JPH01313856A - Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell - Google Patents

Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell

Info

Publication number
JPH01313856A
JPH01313856A JP63146068A JP14606888A JPH01313856A JP H01313856 A JPH01313856 A JP H01313856A JP 63146068 A JP63146068 A JP 63146068A JP 14606888 A JP14606888 A JP 14606888A JP H01313856 A JPH01313856 A JP H01313856A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
fuel cell
electrode member
electrolyte sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63146068A
Other languages
Japanese (ja)
Inventor
Hiroshi Mihara
三原 浩
Yoshiho Nakai
中井 良穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63146068A priority Critical patent/JPH01313856A/en
Publication of JPH01313856A publication Critical patent/JPH01313856A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve power generating efficiency by using a solid electrolyte sheet 2 regularly formed with many fine electrodes to fill recesses on both faces for an electrode member and forming holes to pass the gas. CONSTITUTION:An electrode member 1 is formed with a solid electrolyte sheet 2 regularly formed with many fine electrodes 3 in recesses 4 formed on both faces, holes 6 to pass the gas are provided on this electrode member 1. Recesses 4 are formed by a metal mold on both faces of the solid electrolyte sheet 2, electrode materials 5 are stuck to the recesses 4, the solid electrolyte sheet 2 is sintered, the electrode material 5 bulged out from the recesses 4 are removed to form this electrode member 1. The electrode member 1 with good adhesion of the electrode material and good power generating efficiency is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、固体電解質型燃料電池の電極部材、その製
造方法および固体電解質型燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode member for a solid oxide fuel cell, a method for manufacturing the same, and a solid oxide fuel cell.

[従来技術] 燃料電池による発電は、従来の火力発電や原子力発電と
異なり、化石燃料の化学エネルギーを電気化学反応によ
り直接電気エネルギーに変換するものであり、発電効率
が高いとか設備規模の制約もない等の利点を有している
。このため第一世代のりん酸水溶液型燃料電池に始まり
、第二世代の溶融アルカリ炭酸塩型燃料電池、さらには
第三世代の固体電解質型燃料電池へと、より効率的、よ
り経済的な燃料電池の開発が継続されている。
[Conventional technology] Unlike conventional thermal power generation and nuclear power generation, power generation using fuel cells directly converts the chemical energy of fossil fuels into electrical energy through electrochemical reactions, and has high power generation efficiency and no restrictions on equipment scale. It has advantages such as: Therefore, starting with the first generation phosphoric acid aqueous fuel cells, the second generation molten alkali carbonate fuel cells, and finally the third generation solid oxide fuel cells, which provide more efficient and economical fuels. Battery development continues.

特に固体電解質型燃料電池は、燃料にとくに制約条件が
ない上に発電効率が高いとか、設備のコンパクト化が期
待できる等経済的な面から最も実用性に富んでいる。こ
の固体電解質型燃料電池の構造および作動原理は、第7
図に示すとおりである。その構造は、シート状固体電解
質21の片面22に燃料極23を密着させるとともに、
他の片面24に空気極25を密着させている。そして両
電極間に外部回路26が形成されており、負荷がかけら
れるようになっている。
In particular, solid oxide fuel cells are the most practical from an economical standpoint, as they have no particular restrictions on fuel, have high power generation efficiency, and can be expected to make equipment more compact. The structure and operating principle of this solid oxide fuel cell are explained in the seventh section.
As shown in the figure. Its structure is such that a fuel electrode 23 is closely attached to one side 22 of a sheet-like solid electrolyte 21, and
An air electrode 25 is brought into close contact with the other side 24. An external circuit 26 is formed between both electrodes, and a load can be applied thereto.

このような構成において、燃料極23に水素(Hz)や
−酸化炭素(Co)等の燃料が供給される。水素の場合
でいうと、水素は燃料&23で固体電解質21中の酸素
イオンと(1)式のように反応して、電子(e−)を奪
われ、水(H20)となって排出される。
In such a configuration, fuel such as hydrogen (Hz) and -carbon oxide (Co) is supplied to the fuel electrode 23. In the case of hydrogen, hydrogen reacts with oxygen ions in the solid electrolyte 21 in the fuel &23 as shown in equation (1), loses electrons (e-), and is discharged as water (H20). .

そして空気′Igi25では、空気中の酸素(02)と
外部回路26を経てきた電子(e−)とが(2)式のよ
うに反応し、酸素イオン(0−)となって固体電解質2
1中を燃料極23へと移動する。
In the air 'Igi25, the oxygen (02) in the air and the electrons (e-) that have passed through the external circuit 26 react as shown in equation (2), becoming oxygen ions (0-) and forming the solid electrolyte 2
1 to the fuel electrode 23.

燃料極 Hz +O−”・・Hz O+ 2 e −−
(1)空気極 02+2e−O−・= (2)このよう
な反応は、電解質と電極の境界面で起こるので、電極は
水素等のガスがこの境界面に到達できるよう多孔質でな
ければならず、加えるに発生した電気を効率良く回収す
るために導電性が良好であることが必須条件である。
Fuel electrode Hz +O-"...Hz O+ 2 e --
(1) Air electrode 02+2e-O-・= (2) Since this kind of reaction occurs at the interface between the electrolyte and the electrode, the electrode must be porous so that gases such as hydrogen can reach this interface. In addition, good conductivity is an essential condition for efficiently recovering the generated electricity.

なお実際に燃料電池で発電するときには、上記のような
単電池の端子電圧は1v以内であるので、単電池を多数
直流接続して集合電池とし、この集合電池をさらに集め
て群電池とするようにしている。
In addition, when actually generating electricity with a fuel cell, the terminal voltage of the above-mentioned single cells is within 1V, so it is recommended to connect many single cells with direct current to form a collective battery, and then collect these collective batteries to form a group battery. I have to.

[発明が解決しようとする課題] しかしながら、上述した電極には次のような問題点があ
った。
[Problems to be Solved by the Invention] However, the above-mentioned electrodes had the following problems.

ガスが反応しやすいように電極の多孔の度合いを上げる
と、電極がもろくなる上に、電極の電気抵抗もおおきく
なり、導電性が悪くなる。また電極に電解質までとどく
貫通孔を多数確実に作成するのは、電極が数ミクロンと
非常に薄い膜状のものであるため、この膜を作る条件を
いろいろ工夫してみても、予定した数の貫通孔を持った
多孔質の膜を、高い再現性をもって制作することは困難
であった。
If the degree of porosity of the electrode is increased to make it easier for gases to react, the electrode not only becomes brittle but also increases its electrical resistance, resulting in poor conductivity. In addition, it is difficult to reliably create a large number of through holes in the electrode that reach the electrolyte because the electrode is a very thin membrane of several microns, so even if you try various ways to create this membrane, you will not be able to create the planned number of through holes. It has been difficult to produce porous membranes with through holes with high reproducibility.

この発明は、従来の電極の以上のような問題点を解消し
、多孔質の電極と同程度の多孔性を持った電極部材、そ
の製造方法゛および前記電極部材を使用した固体電解質
型燃料電池を提供するものである。
The present invention solves the above-mentioned problems of conventional electrodes and provides an electrode member having porosity equivalent to that of a porous electrode, a method for manufacturing the same, and a solid oxide fuel cell using the electrode member. It provides:

[課題を解決するための手段] この発明に係わる固体電解質型燃料電池の電極部材、そ
の製造方法および固体電解質型燃料電池は、両面に形成
された凹部に、凹部を充満するように微細電極が規則的
に多数形成された固体電解質シートよりなる固体電解質
型燃料電池の電極部材であり、この電極部材において気
体を通過させる孔が形成されている電極部材であり、そ
の製造方法が、 (a)グリーンシート状態の固体電解質シートの両面に
金型で凹部を形成する工程。
[Means for Solving the Problems] An electrode member for a solid oxide fuel cell, a method for manufacturing the same, and a solid oxide fuel cell according to the present invention include a fine electrode formed in a recess formed on both sides so as to fill the recess. An electrode member of a solid electrolyte fuel cell consisting of a large number of regularly formed solid electrolyte sheets, in which holes are formed to allow gas to pass through, and the manufacturing method thereof is (a) A process in which depressions are formed using a mold on both sides of a solid electrolyte sheet in the form of a green sheet.

(b)形成された凹部に電極材料を接着させる工程。(b) A step of adhering an electrode material to the formed recess.

(c)電極材料を接着させた固体電解質シートを焼結す
る工程。
(c) A step of sintering the solid electrolyte sheet to which the electrode material is adhered.

(d)凹部よりはみ出した電極材料を除去する工程。(d) A step of removing the electrode material protruding from the recess.

を順次行なってなる製造方法であり、この電極部材を使
用した固体電解質型燃料電池が、n枚(nは自然数)の
前記固体電解質シートと、(n + 1 )枚のインタ
ーコネクターをガスシールを介して交互に積み重ねてな
り、前記微細電極とインターコネクターの間には可撓性
を有する導電体が狭装され、前記ガスシールはガスが外
部に漏れず、かつ前記固体電解質シートの片面にガスが
、他の面に空気が接触するように配置されている固体電
解質型燃料電池である。
This is a manufacturing method in which a solid electrolyte fuel cell using this electrode member is produced by gas-sealing n (n is a natural number) solid electrolyte sheets and (n + 1) interconnectors. A flexible conductor is sandwiched between the fine electrodes and the interconnector, and the gas seal prevents gas from leaking to the outside, and the gas seal is placed on one side of the solid electrolyte sheet. However, this is a solid oxide fuel cell in which the other surface is placed in contact with air.

[作用] この発明における固体電解質型燃料電池の電極部材は、
両面に形成された凹部に微細電極が規則的多数形成され
た固体電解質シートよりなっているので、燃料が固体電
解質シートと接触して効率良く電解反応を起こすことが
できるとともに、導電性も良い、またこの電極部材に気
体を通過させる孔を設けることにより、この孔を通じて
燃料ガスが一供給できるので、多電極の固体電解質型燃
料電池の電極部材として使用することができる。この電
極部材は、固体電解質シートの両面に金型で凹部を形成
する工程と、この凹部に電極材を接着する工程と、電極
材料を接着させた固体電解質シートを焼結する工程と、
凹部よりはみ出した電極材料を除去する工程とからなっ
ているので、所用の電極パターンに電極を構成すること
が容易であ・るとともに、電極材料の密着性が良好であ
るので発電効率の良い電極部材が制作できる。また本発
明の固体電解質型燃料電池は、両面に形成された凹部に
微mt極が規則的多数形成され、かつ、気体を通過させ
る孔が形成された固体電解質シート0枚と、(n+1)
枚のインターコネクターをガスシールを介して交互に積
み重ね、前記微細電極とインターコネクターの間には可
撓性を有する導電体が狭装されているとともに、ガス°
シールはガスが外部に漏れず、かつ前記固体電解質シー
トの片面にはガスが、他の面には空気が接触するように
配置されている。したがって、効率良く発電できるとと
もに、高出力を得ることができる。
[Function] The electrode member of the solid oxide fuel cell in this invention has the following features:
Since it is made of a solid electrolyte sheet in which a large number of fine electrodes are regularly formed in the recesses formed on both sides, the fuel can come into contact with the solid electrolyte sheet and cause an electrolytic reaction efficiently, and it also has good conductivity. Further, by providing a hole through which gas passes through this electrode member, fuel gas can be supplied through the hole, so that it can be used as an electrode member of a multi-electrode solid oxide fuel cell. This electrode member includes a step of forming recesses with a mold on both sides of a solid electrolyte sheet, a step of adhering an electrode material to the recesses, and a step of sintering the solid electrolyte sheet to which the electrode material is adhered.
Since the process consists of removing the electrode material that protrudes from the recess, it is easy to configure the electrode into the desired electrode pattern, and the adhesion of the electrode material is good, resulting in an electrode with high power generation efficiency. Parts can be produced. Further, the solid oxide fuel cell of the present invention includes 0 solid electrolyte sheets in which a large number of small mt electrodes are regularly formed in the recesses formed on both sides, and holes for passing gas are formed, and (n+1)
A plurality of interconnectors are stacked alternately through a gas seal, and a flexible conductor is sandwiched between the microelectrodes and the interconnector, and a gas
The seal is arranged so that gas does not leak to the outside and gas is in contact with one side of the solid electrolyte sheet and air is in contact with the other side. Therefore, it is possible to generate electricity efficiently and to obtain high output.

[実施例] 本発明の1実施例を、第1図〜第6図により説明する6
本発明の1実施例の固体電解質型燃料電池の電極部材1
は、1図(a)〜(c)のようにドクターブレード法で
制作・焼成した約100ミクロンの厚さの電解質シート
2の表面に形成した凹部に、凹部を充満するように約5
ミクロンの厚さの電極3を複数平行条状〈第1図(a)
〉、格子状く第1図(b)〉および複数点状〈第1図(
C)〉に密着形成している。
[Example] An example of the present invention will be explained with reference to FIGS. 1 to 6.
Electrode member 1 of a solid oxide fuel cell according to an embodiment of the present invention
As shown in Figures 1 (a) to (c), approximately 500 ml of ink was applied to the recesses formed on the surface of an electrolyte sheet 2 with a thickness of approximately 100 microns produced and fired using the doctor blade method, so as to fill the recesses.
A plurality of parallel strips of electrodes 3 with a thickness of microns (Fig. 1(a))
〉, lattice-like figure 1 (b)〉 and multiple dot-like figure 1 (Fig. 1 (b))
C)> is formed in close contact.

これらの電極部材1の制作は、次のような工程で行なっ
ている。
These electrode members 1 are manufactured through the following steps.

■ ドクターブレード法にて制作した約100ミクロン
の厚さのグリーンシート状態の電解質シート(材料はイ
ツトリア安定化ジルコニア)2の両面に、第2図(a)
のように金型により約5ミクロンの深さの凹部4を、複
数平行線状、格子状および複数点状等規則性をもって形
成する。この場合の線の幅あるいは点の径は10ミクロ
ン、線または点の間隔も10ミクロン程度とする。
■ On both sides of an electrolyte sheet (material: ittria-stabilized zirconia) in the form of a green sheet approximately 100 microns thick produced by the doctor blade method, as shown in Figure 2 (a).
Using a mold, recesses 4 with a depth of about 5 microns are formed with regularity such as a plurality of parallel lines, a grid, and a plurality of dots. In this case, the width of the line or the diameter of the dots is 10 microns, and the interval between the lines or dots is also about 10 microns.

■ 第2図(b)のように、金属アルコキシドまたはオ
クチル酸金属塩を溶媒で溶かした電極材料5の溶液を、
前記電解質シート2の表面に形成した凹部4に、凹部を
満たすように塗布する。電極はカーソード側がランタン
コバルトまたはランタンマンガナイト、アーノード側か
ニッケルが望ましいので、金属アルコキシドやオクチル
酸金属塩は、このような目的に合ったものを選定する。
■ As shown in Fig. 2(b), a solution of electrode material 5 in which metal alkoxide or metal octylate is dissolved in a solvent,
It is applied to the recesses 4 formed on the surface of the electrolyte sheet 2 so as to fill the recesses. The electrode is preferably lanthanum cobalt or lanthanum manganite on the cathode side, and nickel on the anode side, so the metal alkoxide or metal octylate is selected to suit these purposes.

■ 電極材料5を塗布した電解質シート2を焼結する。(2) Sinter the electrolyte sheet 2 coated with the electrode material 5.

■ 電解質シート2の凹部4以外の表面に付着した電極
材料5を除去する。
(2) Remove the electrode material 5 adhering to the surface of the electrolyte sheet 2 other than the recesses 4;

電極の条線や点は、単純な直線形や円形でもよいが、電
極と電解質が接する接線の長さを長くして電解反応を促
進させるため、条線の両側面を第3図(a)のようにぎ
ざぎざにしたり、点を第3図(b)のように星型等にす
るのが効果的である。
The lines and points of the electrode may be simple straight lines or circles, but in order to increase the length of the tangent line where the electrode and electrolyte come into contact to promote the electrolytic reaction, both sides of the line are shown in Figure 3 (a). It is effective to make the points jagged as shown in Figure 3(b), or to make the points star-shaped as shown in Figure 3(b).

上述した電極部材1に2、第4図のように気体を通過さ
せる孔6.を形成することにより、多電極の固体電解質
型燃料電池の電極部材として有効にその性能を発揮する
ことができる。この孔6を形成した電極部材1を使用し
て、第5図のように固体電解質型燃料電池7を形成する
。第5図は簡単のため、電極部材1が2枚の場合で説明
しているが、実際にはより多数の電極部材1を使用する
2. In the electrode member 1 mentioned above, there are holes 6. through which gas passes, as shown in FIG. By forming this, it is possible to effectively exhibit its performance as an electrode member of a multi-electrode solid oxide fuel cell. Using the electrode member 1 with the holes 6 formed therein, a solid oxide fuel cell 7 is formed as shown in FIG. For simplicity, FIG. 5 shows a case where there are two electrode members 1, but in reality, a larger number of electrode members 1 are used.

この固体電解質型燃料電池7の構造について説明すると
、電極部材1の両側にインタコネクター8が配置される
ように、インタコネクター8を一番外側(図では一番下
側)に配置して、インタコネクター8と電極部材1とを
交互にガスシール9を介して積み重ね、最後にインタコ
ネクター8が一番外側(図では一番上側)にくるように
配置している。また、電極部材1の微細電極3とインタ
コネクター8間には可撓性があり、かつ導電性のある発
泡金属、金属フェルトまたは可撓性をもつように加工さ
れた金属成形体10を狭装している。
To explain the structure of this solid oxide fuel cell 7, the interconnector 8 is arranged on the outermost side (lowermost side in the figure) so that the interconnector 8 is arranged on both sides of the electrode member 1. Connectors 8 and electrode members 1 are alternately stacked with gas seals 9 interposed therebetween, and the interconnector 8 is placed at the outermost side (uppermost side in the figure) at the end. In addition, a flexible and conductive foamed metal, metal felt, or a metal molded body 10 processed to have flexibility is inserted between the microelectrode 3 of the electrode member 1 and the interconnector 8. are doing.

したがって一番外側のインタコネクター7とおし間を配
線することにより、外部回路11を形成することができ
るようになっている。そしてガスシール9は、ガスが電
極部材1の固体電解質シート2の片面2a(第5図では
上面)にのみ接触するように、固体電解質シート2の下
面2bとインターコネクター8間はガス通過孔6および
12の周囲のみをシールし、固体電解質シート2の上面
2aとインターコネクター8間は固体電解質シート2の
全面にわたってシールするようにしている。また固体電
解質シート2の下面側は、ガス通過孔6および12の周
辺部を除き、空気と接触できるようにしている。このよ
うに構成しているので、ガスの通過孔から水素や一酸化
炭素等の燃料ガスを供給すると、ガスは電極部材1の固
体電解質シート2の上面2aの微細電極3が存在する部
分で固体電解質シート2中の酸素イオンと反応し、電子
を奪われるとともに、水が生成される。
Therefore, the external circuit 11 can be formed by wiring between the outermost interconnector 7 and the sieve. The gas seal 9 has a gas passage hole 6 between the lower surface 2b of the solid electrolyte sheet 2 and the interconnector 8 so that the gas contacts only one surface 2a (the upper surface in FIG. 5) of the solid electrolyte sheet 2 of the electrode member 1. and 12, and the entire surface of the solid electrolyte sheet 2 is sealed between the upper surface 2a of the solid electrolyte sheet 2 and the interconnector 8. Further, the lower surface side of the solid electrolyte sheet 2 is made to be able to come into contact with air, except for the areas around the gas passage holes 6 and 12. With this configuration, when a fuel gas such as hydrogen or carbon monoxide is supplied through the gas passage hole, the gas becomes solid at the portion of the upper surface 2a of the solid electrolyte sheet 2 of the electrode member 1 where the fine electrode 3 is present. It reacts with oxygen ions in the electrolyte sheet 2 to remove electrons and generate water.

そして電子は、発泡金属、金属フェルトまたは可撓性を
もつように加工された金属成形体10、インターコネク
ター7および固体 電解質シート2を通して外部回路1
1に取り出し、電力として使用することができる。一方
固体電解質シート2の下面2bの微細電極3が存在する
部分では、空気中の酸素と外部回路11を経てきた電子
とが反応して酸素イオンが生成される。そして酸素イー
オンは固体電解質シート2中を上面2a側へと移動し、
前記のようにガスと反応して、ガスから電子を奪うとい
う反応が繰り返えされる。このような反応は、電極と固
体電解質シートとの接触する接線の長さが長ければ長い
ほど効率よく行われるが、この燃料電池では微細電極を
使用しているので、前記接線の長さを長くすることがで
き、高効率の燃料電池を得ることができる。
The electrons then pass through an external circuit 1 through a metal molded body 10 made of foamed metal, metal felt, or processed to have flexibility, an interconnector 7, and a solid electrolyte sheet 2.
1 and can be used as electricity. On the other hand, in a portion of the lower surface 2b of the solid electrolyte sheet 2 where the fine electrodes 3 are present, oxygen in the air and electrons that have passed through the external circuit 11 react to generate oxygen ions. The oxygen ions then move through the solid electrolyte sheet 2 toward the upper surface 2a,
As mentioned above, the reaction of reacting with the gas and depriving the gas of electrons is repeated. Such a reaction is more efficient as the length of the tangent line that contacts the electrode and the solid electrolyte sheet is longer, but since this fuel cell uses fine electrodes, the length of the tangent line should be made longer. It is possible to obtain a highly efficient fuel cell.

この燃料電池の電極3は、固体電解質シート2の凹部に
形成されているので、導電性を高めるために、第6図(
a)のように電極のパターンを幅、広の複数条線13と
し、それぞれの条線から第6図(b)のように、枝線1
4を多数形成させて効果をあげるようにしている。
The electrodes 3 of this fuel cell are formed in the recesses of the solid electrolyte sheet 2, so in order to increase the conductivity, the electrodes 3 shown in FIG.
As shown in a), the electrode pattern is made of wide and wide multiple lines 13, and from each line, as shown in FIG. 6(b), a branch line 1 is formed.
A large number of 4's are formed to increase the effect.

なお電極部材の制作は、上述した方法に限定されること
はなく、他の常用の手段を用いて呵作しても、何ら差し
支えない。
Note that the production of the electrode member is not limited to the method described above, and may be produced using other commonly used means without any problem.

[発明の効果] 本発明の固体電解質型燃料電池の電極部材においては、
所用の多孔性を持った電極が高い再現性をもって制作で
き、その電極部材を使用した固体電解質型燃料電池では
、発電効率を高めることができるので、その工業的効果
は大きい。
[Effect of the invention] In the electrode member of the solid oxide fuel cell of the present invention,
Electrodes with the desired porosity can be manufactured with high reproducibility, and solid oxide fuel cells using such electrode members can increase power generation efficiency, which has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の一実施例の電極部材の
平面図、第2図は本発明の電解質シートを示す図で、(
a)は凹部を設けた電解質シートの断面図、(b)は凹
部に電極材料を塗布した電解質シートの断面図であり、
第3図(a)および(b)は線および点の形状を示す平
面図、第4図はガス通過孔を有する電極部材を示す図、
第5図は本発明の一実施例の固体電解質型燃料電池を示
す図、第6図は広幅条線パターンの電極を示す図であり
、(a)は広幅条線パターンの電極の斜視図、(b)は
(a)の要部拡大の電極の枝線を示す斜視図、第7図は
固体解質型燃料電池の構成を示す系統図である。 1・・・電極部材、2・・・電解質シート、2a・・・
電解質シートの上面、 2b・・・電解質シートの下面、3・・・電極、4・・
・電解質シート表面の凹部、5・・・電極材料、6・・
・電極部材の気体通過孔、7・・・固体電解質型燃料電
池、8・・・インターコネクター、9・・・ガスシール
、10・・・発泡金属、金属フェルトまたは可撓性をも
つように加工された金属成形体、11・・・外部回路、
12・・・インターコネクターの気体通過孔、13・・
・電極の条線、14・・・電極の枝線、21・・・シー
ト状固体電解質、22・・・シート状固体電解質の片面
、23・・・燃料極、24・・・シート状固体電解質の
他の面、25・・・空気極、26・・・外部回路。
FIGS. 1(a) to (c) are plan views of an electrode member according to an embodiment of the present invention, and FIG. 2 is a diagram showing an electrolyte sheet of the present invention.
(a) is a cross-sectional view of an electrolyte sheet with recesses provided, (b) is a cross-sectional view of an electrolyte sheet with electrode material applied to the recesses,
3(a) and (b) are plan views showing the shapes of lines and points, FIG. 4 is a diagram showing an electrode member having gas passage holes,
FIG. 5 is a diagram showing a solid oxide fuel cell according to an embodiment of the present invention, FIG. 6 is a diagram showing an electrode with a wide stripe pattern, and (a) is a perspective view of the electrode with a wide stripe pattern; (b) is an enlarged perspective view of the main part of (a) showing branch lines of the electrode, and FIG. 7 is a system diagram showing the configuration of the solid solution fuel cell. 1... Electrode member, 2... Electrolyte sheet, 2a...
Upper surface of electrolyte sheet, 2b... Lower surface of electrolyte sheet, 3... Electrode, 4...
・Concavities on the surface of the electrolyte sheet, 5...electrode material, 6...
・Gas passage hole of electrode member, 7... Solid electrolyte fuel cell, 8... Interconnector, 9... Gas seal, 10... Foamed metal, metal felt, or processed to have flexibility metal molded body, 11...external circuit,
12... Gas passage hole of interconnector, 13...
・Electrode striations, 14... Electrode branch lines, 21... Sheet-shaped solid electrolyte, 22... One side of sheet-shaped solid electrolyte, 23... Fuel electrode, 24... Sheet-shaped solid electrolyte 25...Air electrode, 26...External circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)両面に形成された凹部に、凹部を充満するように
微細電極が規則的に多数形成された固体電解質シートよ
りなる固体電解質型燃料電池の電極部材。
(1) An electrode member for a solid oxide fuel cell comprising a solid electrolyte sheet in which a large number of fine electrodes are regularly formed in concave portions formed on both sides so as to fill the concave portions.
(2)気体を通過させる孔が形成されている請求項1の
固体電解質型燃料電池の電極部材。
(2) The electrode member for a solid oxide fuel cell according to claim 1, wherein a hole is formed to allow gas to pass through.
(3)以下の工程を順次行ってなる請求項1の固体電解
質型燃料電池の電極部材の製造方法。 (a)グリーンシート状態の固体電解質シートの両面に
金型で凹部を形成する工程。 (b)形成された凹部に電極材料を接着させる工程。 (c)電極材料を接着させた固体電解質シートを焼結す
る工程。 (d)凹部よりはみ出した電極材料を除去する工程。
(3) A method for manufacturing an electrode member for a solid oxide fuel cell according to claim 1, comprising sequentially performing the following steps. (a) A step of forming recesses with a mold on both sides of a solid electrolyte sheet in a green sheet state. (b) A step of adhering an electrode material to the formed recess. (c) A step of sintering the solid electrolyte sheet to which the electrode material is adhered. (d) A step of removing the electrode material protruding from the recess.
(4)n枚(nは自然数)の請求項1又は請求項2に記
載の固体電解質シートと、(n+1)枚のインターコネ
クターをガスシールを介して交互に積み重ねてなり、前
記微細電極とインターコネクターの間には可撓性を有す
る導電体が狭装され、前記ガスシールはガスが外部に漏
れず、かつ前記固体電解質シートの片面にガスが、他の
面に空気が接触するように配置されていることを特徴と
する固体電解質型燃料電池。
(4) N sheets (n is a natural number) of the solid electrolyte sheets according to claim 1 or claim 2 and (n+1) interconnectors are stacked alternately through a gas seal, and the microelectrode and the interconnector are stacked alternately. A flexible conductor is sandwiched between the connectors, and the gas seal is arranged so that gas does not leak to the outside and the gas is in contact with one side of the solid electrolyte sheet and the air is in contact with the other side. A solid oxide fuel cell characterized by:
JP63146068A 1988-06-14 1988-06-14 Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell Pending JPH01313856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146068A JPH01313856A (en) 1988-06-14 1988-06-14 Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146068A JPH01313856A (en) 1988-06-14 1988-06-14 Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH01313856A true JPH01313856A (en) 1989-12-19

Family

ID=15399358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146068A Pending JPH01313856A (en) 1988-06-14 1988-06-14 Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH01313856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025994A1 (en) * 1993-04-30 1994-11-10 Siemens Aktiengesellschaft High-temperature fuel cell with improved solid electrolyte/electrode contact surface, and method of producing the contact surface
CN1316665C (en) * 2002-04-25 2007-05-16 通用电气公司 Improved fluid pass for power generator
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
JP2008098145A (en) * 2006-09-14 2008-04-24 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025994A1 (en) * 1993-04-30 1994-11-10 Siemens Aktiengesellschaft High-temperature fuel cell with improved solid electrolyte/electrode contact surface, and method of producing the contact surface
US5629103A (en) * 1993-04-30 1997-05-13 Siemens Aktiengesellschaft High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
CN1316665C (en) * 2002-04-25 2007-05-16 通用电气公司 Improved fluid pass for power generator
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
JP2008098145A (en) * 2006-09-14 2008-04-24 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same

Similar Documents

Publication Publication Date Title
KR100450820B1 (en) Air breathing direct methanol fuel cell pack
EP0800709B1 (en) Electrolytic and fuel cell arrangements
JP2002280016A (en) Single electrode type cell pack for direct methanol fuel cell
JP2008509532A (en) Tubular solid oxide fuel cell
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2013501336A (en) Fuel cell
JP2790666B2 (en) Fuel cell generator
JPH01313855A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
EP0460629A1 (en) Solid oxide fuel cell
JP2003163016A (en) Electrochemical equipment and conductive connector therefor
JP2014038823A (en) Current collector for solid oxide fuel cell, and solid oxide fuel cell employing the same
CN113097552A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
JPH01313856A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
US20090274945A1 (en) Fuel Cell and Manufacturing Method of the Same
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
KR101222836B1 (en) Solid oxide fuel cell module
JP5401438B2 (en) Flat type solid electrolyte fuel cell
JP3791702B2 (en) Flat solid electrolyte fuel cell
JPH03238760A (en) Fuel cell of solid electrolyte type
JP4341259B2 (en) Solid oxide fuel cell and separator
CN203871424U (en) Solid oxide fuel battery pack based on monolithic electrolyte
CN113948748A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
JP2793275B2 (en) Fuel cell generator
JP2002110190A (en) Fuel cell
JPH0215564A (en) Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell