JPH0294365A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH0294365A
JPH0294365A JP63247148A JP24714888A JPH0294365A JP H0294365 A JPH0294365 A JP H0294365A JP 63247148 A JP63247148 A JP 63247148A JP 24714888 A JP24714888 A JP 24714888A JP H0294365 A JPH0294365 A JP H0294365A
Authority
JP
Japan
Prior art keywords
spacer
solid electrolyte
gas
chips
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247148A
Other languages
Japanese (ja)
Inventor
Fumiya Ishizaki
石崎 文也
Satoshi Sakurada
櫻田 智
Atsushi Tsunoda
淳 角田
Hiroyuki Iwasaki
岩崎 浩之
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP63247148A priority Critical patent/JPH0294365A/en
Publication of JPH0294365A publication Critical patent/JPH0294365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent cross leak and to increase cell performance by connecting a plurality of conductive chips arranged in each groove on both sides of a spacer with a plurality of metallic rods which are passing through the spacer. CONSTITUTION:A plurality of conductive chips 15, 16 are arranged in grooves 14a, 14b for fuel gas and oxidizing agent gas passages formed on both sides of a spacer 14 made of ceramic material. The chips 15, 16 are connected with a plurality of metallic rods 17 which are passing through the spacer 14, and each cell is connected with the chips 15, 16. The chips 15, 16 for performing current collection are made of different materials on the oxygen side and hydrogen side to eliminate the difference of thermal expansion coefficient between a solid electrolyte plate 11 and the spacer 14. Gas sealing is thereby made easy. The generation of gas cross leak is prevented and cell performance is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスペーサをセラミック材料製とすると共に、ス
ペーサを貫通する金属棒により接続された導電性チップ
により各セルを接続するようにした固体電解質燃料電池
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a solid electrolyte in which the spacer is made of a ceramic material and each cell is connected by a conductive chip connected by a metal rod passing through the spacer. It is related to fuel cells.

〔従来の技術〕[Conventional technology]

高温型固体電解質燃料電池は、電解質による周辺材料の
腐蝕、電解質自体の分解、蒸発、逸散等がなく、液体物
質を使用しないために電池構造が簡素化でき、850 
’C〜1000 ’C程度で動作するため燃料として天
然ガスや石炭ガスを改質することなくそのまま使用可能
であり、内部抵抗が小さく、大出力を得ることが可能で
エネルギー利用率の高い燃料電池として期待されている
High-temperature solid electrolyte fuel cells do not cause corrosion of surrounding materials by the electrolyte, decomposition, evaporation, or dissipation of the electrolyte itself, and because they do not use liquid substances, the cell structure can be simplified.
A fuel cell that operates at around 1000'C to 1000'C, so it can be used as fuel without reforming natural gas or coal gas, has low internal resistance, can obtain high output, and has a high energy utilization rate. It is expected that

第5図はこのような従来の燃料電池において、集積度の
高い平板型の例を示す図で、図中、31.32は外部端
子、33.34は外部端子ガス通路、35.36は3層
構造板、37はインターコネクタ、38.39はガス通
路である。
FIG. 5 is a diagram showing an example of a flat plate type with a high degree of integration in such a conventional fuel cell. In the figure, 31.32 is an external terminal, 33.34 is an external terminal gas passage, and 35.36 is a 3 In the layer structure plate, 37 is an interconnector, and 38 and 39 are gas passages.

図において、3層構造板35.36は、例えばジルコニ
ア(ZrO□)からなる薄い固体電解質板で、その両面
には空気極(カソード)、燃料極(アノード)を形成す
る多孔性電極材料が塗布してあり、外部端子31.32
とインターコネクタ37がこれをサンドイッチする形で
積層されておリ、外部端子31.3層構造板35、イン
ターコネクタ37で単位セルを構成し、同様にインター
コネクタ37.3層構造板36、外部端子34で単位セ
ルを構成し、これらが2段直列となっている。勿論、同
様に単位セルの積層数を増やすことによりN設置列構成
とすることができる。
In the figure, three-layer structure plates 35 and 36 are thin solid electrolyte plates made of, for example, zirconia (ZrO□), and porous electrode materials forming air electrodes (cathode) and fuel electrodes (anode) are coated on both sides of the plates. External terminal 31.32
The external terminal 31, the three-layer structure plate 35, and the interconnector 37 constitute a unit cell, and similarly, the interconnector 37, the three-layer structure plate 36, and the external The terminal 34 constitutes a unit cell, which is connected in two stages in series. Of course, by similarly increasing the number of stacked unit cells, it is possible to obtain an N-row configuration.

このような構成において、ガス通路33.39に酸素ま
たは空気を、ガス通路34.38に、例えば水素を流し
、外部端子31.32を図示しない外部回路を通して接
続すると、酸素は燃料と反応しようとしてイオン化して
固体電解質板35.36を通して流れ、このとき、空気
極では酸素が電子を取り込んで酸素イオンとなり、燃料
極側ではこのイオンと燃料が反応して電子を放出するの
で、外部回路には空気極を(+)極、燃料極を(−)極
として外部端子31から外部端子32へ電流が流れる。
In such a configuration, when oxygen or air is supplied to the gas passage 33.39 and hydrogen, for example, is supplied to the gas passage 34.38, and the external terminal 31.32 is connected through an external circuit (not shown), the oxygen tends to react with the fuel. It is ionized and flows through the solid electrolyte plates 35 and 36, and at this time, at the air electrode, oxygen takes in electrons and becomes oxygen ions, and at the fuel electrode, these ions and fuel react and release electrons, so there is no electricity in the external circuit. Current flows from the external terminal 31 to the external terminal 32 with the air electrode as the (+) pole and the fuel electrode as the (-) pole.

これを化学式で示すと次のようになる。This can be expressed as a chemical formula as follows.

空気極:1/20□+2e−→0ト 燃料極: H,十〇”−−)H,O+2 e−全体的な
電極反応は、 1/20□ +H,→H,0 となる。また、燃料として一酸化炭素を用いた場合には
、 燃料極: CO十〇”−→COx +2 e −となり
、全体的な電極反応は、 CO+1/20z  →CO□ となる。
Air electrode: 1/20□+2e-→0F fuel electrode: H, 10"--)H,O+2 e-The overall electrode reaction is 1/20□+H,→H,0. Also, When carbon monoxide is used as a fuel, fuel electrode: CO10''-→COx +2 e -, and the overall electrode reaction is CO+1/20z → CO□.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

このような従来の平板型固体電解質燃料電池において、
集電作用を行うと共に、ガス通路を形成しているインタ
ーコネクタは金属からなっており、一方、固体電解質の
ジルコニアZrO,はセラミックであるので、それらの
熱膨張係数間には、約10XIO−61/”Cの差があ
る。このように熱膨張係数に差があると、固体電解質燃
料電池の動作温度850℃〜1000℃では、3層構造
板とインターコネクタ間に隙間が発生してしまい、燃料
と空気がクロスリークして電池活性物質として十分機能
しなくなり、電池としての燃料利用率が低下してしまう
という問題があつた。このクロスリークが、従来の燃料
電池設計上、最も大きな問題であり、これが平板型固体
電解質燃料電池の研究を大きく遅らせる原因となってい
た。
In such conventional flat plate solid electrolyte fuel cells,
The interconnector that performs the current collecting function and forms the gas passage is made of metal, while the solid electrolyte zirconia ZrO is a ceramic, so the coefficient of thermal expansion between them is approximately 10XIO-61. /''C. If there is such a difference in thermal expansion coefficient, a gap will occur between the three-layer structure plate and the interconnector at the operating temperature of solid oxide fuel cells of 850°C to 1000°C. There was a problem in that cross-leakage of fuel and air caused it to no longer function as a cell active material, reducing the fuel utilization rate of the battery.This cross-leakage was the biggest problem in conventional fuel cell design. This caused a significant delay in research into flat plate solid electrolyte fuel cells.

本発明は上記問題点を解決するためのもので、クロスリ
ークを防止すると共に、電池性能の向上を図ることの可
能な平板型固体電解質燃料電池を提供することを目的と
する。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a flat solid electrolyte fuel cell that can prevent cross-leak and improve cell performance.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の固体電解質燃料電池の構成を示す図で
あり、3段直列セルの集合様式の例を展開して示したも
のである。図中、11は固体電解質板、12はカソード
、13はアノード、14はスペーサ、15.16は導電
性チップである。
FIG. 1 is a diagram showing the configuration of the solid electrolyte fuel cell of the present invention, and shows an example of how three stages of cells are assembled in series. In the figure, 11 is a solid electrolyte plate, 12 is a cathode, 13 is an anode, 14 is a spacer, and 15 and 16 are conductive chips.

図において、固体電解質板、スペーサで単位セルを形成
しており、各セルにおいて、平板状固体電解質板11は
両面にそれぞれカソード12、アノード13が形成され
ている。固体電解質板11は酸素伝導性のある固体電解
質で作った板状物からなり、厚さは0.05−0.3閣
程度、より好ましくは0.08−0.25mm程度が適
当である。
In the figure, a solid electrolyte plate and a spacer form a unit cell, and in each cell, a flat solid electrolyte plate 11 has a cathode 12 and an anode 13 formed on both sides, respectively. The solid electrolyte plate 11 is made of a plate-like material made of a solid electrolyte with oxygen conductivity, and has a thickness of approximately 0.05 to 0.3 mm, preferably approximately 0.08 to 0.25 mm.

0.05mmよりも薄いと強度の問題があり、0゜3m
を越えると電流路が長くなり好ましくない。
If it is thinner than 0.05mm, there will be problems with strength, and 0°3m
Exceeding this is not preferable because the current path becomes long.

カソード12は酸素通路側なので、高温下で酸素に対し
て耐蝕性のある伝導材料を用い、ガス透過性となる程度
に多孔状に形成し、例えば、La。
Since the cathode 12 is on the oxygen passage side, it is made of a conductive material that is resistant to oxygen corrosion at high temperatures and is porous enough to be gas permeable, such as La.

S r I −X M n Ox等の伝導性複合酸化物
粉末を塗布する。塗布の手法としては、刷毛塗り法、ス
クリーン印刷等がある。その他多孔状膜の作成方法とし
てはCVD法、プラズマCVD法、スパッター法、溶射
法等が可能である。アノード13は水素通路側で、高温
下で水素に対して耐蝕性のある導電性材料、例えば、N
i/ZrO,サーメット等をガス透過性となる程度に多
孔状に形成する。
A conductive composite oxide powder such as S r I -X M n Ox is applied. Application methods include brush coating, screen printing, and the like. Other possible methods for creating the porous film include CVD, plasma CVD, sputtering, and thermal spraying. The anode 13 is on the hydrogen passage side and is made of a conductive material that is resistant to hydrogen corrosion at high temperatures, such as N.
i/ZrO, cermet, etc. is formed into a porous shape to the extent that it is gas permeable.

また、カソード、アノードは多孔性の板状化が可能であ
れば、それに固体電解質を付着させて使用することも可
能である。
Furthermore, if the cathode and anode can be made into porous plates, they can be used with a solid electrolyte attached thereto.

各セルの両面にカソード12とアノード13が形成され
た固体電解質板11はスペーサ14を介して集積する。
Solid electrolyte plates 11 having cathodes 12 and anodes 13 formed on both sides of each cell are integrated with spacers 14 interposed therebetween.

第1図に示すように、スペーサl4には酸素側並びに水
素側に流路を形成する。スペーサ14はアルミナ、部分
安定化ジルコニア、安定化ジルコニア等のセラミックス
材料で形成する。これにより、電池の作動温度での固体
電解質板11とスペーサ14との熱膨張率の差は極めて
小さいかゼロとなり、固体電解質板11とスペーサ14
間のガスの封止が容易となる。
As shown in FIG. 1, flow paths are formed in the spacer 14 on the oxygen side and the hydrogen side. The spacer 14 is made of a ceramic material such as alumina, partially stabilized zirconia, or stabilized zirconia. As a result, the difference in thermal expansion coefficient between the solid electrolyte plate 11 and the spacer 14 at the operating temperature of the battery becomes extremely small or zero, and the difference between the solid electrolyte plate 11 and the spacer 14 becomes extremely small or zero.
It becomes easy to seal the gas between the two.

なお、上記説明では単位セルを3段積層する例について
述べたが、本発明は任意段数積層してもよいことは言う
までもない。
In the above description, an example in which unit cells are stacked in three stages is described, but it goes without saying that the present invention may be applied to stacking an arbitrary number of stages.

第2図はスペーサの構造を示す図であり、同図(ア)は
平面図、同図(イ)は横断面図、同図(つ)は正面図で
ある。なお、図中14a、14bは溝である。
FIG. 2 is a diagram showing the structure of the spacer; FIG. 2A is a plan view, FIG. 2B is a cross-sectional view, and FIG. 2 is a front view. Note that 14a and 14b in the figure are grooves.

第2図に示すように、スペーサ14は両面に溝14a、
14bを形成してそれぞれガス通路を構成しており、そ
れぞれの溝は燃料ガスと酸化剤ガスをそれぞれ供給でき
れば、溝の形状、配置は問わない。但し、最も簡単な構
造は図示するように、溝14a、14bを直角方向に配
置することである。このようにすればセルを集積後、各
セルの燃料ガスの入口および出口、酸化ガスの入口およ
び出口をそれぞれ同じ面上に配置することができ、集積
セルとしてのガス供給・排出系の構成が容易となる。
As shown in FIG. 2, the spacer 14 has grooves 14a on both sides.
14b are formed to constitute gas passages, and the shape and arrangement of the grooves do not matter as long as each groove can supply fuel gas and oxidant gas, respectively. However, the simplest structure is to arrange the grooves 14a and 14b at right angles, as shown in the figure. In this way, after the cells are integrated, the fuel gas inlet and outlet, and the oxidant gas inlet and outlet of each cell can be arranged on the same plane, and the configuration of the gas supply and exhaust system as an integrated cell is improved. It becomes easier.

この溝部分に第2図(ア)に示すように所定間隔で貫通
孔18を開け、この孔に金属棒を通して金属、合金等か
らなる導電性チップ15.16を接続し、これにより各
セルを直列に接続する。
Through holes 18 are opened at predetermined intervals in this groove as shown in FIG. Connect in series.

第3図は導電性チップの構造を示す図で、図中17はチ
ップを接続する金属棒である。
FIG. 3 is a diagram showing the structure of the conductive chip, in which reference numeral 17 denotes a metal rod that connects the chip.

チップ15.16の材質は高温において耐酸化性、耐還
元性の電気電導性が良い材料、例えばSiCSMo5 
it 、CrS it等のセラミックスまたはニクロム
やクロムを含むニッケル基合金或いはコバルトやコバル
ト基合金等の金属を用いる。
The material of the chips 15 and 16 is a material that is oxidation-resistant, reduction-resistant, and has good electrical conductivity at high temperatures, such as SiCSMo5.
Ceramics such as it, CrS it, nickel-based alloys containing nichrome or chromium, or metals such as cobalt and cobalt-based alloys are used.

そして、チップ15.16には金属棒嵌合用の盲孔、或
いは貫通孔等を開けてそれぞれスペーサの両面側に配置
し、貫通孔18を貫通させた金属、合金等の棒17を嵌
合用の孔に嵌合させて両チップを接続する0本実施例で
はチップ2個づつをスペーサを挾んで直交するように対
応させているが、1個づつ、或いは3個以上を1組とし
て対応させ、また直交関係でなく平行になるようにして
もよく、またチップの形状も直方体に限らず適宜任意の
形状のものを使用してもよい。
Then, blind holes or through holes for fitting metal rods are formed in the chips 15 and 16, and these are placed on both sides of the spacer, and rods 17 made of metal, alloy, etc. passed through the through holes 18 are inserted for fitting. Connecting both chips by fitting them into the holes In this embodiment, two chips each are made to correspond at right angles with a spacer between them, but one chip at a time or three or more chips are made to correspond as a set. In addition, they may be parallel to each other instead of being perpendicular to each other, and the shape of the chip is not limited to a rectangular parallelepiped but may be any shape as appropriate.

なお、金属棒17とスペーサの貫通孔18との間は、例
えばガラスペースト等で封止する。そしてチップ15.
16はそれぞれ別の材料を用いることは可能であり、酸
素通路側には耐酸化性の高い材料を、水素通路側には耐
還元性の高い材料を用いることにより、電池性能の向上
が可能である。
Note that the space between the metal rod 17 and the through hole 18 of the spacer is sealed with, for example, glass paste. And tip 15.
It is possible to use different materials for each of No. 16, and by using a material with high oxidation resistance on the oxygen passage side and a material with high reduction resistance on the hydrogen passage side, it is possible to improve the battery performance. be.

このような構造のため、チップには金属を用いたときの
熱膨張の影響は少なく、ガスシール部分に加わるストレ
スは無視できる程度である。
Due to this structure, the influence of thermal expansion when using metal for the chip is small, and the stress applied to the gas seal portion is negligible.

次に、固体電解質板11、スペーサ14、導電性チップ
15.16を集積して組み立てる時には、固体電解質板
11、正確には電極12.13とスペーサ14の間でガ
スリークしないように封止する必要がある。これは例え
ば軟化点が約800°Cのガラスペーストで封止すれば
よい。このガラスペーストは電池の作動温度900−1
000’Cでは十分に軟化してガスを封止する。
Next, when assembling the solid electrolyte plate 11, spacer 14, and conductive chip 15.16, it is necessary to seal between the solid electrolyte plate 11, more precisely, the electrode 12.13 and the spacer 14, to prevent gas leakage. There is. For example, this may be sealed with a glass paste having a softening point of about 800°C. This glass paste has a battery operating temperature of 900-1
At 000'C, it is sufficiently softened to seal the gas.

こうして組み立てた電池に燃料ガスおよび酸化剤ガスを
供給するためには、燃料ガスの入口・出口、酸化剤ガス
の入口・出口の面にマニホールドを取り付ける。
In order to supply fuel gas and oxidizing gas to the battery thus assembled, manifolds are attached to the fuel gas inlet/outlet and oxidizing gas inlet/outlet surfaces.

第4図は本発明の固体電解質燃料電池へのマニホールド
の取り付は例を示す図で、図中、21は集積型電池本体
、22はマニホールド、23は水素入口、24は未反応
水素出口、25は酸素入口、26は未反応酸素出口、2
7.2日は出力取り出し用リード線29.30は外部端
子である。
FIG. 4 is a diagram showing an example of how to attach a manifold to the solid electrolyte fuel cell of the present invention. In the figure, 21 is an integrated battery main body, 22 is a manifold, 23 is a hydrogen inlet, 24 is an unreacted hydrogen outlet, 25 is an oxygen inlet, 26 is an unreacted oxygen outlet, 2
7. On the 2nd, the output lead wires 29 and 30 are external terminals.

前述したように組み立てた電池に燃料ガス、及び酸化剤
ガスを供給するためには、各単位セルの谷溝14a、1
4bの両端がそれぞれ同一面にくるように配置されてい
るので、それらの面に図示するようにマニホールド22
を取り付ける。即ち、上記のように組み立てた集積型電
池本体21を円筒状マニホールド22の管内に挿入し、
溝14a。
In order to supply fuel gas and oxidant gas to the battery assembled as described above, the grooves 14a and 1 of each unit cell are
Since both ends of the manifold 22 are placed on the same surface, the manifold 22 is placed on those surfaces as shown in the figure.
Attach. That is, the integrated battery main body 21 assembled as described above is inserted into the tube of the cylindrical manifold 22,
Groove 14a.

14bの出口が管壁に面するように配置する。電池本体
21とマニホールド22の4ケ所の接触箇所をガス封止
すれば、溝14a、14bのそれぞれの両端がマニホー
ルF″22の円筒壁と電池本体21で形成された4つの
ガス通路23〜26と対応する。そして、入口23から
水素を供給して反対側の面の出口24より未反応水素を
流出させ、また人口25より酸素を供給してその反対側
の出口26より未反応酸素を流出させる。こうして燃料
ガスと酸化剤ガスとを反応させ、出力をリード線27.
28により外部回路へ取り出すことができる。
The outlet of 14b is arranged so as to face the tube wall. If the four contact points between the battery body 21 and the manifold 22 are sealed with gas, both ends of each of the grooves 14a and 14b are connected to four gas passages 23 to 26 formed by the cylindrical wall of the manifold F″22 and the battery body 21. Then, hydrogen is supplied from the inlet 23 and unreacted hydrogen flows out from the outlet 24 on the opposite side, and oxygen is supplied from the population 25 and unreacted oxygen flows out from the outlet 26 on the opposite side. In this way, the fuel gas and the oxidant gas are reacted, and the output is sent to the lead wire 27.
28 allows it to be taken out to an external circuit.

〔作用〕[Effect]

本発明は、セラミック材料製のスペーサの両面に形成さ
れた燃料ガス、酸化剤ガス通路用溝に、複数の導電性チ
ップを配置し、各チップをスペーサを通して貫通する複
数の金属棒により接続し、該チップにより各セルを接続
するようにしたものであり、集電を行うチップの酸素側
と水素側でそれぞれ別の材料で構成することにより電池
性能を向上させ、また固体電解質板とスペーサとの熱膨
張率差を無くすようにしたものである。
In the present invention, a plurality of conductive chips are arranged in fuel gas and oxidant gas passage grooves formed on both sides of a spacer made of a ceramic material, and each chip is connected by a plurality of metal rods passing through the spacer. Each cell is connected by this chip, and the oxygen side and hydrogen side of the current collecting chip are made of different materials to improve battery performance, and the solid electrolyte plate and spacer are made of different materials. This is to eliminate the difference in thermal expansion coefficient.

〔実施例〕〔Example〕

第1図の集合様式に従い、3段直列の固体電解質型燃料
電池を製作した。固体電解質板11にはイツトリアを3
モル%添加したジルコニアである部分安定化ジルコニア
を用いた。またスペーサ14にはアルミナを用いた。固
体電解質板は寸法5oxsoxo、2mmの板状物を用
いた。そして、酸素通路側にLao、q Sro、+ 
Mn0i粉末(平均粒径約5μm)を刷毛塗り法で厚さ
0.05mmに塗布してカソード12とし、水素通路側
にNi/ Z r Oz  (9/ 1 ffl’f比
)のサーメント混合粉末を刷毛塗り法で厚さ0.0 !
、−o、05mmに塗布してアノード13とした。スペ
ーサー14の寸法は50X50rrmで高さ2ttm、
’110)深さ0.5mmとした。
A three-stage series solid oxide fuel cell was fabricated according to the assembly pattern shown in Figure 1. The solid electrolyte plate 11 contains 3 yttoria.
Partially stabilized zirconia, which is zirconia doped with mole %, was used. Further, alumina was used for the spacer 14. As the solid electrolyte plate, a plate-like material having dimensions of 5oxoxo and 2mm was used. And Lao, q Sro, + on the oxygen passage side
Mn0i powder (average particle size approximately 5 μm) was applied to a thickness of 0.05 mm using a brush coating method to form the cathode 12, and a cerment mixed powder of Ni/ZrOz (9/1 ffl'f ratio) was applied to the hydrogen passage side. 0.0 thickness with brush coating method!
, -o, 05 mm to obtain an anode 13. The dimensions of the spacer 14 are 50 x 50 rrm and the height is 2ttm.
'110) The depth was set to 0.5 mm.

酸素側のチップ15には白金、還元側のチップ16には
ニッケルを用い、これらの間はニクロム線により接続し
た。
Platinum was used for the oxygen side tip 15, nickel was used for the reduction side tip 16, and a nichrome wire was used to connect these.

二の固体電解ffvillとスペーサ14、チップ15
.16を第1図に示すように集積し、固体電解質板11
とスペーサ14間に軟化点が約800℃のガラスペース
トを塗布してガス封止用とした。
Second solid electrolyte ffvill, spacer 14, chip 15
.. 16 are integrated as shown in FIG.
A glass paste having a softening point of about 800° C. was applied between the spacer 14 and the spacer 14 for gas sealing.

前記のように、このガラスペーストは電池の作動温度で
軟化してガスを封止する。
As mentioned above, this glass paste softens at the operating temperature of the cell to seal in gases.

こうして集積した電池を第4図に示した円筒形のアルミ
ナ製マニホールド22に取り付けた。マニホールド22
と電池本体21との接触部分はセラミックペーストを塗
布乾燥して接合した後、さらにガラスペーストを塗布し
てガス封止した。電気の取り出し部にはニクロムリード
線を溶接し、電気的に接続を行った。
The batteries thus assembled were attached to a cylindrical alumina manifold 22 shown in FIG. Manifold 22
A ceramic paste was applied to the contact portion with the battery main body 21, and after drying and bonding, a glass paste was further applied to seal the area with gas. A nichrome lead wire was welded to the electricity outlet to make an electrical connection.

このようにして作製した燃料電池を加熱した。The fuel cell thus produced was heated.

加熱に際しては、室温から150℃までは1℃/win
で加熱し、ガラスペーストの溶媒を蒸発させた。150
℃−300°Cまでは5°C/sinで昇温した。30
0℃以上では水素通路側には、アノードの酸化を防止す
るため、窒素ガスを流し、5℃/s+inで1000“
Cまで昇温した。その後、10oo’cに保持してアノ
ード側に水素、カソード側に酸素を流し、発電を開始し
た。解放電圧は3゜3■であった。放電特性を下記の表
に示す通りであり、ガスクロスリークは水素の1.0%
以下であった。
When heating, 1℃/win from room temperature to 150℃
to evaporate the solvent of the glass paste. 150
The temperature was raised at a rate of 5°C/sin from -300°C. 30
At temperatures above 0°C, nitrogen gas is flowed into the hydrogen passage to prevent oxidation of the anode, and the temperature is 1000" at 5°C/s+in
The temperature was raised to C. Thereafter, while maintaining the temperature at 10 oo'c, hydrogen was flowed to the anode side and oxygen was flowed to the cathode side, and power generation was started. The release voltage was 3°3■. The discharge characteristics are shown in the table below, and the gas cross leak is 1.0% of hydrogen.
It was below.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、スペーサをセラミック材
料製とすることにより固体電解質板とスペーサとの熱膨
張率差を無くしてガス封止を容易にし、ガスクロスリー
クの発生を防止でき、また燃料ガス、酸化剤ガス通路用
溝に設けた複数の導電性チップを、酸素側と水素側でそ
れぞれ別の材料で構成することが可能で、酸素通路側で
は耐酸化性の高い材料を使用し、水素通路側では耐還元
性の高い材料を使用することにより電池性能を向上させ
ることができる。
As described above, according to the present invention, by making the spacer made of a ceramic material, it is possible to eliminate the difference in thermal expansion coefficient between the solid electrolyte plate and the spacer, facilitate gas sealing, prevent gas cross leakage, and prevent the occurrence of gas cross leakage. The multiple conductive chips provided in the gas and oxidizing gas passage grooves can be made of different materials on the oxygen side and hydrogen side, and a material with high oxidation resistance is used on the oxygen passage side. Battery performance can be improved by using a material with high reduction resistance on the hydrogen passage side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解質燃料電池の構成を示す図、
第2図はスペーサの構造を示す図、第3図はチップの構
成を示す図、第4図はマニホールドの取り付は例を示す
図、第5図は従来の平板型固体電解質燃料電池の例を示
す図である。 1.1・・・固体電解質板、12・・・カソード、13
・・・アノード、14・・・スペーサ、14a、14b
・・・溝、15.16・・・チップ、17・・・金属棒
、18・・・貫通孔、21・・・集積型電池本体、22
・・・マニホールド、23・・・水素入口、24・・・
未反応水素出口、25・・・酸素入口、26・・・未反
応酸素出口、27.28・・・出力取り出し用リード線
。 出  願  人  東亜燃料工業株式会社代理人 弁理
士  蛭 川 昌 信(外4名)第 図 (ア) (イ) 第 図 第4 籾動櫃即
FIG. 1 is a diagram showing the configuration of the solid electrolyte fuel cell of the present invention,
Figure 2 shows the structure of the spacer, Figure 3 shows the chip configuration, Figure 4 shows an example of how the manifold is attached, and Figure 5 shows an example of a conventional flat plate solid oxide fuel cell. FIG. 1.1... Solid electrolyte plate, 12... Cathode, 13
...Anode, 14...Spacer, 14a, 14b
...Groove, 15.16... Chip, 17... Metal rod, 18... Through hole, 21... Integrated battery body, 22
...Manifold, 23...Hydrogen inlet, 24...
Unreacted hydrogen outlet, 25...Oxygen inlet, 26...Unreacted oxygen outlet, 27.28...Output lead wire. Applicant Toa Fuel Industry Co., Ltd. Agent Patent Attorney Masanobu Hirukawa (4 others) Figures (A) (B) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)多孔性電極を両面に形成した固体電解質板を、両
面に燃料ガス、酸化剤ガス通路用溝をそれぞれ形成した
スペーサにより挟んで単位セルを形成し、該単位セルを
直列積層配置するようにした固体電解質燃料電池におい
て、スペーサの両面の各溝に配置した複数の導電性チッ
プをスペーサを貫通する複数の金属棒によりそれぞれ接
続したことを特徴とする固体電解質燃料電池。
(1) A unit cell is formed by sandwiching a solid electrolyte plate with porous electrodes formed on both sides between spacers each having grooves for fuel gas and oxidant gas passages formed on both sides, and the unit cells are stacked in series. A solid oxide fuel cell characterized in that a plurality of conductive chips arranged in each groove on both sides of a spacer are respectively connected by a plurality of metal rods penetrating the spacer.
(2)スペーサはセラミック材料製である請求項1記載
の固体電解質燃料電池。
(2) The solid electrolyte fuel cell according to claim 1, wherein the spacer is made of a ceramic material.
JP63247148A 1988-09-30 1988-09-30 Solid electrolyte fuel cell Pending JPH0294365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247148A JPH0294365A (en) 1988-09-30 1988-09-30 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247148A JPH0294365A (en) 1988-09-30 1988-09-30 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0294365A true JPH0294365A (en) 1990-04-05

Family

ID=17159149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247148A Pending JPH0294365A (en) 1988-09-30 1988-09-30 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0294365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574470A (en) * 1991-09-13 1993-03-26 Mitsui Eng & Shipbuild Co Ltd Gas separator of solid electrolyte fuel cell
US5942028A (en) * 1996-02-05 1999-08-24 Toyo Ink Manufacturing Co., Ltd. Process for producing printing ink
FR2781606A1 (en) * 1998-07-21 2000-01-28 Sorapec Bipolar collector, for a solid polymer electrolyte fuel cell, has metal cylinders which extend through a polymer plate into the electrodes
JP2004535049A (en) * 2001-07-13 2004-11-18 セラミック・フューエル・セルズ・リミテッド Stacked structure of solid oxide fuel cell
CN100347899C (en) * 2005-09-23 2007-11-07 清华大学 Fixture adaptive method of fuel cell pile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574470A (en) * 1991-09-13 1993-03-26 Mitsui Eng & Shipbuild Co Ltd Gas separator of solid electrolyte fuel cell
US5942028A (en) * 1996-02-05 1999-08-24 Toyo Ink Manufacturing Co., Ltd. Process for producing printing ink
FR2781606A1 (en) * 1998-07-21 2000-01-28 Sorapec Bipolar collector, for a solid polymer electrolyte fuel cell, has metal cylinders which extend through a polymer plate into the electrodes
WO2000005775A1 (en) * 1998-07-21 2000-02-03 Sorapec Bipolar collector for fuel cell
JP2004535049A (en) * 2001-07-13 2004-11-18 セラミック・フューエル・セルズ・リミテッド Stacked structure of solid oxide fuel cell
CN100347899C (en) * 2005-09-23 2007-11-07 清华大学 Fixture adaptive method of fuel cell pile

Similar Documents

Publication Publication Date Title
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
US7651810B2 (en) Interconnect supported fuel cell assembly, preform and method of fabrication
JP2009520315A (en) Electrochemical battery holder and stack
JP4573526B2 (en) Solid oxide fuel cell
JP2007053043A (en) Manifold structure of fuel cell and method of manufacturing same
JP2000048831A (en) Solid electrolyte fuel cell
JPH0294365A (en) Solid electrolyte fuel cell
JPH03285268A (en) High temperature type fuel cell and manufacture thereof
JPH0722058A (en) Flat solid electrolyte fuel cell
KR20120075257A (en) Saperator for planer solid oxide fuel cell and fuel cell comprising the same
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
JPH0479163A (en) Solid electrolyte type fuel cell
JPH0294366A (en) Solid electrolyte fuel cell
JPH0237669A (en) Fuel cell of solid electrolyte type
JPH0294367A (en) Solid electrolyte fuel cell
JPH01267964A (en) Fuel battery with solid electrolyte
JPH06150958A (en) Solid electrolyte fuel cell
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JP2013257973A (en) Solid oxide fuel cell stack
JPH06196196A (en) Solid electrolyte type fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPH05174846A (en) Solid electrolyte type fuel cell
JPH0412468A (en) High-temperature fuel cell