are vertically connected, and the end of each layer is surely sealed with a sealant 29. Thereby, high output generation is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、平板型解質燃料電池の改良に関する。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to improvements in flat plate type electrolyte fuel cells.

[従来の技術1 固体電解質燃料電池(Solid  0xide  F
uelCell、 以下5OFCと称す)は、^効率発
電システムの1つとして注目されている。この5OFG
は、酸化物固体内での酸素イオン導電性を利用し、約1
000℃の作動湿度で燃料ガスと空気とを用いて電極反
応を起こさせて発電するものである。
[Conventional technology 1 Solid oxide fuel cell (Solid Oxide F
uelCell (hereinafter referred to as 5OFC) is attracting attention as one of the efficient power generation systems. This 5OFG
utilizes the oxygen ion conductivity within the oxide solid, and approximately 1
It generates electricity by causing an electrode reaction using fuel gas and air at an operating humidity of 1,000°C.

ところで、従来、5OFCとしては円筒状の多孔質セラ
ミックス基体の表面に燃料極(又は空気極)、固体電解
質及び空気極(又は燃料極)を順次積層し゛た薄膜状の
燃料電池部を形成した円筒型のものが知られている。か
かる円筒型5OFCは、基体の内側に燃料(又は空気)
を、外側に空気(又は燃料)を流して発電を行なうもの
である。
By the way, conventionally, 5OFC is a cylindrical type in which a thin film fuel cell part is formed by sequentially laminating a fuel electrode (or air electrode), a solid electrolyte, and an air electrode (or fuel electrode) on the surface of a cylindrical porous ceramic substrate. Types are known. Such a cylindrical 5OFC has fuel (or air) inside the base.
It generates electricity by flowing air (or fuel) to the outside.

また、円筒型とは別の5OFGとしては第7図に示す平
板型のものが知られている。即ち、図中の1は導電性の
インタコネクタ2を備えたセルである。このインクコネ
クタ2の下面周縁には凸部3が形成されている。また、
前記インタコネクタ2の上面には、例えば酸素流路とな
る複数の溝4が、前記凸部3を除く下面には該満4と直
交する例えば燃料流路となる複数の溝5が夫々設けられ
ている。前記インタコネクタ2の溝5を除く下面には、
例えば酸素電極6が設けられている。このl!*iit
極6を含む前記インタコネクタ2の凸部3には板状の電
解質7が設けられ、かつ前記酸素電極6に対応する該電
解質7の下面に燃料電l1i8が設けられている。そし
て、前記インクコネクタ2、酸素電極6、電解質7及び
燃料電極8からなるセル1を上下方向に積層することに
よって平板型5OFCを構成している。かかる平板型5
OFCは、酸素電極3で下面が囲まれたインタコネクタ
2の溝5の空間に酸素を、燃料電極8で上面が囲まれた
インタコネクタ2のrs4の空間に燃料を夫々流して発
電を行なう。
Further, as a 5OFG other than the cylindrical type, a flat plate type shown in FIG. 7 is known. That is, 1 in the figure is a cell equipped with a conductive interconnector 2. A convex portion 3 is formed on the periphery of the lower surface of the ink connector 2 . Also,
The upper surface of the interconnector 2 is provided with a plurality of grooves 4, which serve as, for example, oxygen flow paths, and the lower surface, excluding the convex portion 3, is provided with a plurality of grooves 5, which are orthogonal to the grooves and serve as, for example, fuel flow paths. ing. On the lower surface of the interconnector 2 except for the groove 5,
For example, an oxygen electrode 6 is provided. This l! *iit
A plate-shaped electrolyte 7 is provided on the convex portion 3 of the interconnector 2 including the poles 6, and a fuel cell 11i8 is provided on the lower surface of the electrolyte 7 corresponding to the oxygen electrode 6. A flat plate type 5OFC is constructed by vertically stacking the cells 1 each including the ink connector 2, oxygen electrode 6, electrolyte 7, and fuel electrode 8. Such a flat plate type 5
The OFC generates electricity by flowing oxygen into the groove 5 space of the interconnector 2 whose bottom surface is surrounded by the oxygen electrodes 3, and flowing fuel into the rs4 space of the interconnector 2 whose top surface is surrounded by the fuel electrodes 8.

上記第7図図示の他に、上述した燃料電池部をインクコ
ネクタ間に波形に配置した、いわゆるモノシリツク型5
OFGが知られている。
In addition to the one shown in FIG.
OFG is known.

[発明が解決しようとする問題点] しかしながら、従来の円筒型5OFGではシール構造が
比較的簡単にできるものの、電流を1llllの厚さに
対して直交する方向に取出すため、電流を大きくできず
、大型化が困難となる。また、大出力の装置を製作する
ためには1oooo万本以上の円筒型だモジュールで構
成しなければならず、実用性に乏しいという問題があっ
た。
[Problems to be Solved by the Invention] However, although the conventional cylindrical 5OFG has a relatively simple seal structure, the current cannot be increased because the current is taken out in a direction perpendicular to the thickness of 1 lll. It becomes difficult to increase the size. In addition, in order to manufacture a high-output device, it must be constructed with more than 100,000 cylindrical modules, which poses the problem of poor practicality.

また、平板型5OFCでは薄膜の厚さ方向に電流を取出
すことができ、大電流大型装置に向いているが、約10
00℃で水素及び/又は酸素に耐えるシール材が必要と
なるという問題があった。
In addition, the flat plate type 5OFC can extract current in the thickness direction of the thin film, making it suitable for large-scale devices with high current.
There is a problem in that a sealing material that can withstand hydrogen and/or oxygen at 00°C is required.

本発明は、上記従来の問題点を解決するためになされた
もので、大電流の取出しが容易で、かつ大型化が可能で
、しかもシールの問題も解決し易く、更にガス流路を確
保し易い構造の固体電解質燃料電池を提供しようとする
ものである。
The present invention was made in order to solve the above-mentioned conventional problems, and it is easy to take out a large current, it can be made large, it is easy to solve the problem of sealing, and it is possible to secure a gas flow path. The present invention aims to provide a solid electrolyte fuel cell with a simple structure.

[問題点を解決するための手段] 本発明は、平板と平板とが貫通固体で接続され、かつ各
貫通筒体内に燃料電池部を夫々形成した構造のモジュー
ルを、複数個積層したことを特徴とする固体電解質燃料
電池である。
[Means for Solving the Problems] The present invention is characterized in that a plurality of modules are stacked, each of which has a structure in which flat plates are connected by a penetrating solid body and a fuel cell portion is formed in each penetrating cylinder. This is a solid electrolyte fuel cell.

[作用] 本発明によれば、平板と平板とが貫通同体で接続され、
かつ各貫通筒体内に燃料電池部を夫々形成した構造のモ
ジュールを用い、このモジュールを複数個積層すること
によって、大電流の取出しが容易で、かつ大型化が可能
で、しかもシールの問題も解決し易く、更にガス流路を
確保し易い構造の固体電解質燃料電池を得ることが可能
となる。
[Function] According to the present invention, the flat plates are connected through the same body,
In addition, by using a module with a structure in which a fuel cell part is formed in each through cylinder, and by stacking multiple modules, it is easy to take out a large current, it is possible to increase the size, and the problem of sealing is also solved. It becomes possible to obtain a solid electrolyte fuel cell having a structure in which gas flow paths are easily secured.

[発明の実施例] IXT、、本、。実施例や第1図i第y0゜照して説明
する。
[Embodiments of the Invention] IXT,, Book. This will be explained with reference to embodiments and the i-th y0° of FIG.

面7図堝4ヒ。図中の21a 、 21bは、互いに対
向して配置された例えば100麿X100 as+X1
,5 mの導電性を有するセラミックス平板である。上
部セラミックス平板21aは、燃料極を兼用し、かつ該
平板21aには下部開口径6511φのテーパ付穴22
aが81個等間隔で開口されている。前記下部セラミッ
クス平板21bは、後述するモジュールを積層する際の
インタコネクタを兼用し、かつ該平板21bには下部開
口径8m1Iφのテーパ付穴22bが前記穴22aと対
向して開口されている。図中の23は、前記一対のセラ
ミックス平板21a 、、 21bの穴22a 、 2
2bに夫々貫通され、上部セラミックス平板21aの穴
22a部分でセラミックス接着剤を介して接合された複
数本の多孔質セラミックス製円筒体である。
Men 7 tu 4 hi. 21a and 21b in the figure are, for example, 100 mm x 100 as+X1 arranged opposite to each other.
, 5 m of conductivity. The upper ceramic flat plate 21a also serves as a fuel electrode, and the flat plate 21a has a tapered hole 22 with a lower opening diameter of 6511φ.
81 a are opened at equal intervals. The lower ceramic flat plate 21b also serves as an interconnector when stacking modules to be described later, and a tapered hole 22b with a lower opening diameter of 8 m1Iφ is opened in the flat plate 21b, facing the hole 22a. 23 in the figure is the hole 22a, 2 of the pair of ceramic flat plates 21a, 21b.
This is a plurality of porous ceramic cylindrical bodies that are respectively penetrated by holes 2b and joined via a ceramic adhesive at the holes 22a of the upper ceramic flat plate 21a.

これら円筒体23は、外形6履φ、内形5mφ、長さ1
5IItRで上端がテーパ状となっており、かつ前記平
板21a 、21bに貫通させた状態において上端が上
部セラミックス平板21aから突出し、かつ下端が前記
下部セラミックス平板22bの上面から上方に位置して
いる。図中の24は、前記平板21a121bの間に配
置されたセラミックス製支持構造物であり、かつ該支持
構造物24は正方形筒体を平面的に十字状となるように
組合わせた形状をなしている。なお、該支持構造物24
の四側壁はコ字型形状となっている。前記支持構造物2
4の十字状上面を除く側面及び下面には、例えばLa 
Co 03からなる酸素極25が積層され、かつ該酸素
極25の底面は前記下部セラミックス平板21bに接触
、固定されている。また、前記支持構造物24の十字状
上面及び該支持構造物24の側面に対応する前記酸素極
25の面には例えば安定化ジルコニアからなる固体電解
質2Bが積層され、かつ該固体電解質26の上面は前記
上部セラミックス平板21aに、側面は前記セラミック
ス製円筒体22に夫々接触、固定されている。なお、固
体電解質26の下端は前記下部セラミックス平板21b
の穴22b内面を覆うように延出されている。こうした
燃料極を兼ねる上部セラミックス平板21a1インタコ
ネクタを兼ねる下部セラミックス平板21b1多孔質セ
ラミツクス製円筒体23、支持構造物24、酸素極35
及び固体電解質26により第1図及び第2図に示すモジ
ュール27を構成している。なお、かかるモジュール2
7は次のような方法に製作される。
These cylindrical bodies 23 have an outer diameter of 6 mm, an inner diameter of 5 m, and a length of 1
5IItR and has a tapered upper end, and when penetrated through the flat plates 21a and 21b, the upper end protrudes from the upper ceramic flat plate 21a, and the lower end is located above the upper surface of the lower ceramic flat plate 22b. Reference numeral 24 in the figure represents a ceramic support structure disposed between the flat plates 21a and 121b, and the support structure 24 has a shape in which square cylinders are combined to form a cross shape in plan view. There is. Note that the support structure 24
The four side walls are U-shaped. The support structure 2
For example, La
An oxygen electrode 25 made of Co 03 is laminated, and the bottom surface of the oxygen electrode 25 is in contact with and fixed to the lower ceramic flat plate 21b. Further, a solid electrolyte 2B made of, for example, stabilized zirconia is laminated on the cross-shaped upper surface of the support structure 24 and the surface of the oxygen electrode 25 corresponding to the side surface of the support structure 24, and the upper surface of the solid electrolyte 26 is in contact with and fixed to the upper ceramic flat plate 21a, and the side surface is in contact with and fixed to the ceramic cylindrical body 22, respectively. Note that the lower end of the solid electrolyte 26 is connected to the lower ceramic flat plate 21b.
The hole 22b is extended to cover the inner surface of the hole 22b. An upper ceramic flat plate 21a that also serves as a fuel electrode, a lower ceramic flat plate 21b that also serves as an interconnector, a porous ceramic cylinder 23, a support structure 24, an oxygen electrode 35
The solid electrolyte 26 constitutes a module 27 shown in FIGS. 1 and 2. In addition, such module 2
7 is manufactured by the following method.

まず、上部セラミックス平板21aの各穴22aに複数
本の多孔質セラミックス製円筒体23の上端テーパ部を
そのテーバ部が該平板21aの上面から突出するように
セラミックス接着剤を介して挿着する。つづいて、上部
セラミックス平板21aを反転して前記複数本の円筒体
23が上部側に植設するような状態にした後、予め十字
状上面を除く側面及び下面にLa C009をスラリー
コートして形成された平面形状が十字状をなすセラミッ
クス支持構造物24をその側面が前記各円筒体2311
1面と隣接するように反転して配置する。次いで、前記
支持構造物24の酸素極25上に複数の穴22bが開口
された下部セラミックス平板21bをそれらの穴22b
が前記円筒体23と合致するように固定した後、上部セ
ラミックス平板21aと円筒体23と酸素極25及び下
部セラミックス平板21bが形成された支持構造物24
とで囲まれた断面凹状の溝部に安定化ジルコニアをゾル
ゲル法で注入して固体電解質26を形成し、反転させる
ことにより第2図図示のモジール27が製作される。
First, the tapered upper ends of a plurality of porous ceramic cylinders 23 are inserted into each hole 22a of the upper ceramic flat plate 21a via a ceramic adhesive so that the tapered parts protrude from the upper surface of the flat plate 21a. Next, after inverting the upper ceramic flat plate 21a so that the plurality of cylindrical bodies 23 are planted on the upper side, the side and lower surfaces except for the cross-shaped upper surface are slurry-coated with La C009. The side surface of the ceramic support structure 24 having a cross-shaped planar shape is connected to each of the cylindrical bodies 2311.
Place it inverted so that it is adjacent to the first side. Next, the lower ceramic flat plate 21b with a plurality of holes 22b opened on the oxygen electrode 25 of the support structure 24 is inserted into the holes 22b.
is fixed so as to match the cylindrical body 23, and then the support structure 24 is formed with the upper ceramic flat plate 21a, the cylindrical body 23, the oxygen electrode 25, and the lower ceramic flat plate 21b.
A solid electrolyte 26 is formed by injecting stabilized zirconia into a groove having a concave cross section surrounded by a sol-gel method, and the module 27 shown in FIG. 2 is manufactured by inverting the solid electrolyte 26.

そして、前記モジュール27(271〜27s)は第3
図に示すようにニッケルメツシュ28を介して例えば5
段積Hされる。この際、2段目以降の各モジール272
〜275の多孔質セラミックス製円筒体23はニッケル
メツシュ28を貫通してそれらの上段に位隨するモジュ
ールの円筒体23の下部に挿入される。また、各モジー
ル271〜275の積層後の支持構造物24の四側壁に
露出する支持構造物24、酸素極25、下部セラミック
ス平板21b1上部セラミックス平板21a 、 固体
1jlf貿26及びセラミックス製支持構造物24の六
II構造部にはシール材29が設けられている。このシ
ール材29は、例えば金メッキを施したニッケルを使用
する。こうしたモジュール271〜275の積層体は本
体容!!30に収納されて5OFGが構成される。なお
、前記本体容器30の上面には正極電力取出し極31a
が、下面には負穫電力取出し極31bが夫々接続されて
いる。
The module 27 (271-27s) is the third
For example, 5 through the nickel mesh 28 as shown in the figure.
Stacked H. At this time, each module 272 from the second stage onward
~275 porous ceramic cylinders 23 are inserted through the nickel mesh 28 into the lower part of the cylinder 23 of the module positioned above them. In addition, the support structure 24 exposed on the four side walls of the support structure 24 after laminating each of the modules 271 to 275, the oxygen electrode 25, the lower ceramic flat plate 21b1, the upper ceramic flat plate 21a, the solid 1jlf trade 26, and the ceramic support structure 24 A sealing material 29 is provided in the 6II structural portion. This sealing material 29 uses, for example, nickel plated with gold. The laminate of these modules 271 to 275 is the main body! ! 30 to form 5OFG. Note that a positive power extraction electrode 31a is provided on the upper surface of the main body container 30.
However, a negative power extraction pole 31b is connected to the bottom surface of each of them.

このような構成の5OFGは、次のような操作により発
電がなされる。即ち、H2等の燃料を円筒体23を通し
てモジュール211〜27.の積層方向に流し、酸素(
又は空気)を各モジュール271〜27sの正方形筒体
を平面的に十字状となるように組合わせた形状のセラミ
ックス製支持構造物24を通して前記燃料に対して直交
する方向に夫々流す。
The 5OFG having such a configuration generates power through the following operations. That is, fuel such as H2 is passed through the cylindrical body 23 to the modules 211 to 27. Oxygen (
or air) is made to flow in a direction perpendicular to the fuel through the ceramic support structure 24, which has a shape in which the square cylinders of the modules 271 to 27s are combined to form a cross shape in plan.

モジール271〜27sからなる積層体内は、600〜
1200℃に保持されており、ここで前記燃料と酸素(
又は空気)が電解質2Gを介して電極反応が起こって発
電がなされ、一対の取出し極31a 、 31bから電
力が取出される。
The inside of the laminated body consisting of modules 271-27s is 600-
It is maintained at 1200°C, where the fuel and oxygen (
(or air) undergoes an electrode reaction through the electrolyte 2G to generate electricity, and electricity is extracted from the pair of extraction electrodes 31a and 31b.

従って、本発明の5OFGでは次のような効果を達成で
きる。
Therefore, the following effects can be achieved with the 5OFG of the present invention.

■、平板21a 、 21bの面積(100cj)に対
して燃料*N1部の有効面積が5φ×10ρ×81子と
して127 eiであるので、平板をil!接燃料電池
とした場合の約3割増の出力が取出すことができる。
■The effective area of the fuel*N1 part is 127ei as 5φ×10ρ×81 children for the area (100cj) of the flat plates 21a and 21b, so the flat plates are il! Approximately 30% more output can be obtained than when using a fuel cell.

■0円筒体23の一つ一つの1!流は従来の円筒形と同
様の取出し方であるが、取出し経路を短くでき、それら
を集合した電流については平板21a 、21bに垂直
方向に取出すために内部抵抗を低くでき、有利となる。
■0 Each 1 of the cylindrical body 23! Although the current is taken out in the same manner as in the conventional cylindrical shape, the extraction path can be shortened, and the collected current can be taken out in a direction perpendicular to the flat plates 21a and 21b, so that the internal resistance can be lowered, which is advantageous.

■、水素と酸素の供給が本質的に直角となっているため
、発電8Mの設計が容易となる。
(2) Since the supply of hydrogen and oxygen is essentially at right angles, the design of the power generation 8M becomes easy.

■、いずれのガス流路も充分に確保されており、ガス流
路が発電のネックになることはない。
(2) All gas flow paths are sufficiently secured and will not become a bottleneck for power generation.

■、各モジール271〜275のIll!後の支持構造
物24の四11壁に露出する冷却作用を受ける支持m逸
物24、酸素極25、下部セラミックス平板21b、上
部セラミックス平板21a1固体電解質26及びセラミ
ックス製支持構造物24の六m111造部に、シール材
29を設けているため、該シール材29として高温で酸
素に耐える材料を用いることなく、通常の金メッキが施
されたニッケルを用いることが可能となる。
■Ill of each module 271-275! The support structure 24 exposed to the cooling effect on the four walls of the rear support structure 24, the oxygen electrode 25, the lower ceramic flat plate 21b, the upper ceramic flat plate 21a, the solid electrolyte 26, and the six m111 parts of the ceramic support structure 24 Since the sealing material 29 is provided in the sealing material 29, it is possible to use ordinary gold-plated nickel as the sealing material 29 without using a material that can withstand oxygen at high temperatures.

なお、上記実施例では燃料極を上部セラミックス平板で
、インクコネクタを下部セラミックス電極で夫々兼用し
たが、これら燃料極やインクコネクタを別途設けてもよ
い。
In the above embodiment, the upper ceramic flat plate serves as the fuel electrode and the lower ceramic electrode serves as the ink connector, but these fuel electrodes and ink connectors may be provided separately.

また、本発明の5OFGは上述した第1図〜第3図に示
す構造のものに限定されず、以下に説明する第4図〜第
6図に示す構造にしてもよい。
Further, the 5OFG of the present invention is not limited to the structure shown in FIGS. 1 to 3 described above, but may have the structure shown in FIGS. 4 to 6 described below.

即ち、図中の418 、41bは、互いに対向して配置
サレタ例えハ100 gX 100 sX 1 ttm
のニッケル平板である。上部ニッケル平板41aには、
6jllφの穴42aが81個等間隔で開口されている
。前記下部ニッケル平板41bには、61M1φの穴4
2bが前記穴42aと対向して開口されている。前記一
対のニッケル平板41a 、 41bの穴42a 、 
42b ニは、外形6alφ、内形5Jllφ、長ざ1
5.の燃料極を兼ねる複数本のニッケル焼結多孔質円筒
体43が夫々貫通され、溶接により固定されている。前
記下部ニッケル平板42b下面と前記円筒体43の内面
に屋り部分には、例えば安定化ジルコニアからなる固体
電解144及び例えばLa Co 03からなる酸素極
45が順次設けられている。また、前記上部ニッケル平
板41a上には例えばヘロブス力イト酸化物からなるイ
ンタコネクタ46が設けられている。こうした上下ニッ
ケル平板41a 、 41b 、燃料極を兼ねるニッケ
ル焼結多孔質円筒体43、固体電解質44、酸素極45
及びインタコネクタ46により第4図及び第5図に示す
モジュール47を構成している。なお、かかるモジュー
ル41は次のような方法に製作される。
That is, 418 and 41b in the figure are arranged opposite to each other.
It is a nickel plate. The upper nickel flat plate 41a has
Eighty-one holes 42a each having a diameter of 6jllφ are opened at equal intervals. The lower nickel flat plate 41b has a hole 4 of 61M1φ.
2b is opened facing the hole 42a. Holes 42a in the pair of nickel flat plates 41a and 41b,
42b D has an outer diameter of 6alφ, an inner diameter of 5Jllφ, and a length of 1
5. A plurality of nickel sintered porous cylindrical bodies 43 which also serve as fuel electrodes are respectively penetrated and fixed by welding. A solid electrolyte 144 made of, for example, stabilized zirconia and an oxygen electrode 45 made of, for example, La Co 03 are sequentially provided on the lower surface of the lower nickel flat plate 42b and on the inner surface of the cylindrical body 43. Further, an interconnector 46 made of, for example, herobsite oxide is provided on the upper nickel flat plate 41a. These upper and lower nickel flat plates 41a and 41b, a nickel sintered porous cylinder 43 that also serves as a fuel electrode, a solid electrolyte 44, and an oxygen electrode 45
and interconnector 46 constitute a module 47 shown in FIGS. 4 and 5. Note that this module 41 is manufactured by the following method.

まず、一対のニッケル平板41a 、 41bの穴42
a142bに燃料極を兼ねる複数本のニッケル焼結多孔
質円筒体43を貫通させ、溶接により固定する。つづい
て、下部ニッケル平板42b下面と前記円筒体43の内
面に亙っ部分に安定化ジルコニアをゾルゲル法でコーテ
ィングして固体電解質44を形成した後、La Co 
03をスラリーコート法によりコーティングして酸素極
45を形成する。次いで、上部ニッケル平板41a上に
ヘロブス力イト酸化物をスラリー法又は溶射法により被
覆してインクコネクタ46を形成することにより第5図
図示のモジール47が製作される。
First, the holes 42 in the pair of nickel flat plates 41a and 41b
A142b is penetrated by a plurality of nickel sintered porous cylinders 43 which also serve as fuel electrodes, and fixed by welding. Subsequently, stabilized zirconia was coated on the lower surface of the lower nickel flat plate 42b and the inner surface of the cylindrical body 43 using a sol-gel method to form a solid electrolyte 44, and then LaCo
03 by a slurry coating method to form an oxygen electrode 45. Next, the module 47 shown in FIG. 5 is manufactured by coating the upper nickel flat plate 41a with herobsite oxide by a slurry method or a thermal spraying method to form an ink connector 46.

そして、前記モジュール47(47,〜41s)は第6
図に示すように例えば5段積層される。また、各モジー
ル411〜475の積層後の四側壁に露出する下部ニッ
ケル平板41b、固体電解質44、酸素極45、インタ
コネクタ46及び上部ニッケル平板41aの五層構造部
には、例えば金箔からなるシール材48が設けられてい
る。こうしたモジュール471〜275の積層体は、本
体容器49に収納されて5OFCが構成される。なお、
前記本体容器49の上面には正極電力取出し極50aが
、下面には負極電力取出し極50bが夫々接続されてい
る。
The module 47 (47, to 41s) is the sixth module.
As shown in the figure, for example, five layers are stacked. In addition, a seal made of gold foil, for example, is attached to the five-layer structure of the lower nickel flat plate 41b, the solid electrolyte 44, the oxygen electrode 45, the interconnector 46, and the upper nickel flat plate 41a exposed on the four side walls after laminating each of the modules 411 to 475. A material 48 is provided. A stacked body of such modules 471 to 275 is housed in a main body container 49 to constitute 5OFC. In addition,
A positive power extraction pole 50a is connected to the upper surface of the main body container 49, and a negative power extraction electrode 50b is connected to the lower surface thereof.

このような構成の5OFGは、次のような操作により発
電がなされる。即ち、酸素(又は空気)を円筒体43を
通してモジュール411〜475の積層方向に流し、水
素等の燃料を各モジュール47.〜475の一対のニッ
ケル平板41a 、 41bと円筒体43の外周面で囲
まれた空間を通して前記酸素(又は空気)に対し直交す
る方向に夫々流す。モジール471〜415からなる積
層体内は、600〜1200℃に保持されており、ここ
で前記酸素(又は空気)と燃料が電解質44を介して電
極反応が起こって発電がなされ、一対の取出し極50a
 、 50bから電力が取出される。
The 5OFG having such a configuration generates power through the following operations. That is, oxygen (or air) flows through the cylindrical body 43 in the stacking direction of the modules 411 to 475, and fuel such as hydrogen is supplied to each module 47. The oxygen (or air) is caused to flow in a direction perpendicular to the oxygen (or air) through a space surrounded by a pair of nickel flat plates 41a, 41b and the outer peripheral surface of the cylindrical body 43. The inside of the stacked body consisting of the modules 471 to 415 is maintained at 600 to 1200°C, and here, an electrode reaction occurs between the oxygen (or air) and fuel via the electrolyte 44 to generate electricity, and a pair of extraction electrodes 50a
, 50b.

従って、第6図に示す5OFGでは前述した第3図図示
の5OFCと同様な効果を達成できる。
Therefore, the 5OFG shown in FIG. 6 can achieve the same effect as the 5OFC shown in FIG. 3 described above.

[発明の効果] 以上詳述した如く、本発明によれば大電流の取出しが容
易で、かつ大型化が可能で、しかもシールの問題も解決
し易く、更にガス°流路を確保し易い構造の固体電解質
燃料電池を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is easy to take out a large current, it is possible to increase the size, it is easy to solve the problem of sealing, and it is easy to secure a gas flow path. solid electrolyte fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の固体電解質燃料電池に用
いる七ジュールを示す斜視図、第2図は第1図の要部拡
大斜視図、第3図は本発明の一実施例の固体電解質燃料
電池を示す概略図、第4図は、本発明の他の実施例の固
体電解質燃料電池に用いるモジュールを示す斜視図、第
5図は第4図の要部拡大斜視図、第6図は本発明の他の
実施例の固体電解質燃料電池を示す概略図、第7図は従
来の平板型固体電解質燃料電池を示す斜視図である。 21a 、21b・・・導電性セラミックス平板、22
a122b 、42a 、42b・・・穴、23・・・
多孔質セラミックス製円筒体、24・・・セラミックス
製支持構造物、25.45−@業種、26.44 ・・
・固体電解質、27.27a 1〜27s 、 47.
47a1〜415・・・モジュール、29.48・・・
シール材、30.49・・・本体容器、41a 141
b・・・ニッケル平板、43・・・ニッケル焼結多孔質
円筒体、46・・・インクコネクタ。 出願人復代理人 弁理士 鈴江武彦 第1図 第3図 第4図 り2 第 6 図 第7図
FIG. 1 is a perspective view showing a 7 joule used in a solid electrolyte fuel cell according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of the main part of FIG. 4 is a schematic diagram showing a solid oxide fuel cell; FIG. 4 is a perspective view showing a module used in a solid oxide fuel cell according to another embodiment of the present invention; FIG. 5 is an enlarged perspective view of the main part of FIG. 4; The figure is a schematic view showing a solid oxide fuel cell according to another embodiment of the present invention, and FIG. 7 is a perspective view showing a conventional flat plate type solid oxide fuel cell. 21a, 21b... conductive ceramic flat plate, 22
a122b, 42a, 42b...hole, 23...
Porous ceramic cylindrical body, 24...Ceramic support structure, 25.45-@Industry, 26.44...
・Solid electrolyte, 27.27a 1-27s, 47.
47a1-415...Module, 29.48...
Seal material, 30.49...Main container, 41a 141
b... Nickel flat plate, 43... Nickel sintered porous cylinder, 46... Ink connector. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 3 Figure 4 Diagram 2 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 平板と平板とが貫通筒体で接続され、かつ各貫通筒体内
に燃料電池部を夫々形成した構造のモジュールを、複数
個積層したことを特徴とする固体電解質燃料電池。
A solid electrolyte fuel cell characterized in that a plurality of modules are stacked, each of which has a structure in which flat plates are connected by through cylinders, and each of the through cylinders has a fuel cell section formed therein.
JP61315591A 1986-12-26 1986-12-26 Solid electrolyte fuel cell Pending JPS63166160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315591A JPS63166160A (en) 1986-12-26 1986-12-26 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315591A JPS63166160A (en) 1986-12-26 1986-12-26 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPS63166160A true JPS63166160A (en) 1988-07-09

Family

ID=18067194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315591A Pending JPS63166160A (en) 1986-12-26 1986-12-26 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS63166160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071841A3 (en) * 2000-03-30 2002-08-15 Michael A Cobb & Company Tubular electrochemical devices with lateral fuel apertures for increasing active surface area
WO2013087355A1 (en) * 2011-12-12 2013-06-20 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Solid state electrolyte for use in lithium-air or lithium-water storage batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071841A3 (en) * 2000-03-30 2002-08-15 Michael A Cobb & Company Tubular electrochemical devices with lateral fuel apertures for increasing active surface area
WO2013087355A1 (en) * 2011-12-12 2013-06-20 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Solid state electrolyte for use in lithium-air or lithium-water storage batteries
US9966628B2 (en) 2011-12-12 2018-05-08 Praunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Solid-state electrolyte for use in lithium-air batteries or in lithium-water batteries

Similar Documents

Publication Publication Date Title
JP2994914B2 (en) Fuel cell
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JPH02306547A (en) Fuel cell deuice and its manufacture
JP2000048831A (en) Solid electrolyte fuel cell
CN108321408B (en) Flat tube solid oxide electrochemical device containing multiple pairs of electrodes and preparation method thereof
JPS63166160A (en) Solid electrolyte fuel cell
JP2730817B2 (en) Method for manufacturing solid electrolyte fuel cell
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JPS62200666A (en) Fuel cell
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JPH0355764A (en) Solid electrolytic type fuel cell
JPH05275096A (en) Close board for solid electrolytic fuel cell, and solid electrolytic fuel cell using same and manufacture thereof
JPS63166159A (en) Solid electrolyte fuel cell
JP4686820B2 (en) Fuel cell
CN1276633A (en) Fuel cell with more membrane electrodes on one membrane and its preparing process
JP4686819B2 (en) Fuel cell
JPH05166530A (en) Battery member for solid electrolyte fuel cell
JP2003297388A (en) Fuel cell, cell stack, and fuel battery
JP2004349140A (en) Cell body for tubular single-chamber fuel cell and its manufacturing method
JPH0294365A (en) Solid electrolyte fuel cell
JPS63274062A (en) Solid electrolyte type fuel cell
JPH01313856A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
TWI459627B (en) A fuel cell and a method of manufacturing a fuel cell
JPH056774A (en) Solid electrolyte type fuel cell
JPH01128359A (en) Solid electrolyte type fuel cell