JPS63159210A - Decomposition of carbon dioxide gas - Google Patents

Decomposition of carbon dioxide gas

Info

Publication number
JPS63159210A
JPS63159210A JP62037729A JP3772987A JPS63159210A JP S63159210 A JPS63159210 A JP S63159210A JP 62037729 A JP62037729 A JP 62037729A JP 3772987 A JP3772987 A JP 3772987A JP S63159210 A JPS63159210 A JP S63159210A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
carbon
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62037729A
Other languages
Japanese (ja)
Inventor
Kaoru Otsuji
大辻 馨
Toyoo Sawada
沢田 豊男
Masashi Hirao
平尾 雅士
Hayami Nagano
早実 長野
Shigekazu Hatano
茂和 畑野
Masaki Minemoto
雅樹 峯元
Shuichi Sato
秀一 佐藤
Naoyuki Uejima
直幸 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPS63159210A publication Critical patent/JPS63159210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of decomposition reaction of carbon dioxide gas and to enable the reduction of overall volume of the reactor, by passing a mixture of carbon dioxide gas and hydrogen through a zone filled with a carbon dioxide gas decomposition catalyst and having two different temperature zones. CONSTITUTION:Carbon dioxide gas is decomposed into carbon and water with hydrogen using the following process. A mixed gas 1 composed of carbon dioxide gas and hydrogen is supplied to a zone 3 filled with a carbon dioxide gas decomposition catalyst and having two different temperature zones. The carbon dioxide gas is decomposed into carbon monoxide and water in the 1st temperature zone (a zone heated with a heater 5) and the carbon monoxide generated in the 1st temperature zone is decomposed into carbon and water in the 2nd temperature zone (a zone heated with a heater 6). The catalyst is e.g. a wire catalyst made of Fe or Ni.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭酸ガスの分解方法に関し、特に宇宙船、宇宙
基地等の有人又は生物塔載の宇宙航行体、長期間潜航型
潜水艦、深海作業船等での環境制御に有利に適用しつる
炭酸ガス分解方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for decomposing carbon dioxide gas, and is particularly applicable to manned or biological space vehicles such as spacecraft and space bases, long-term submersible submarines, and deep-sea operations. This invention relates to a carbon dioxide decomposition method that can be advantageously applied to environmental control on ships and the like.

〔従来の技術〕[Conventional technology]

炭酸ガスと水素を反応させ炭素と水を生成するボッシュ
反応は、次の単一反応式 0式%(1) で表わされると言われ、単一の反応として一つの反応器
、一つの反応条件で従来より実施さnていた。
The Bosch reaction, in which carbon dioxide gas and hydrogen react to produce carbon and water, is said to be expressed by the following single reaction equation (1), and requires only one reactor and one reaction condition as a single reaction. This has traditionally been done in the past.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、上記(11式で表わされる反応として、単一の反
応器にて反応させた場合、反応効率が低く、co  の
副生が多くみられた。従って、上記反応効率の低さによ
り、反応器全体の容量が大型化あるいは低い被処理ガス
流量しか得られないという問題があり、かかるボッシュ
反応を利用した装置の産業上の利用分野を著じるしく制
限していた。
Conventionally, when the above reaction (expressed by formula 11) was carried out in a single reactor, the reaction efficiency was low and a large amount of co was produced as a by-product. Therefore, due to the low reaction efficiency, the reaction There are problems in that the capacity of the entire device becomes large or only a low flow rate of the gas to be processed can be obtained, which significantly limits the industrial field of application of devices that utilize the Bosch reaction.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来技術の欠点を解消した炭酸ガスの分
解方法を提供することを目的とする。
An object of the present invention is to provide a method for decomposing carbon dioxide gas that eliminates the drawbacks of the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は炭酸ガスに水素を作用させて炭素と水に分解す
る方法において、異なる2つの温度帯域をもつ炭酸ガス
分解触媒充填部に炭酸ガスと水素との混合ガスを供給し
、第1の温度帯域で炭酸ガスを一酸化炭素と水とに分解
し、第2の温度帯域で前記第1の温度帯域で生成した一
酸化炭素を炭素と水とに分解することを特徴とする炭素
ガスの分解方法に関する。
The present invention is a method of decomposing carbon dioxide gas into carbon and water by acting hydrogen on it, in which a mixed gas of carbon dioxide gas and hydrogen is supplied to a carbon dioxide gas decomposition catalyst filling section having two different temperature zones, and a first temperature Decomposition of carbon gas, characterized in that carbon dioxide gas is decomposed into carbon monoxide and water in a zone, and carbon monoxide generated in the first temperature zone is decomposed into carbon and water in a second temperature zone. Regarding the method.

〔作用〕[Effect]

本発明者らは、上記従来技術の問題点を解決する丸めに
、温度条件や原料ガスの種類を、種々変化させ実験を行
ったところ、前記(1)式で示される反応は、下記(2
1式と(3)式の2段階に分れて進行しているものであ
夛、シかも夫々異なる最適反応温度をもつことを見い出
した。
In order to solve the problems of the prior art described above, the present inventors conducted experiments by varying the temperature conditions and the type of raw material gas, and found that the reaction represented by the above equation (1) is as follows (2
It has been found that the reaction proceeds in two stages, Equation 1 and Equation (3), and that each has a different optimum reaction temperature.

Co2+)I2→Co +H20(2)Go +H40
+H,0131 すなわち、上記121式で示される反応温度帯域は90
0C以上であり、上記131式で示される反応温度帯域
は、600〜650Cに最適温度をもつことが判明しな
。また、この時の供給ガス中の002とH2の比率は1
:2が最適であることが同時に判明した。
Co2+)I2→Co +H20(2)Go +H40
+H,0131 That is, the reaction temperature range shown by the above formula 121 is 90
0C or more, and it has been found that the reaction temperature range shown by the above formula 131 has an optimum temperature in the range of 600 to 650C. Also, the ratio of 002 and H2 in the supplied gas at this time is 1
:2 was also found to be optimal.

そこで、炭酸ガス分解触媒充填部を上記の異なる温度帯
域になるように維持し、先ず(11式で表わされる反応
をその最適温度範囲内の?00Cで行わせ、次に(2)
式で表わされる反応をごの最適温度範囲内の630Cで
行わせると、従来の反応効率が18Xであつ九のに比較
し、本発明による2段反応方式では、反応効率が25%
に増加した。
Therefore, the carbon dioxide gas decomposition catalyst packed part is maintained in the different temperature ranges mentioned above, and the reaction expressed by (11) is first carried out at -00C within its optimum temperature range, and then (2)
When the reaction represented by the formula is carried out at 630C, which is within the optimum temperature range, the reaction efficiency is 18X compared to that of the conventional method, and the reaction efficiency of the two-stage reaction method according to the present invention is 25%.
increased to

なお、上述の反応を実施するにあたっては、触媒として
Fe又はNzのワイヤ状触媒を用いた。
In carrying out the above-mentioned reaction, a wire-shaped Fe or Nz catalyst was used as the catalyst.

このように、本発明では、上記(2)、(31式の反応
を夫々、最適温度条件下にて実施することにより、反応
効率を最大にすることを特徴とするものである。
As described above, the present invention is characterized by maximizing the reaction efficiency by carrying out the reactions of formulas (2) and (31) above under optimal temperature conditions, respectively.

次に、本発明による炭酸ガスの分解方法の第1の実施頭
株を第1図に基づき説明する。この態様は1個の反応器
に2つの異なった温度帯域を設けた例である。
Next, a first embodiment of the method for decomposing carbon dioxide according to the present invention will be explained based on FIG. This embodiment is an example in which one reactor is provided with two different temperature zones.

第1図において4は反応器であり、この反応器4内には
反応を促進する九めの触媒5(例えば、Fe又はN1の
ワイヤ状触媒)が充填されている。この触媒3を充填し
た層は、第1段電気ヒータ5、第2段電気ヒータ6によ
って前記(2)、131式で示される夫々の反応が効率
よく進行する温度(すなわち、C2)式の反応に対して
は900C以上、最適には900tZ’、+31式の反
応に対しては600〜650 C,最適には63oc)
に夫々調節することによシ、触媒3の充填層に熱勾配を
与える。
In FIG. 1, 4 is a reactor, and this reactor 4 is filled with a ninth catalyst 5 (eg, Fe or N1 wire-shaped catalyst) for promoting the reaction. The layer filled with this catalyst 3 is heated to a temperature at which each reaction shown in the above-mentioned equations (2) and 131 proceeds efficiently (i.e., C2) by the first-stage electric heater 5 and the second-stage electric heater 6. 900C or higher for the reaction, optimally 900tZ', 600-650C for the +31 reaction, optimally 63oc)
A thermal gradient is imparted to the packed bed of the catalyst 3 by adjusting the respective values.

ここで、あらかじめ水素(H2)ガスと混合された被処
理ガス1 (Co2+ Fl、)  (混合比は1:2
)は、反応器内の触媒3の充填層上部〜中部にて前記(
21式の反応後、引き続き触媒3の充填層中部〜下部に
て前記(31式の反応が進行する。
Here, the gas to be treated 1 (Co2+ Fl,) is mixed with hydrogen (H2) gas in advance (mixing ratio is 1:2).
) is the above (
After the reaction of formula 21, the reaction of formula 31 proceeds in the middle to lower part of the packed bed of catalyst 3.

反応器4から放出された処理ガス中には、CO2及びC
O成分を含む九め、循環ガス2として反応器4の入口へ
と循環される。この(31式の反応にて生成した遊離炭
素(C)は固体として反応器4内の主として触媒5の充
填層中にとどまる。また、同様に生成し念水分(H,O
)は、連続的に凝縮器7にてドレン配管8より排出され
る。
The process gas released from the reactor 4 contains CO2 and C
The gas containing the O component is recycled to the inlet of the reactor 4 as a circulating gas 2. The free carbon (C) produced in the reaction of (Equation 31) remains as a solid mainly in the packed bed of the catalyst 5 in the reactor 4.
) is continuously discharged from the drain pipe 8 in the condenser 7.

本発明の他の実施態様を第2図に基づき説明する。この
態様は2個の反応器を用い夫々の反応器を異った温度帯
域に維持した例である。
Another embodiment of the present invention will be described based on FIG. This embodiment is an example in which two reactors are used and each reactor is maintained in a different temperature range.

第2図において、4.6は夫々第1段、第2段反応器で
あり、夫々の反応器内には反応を促進するための触媒が
触媒充填層5,7に充填されている。さらに電気ヒータ
8,9によって第1段4及び第2段反応器6は反応効率
が最高となるように夫々、最適な温度に調節される。
In FIG. 2, numerals 4 and 6 denote first and second stage reactors, respectively, and catalyst packed beds 5 and 7 are filled with a catalyst to promote the reaction in each reactor. Further, electric heaters 8 and 9 adjust the temperatures of the first stage 4 and second stage reactor 6 to optimal temperatures, respectively, so that the reaction efficiency is maximized.

(例えば第1段は900C,第2段は630 C)ここ
であらかじめ水素(H2)ガスと混合された被処理ガス
1 (Co2+ !(2)  は、第1段反応器4内の
触媒充填層5で前記(2)式の反応後、さらに第2段反
応器6へと導かれる。CO,成分が減少し、00 成分
が増加した被処理ガス2は第2段反応器6の触媒充填7
17で前記(31式の反応が進行する。
(For example, the first stage is 900C, the second stage is 630C) Here, the to-be-treated gas 1 (Co2+!(2)) mixed with hydrogen (H2) gas in advance is transferred to the catalyst packed bed in the first stage reactor 4. After the reaction of formula (2) in step 5, the gas is further guided to the second stage reactor 6.The gas to be treated 2, in which the CO and components have decreased and the 00 component has increased, is sent to the catalyst filling 7 of the second stage reactor 6.
In 17, the reaction of formula 31 proceeds.

第2段反応器6から放出された処理ガス中には、 CO
2及びCO成分を含むため循環ガス3として第1段反応
器4人口へと循環させられる。
The process gas released from the second stage reactor 6 contains CO
Since it contains 2 and CO components, it is circulated as a circulating gas 3 to the first stage reactor 4.

なお、前記(21%(31式の反応にて生成し九遊離炭
素(C1は固体として反応器内4,6の触媒充填層5,
7中にとどまる。また、同様に生成し九水分(H2O)
 Fi連続的に凝縮器11によってドレン配管10より
系外へ排出する。
In addition, the above (21% (9 free carbon produced in the reaction of formula 31) (C1 is a solid in the catalyst packed bed 5 in the reactor 4, 6,
Stay inside 7. Additionally, nine water (H2O) is produced in the same way.
The Fi is continuously discharged from the system through the drain pipe 10 by the condenser 11.

なお、第1段反応器4、第2段反応器6には、夫々温度
センナ(図示せず)を配置し、ヒータ8.9と共に制御
装置(図示せず)により最適な温度条件にコントロール
するようにすのがよい。
In addition, a temperature sensor (not shown) is arranged in each of the first stage reactor 4 and the second stage reactor 6, and the temperature is controlled to the optimum temperature condition by a controller (not shown) together with a heater 8.9. It is better to do so.

〔発明の効果〕〔Effect of the invention〕

本発明によシ、前記(2)、(31式で示される反応を
最適条件下にて実施することが可能となる。
According to the present invention, it becomes possible to carry out the reactions shown in formulas (2) and (31) under optimal conditions.

このことKよシ、反応器全体の設備規模は、従来のもの
と比較して約%と小型化することが可能となり、よシ広
い産業上の利用分野への適用を可能にすることができた
As a result, the overall equipment scale of the reactor can be reduced by approximately % compared to conventional reactors, making it possible to apply it to a wider range of industrial applications. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明を実施する念めのフローを
示す。
1 and 2 show a preliminary flow for implementing the present invention.

Claims (1)

【特許請求の範囲】[Claims] 炭酸ガスに水素を作用させて炭素と水に分解する方法に
おいて、異なる2つの温度帯域をもつ炭酸ガス分解触媒
充填部に炭酸ガスと水素との混合ガスを供給し、第1の
温度帯域で炭酸ガスを一酸化炭素と水とに分解し、第2
の温度帯域で前記第1の温度帯域で生成した一酸化炭素
を炭素と水とに分解することを特徴とする炭素ガスの分
解方法。
In a method of decomposing carbon dioxide gas into carbon and water by acting hydrogen on it, a mixed gas of carbon dioxide gas and hydrogen is supplied to a carbon dioxide gas decomposition catalyst packed part that has two different temperature zones, and carbon dioxide gas is decomposed in the first temperature zone. The gas is decomposed into carbon monoxide and water, and the second
A method for decomposing carbon gas, comprising decomposing carbon monoxide generated in the first temperature range into carbon and water in the temperature range.
JP62037729A 1986-08-22 1987-02-23 Decomposition of carbon dioxide gas Pending JPS63159210A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19797986 1986-08-22
JP61-197979 1986-12-23

Publications (1)

Publication Number Publication Date
JPS63159210A true JPS63159210A (en) 1988-07-02

Family

ID=16383497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037729A Pending JPS63159210A (en) 1986-08-22 1987-02-23 Decomposition of carbon dioxide gas

Country Status (1)

Country Link
JP (1) JPS63159210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945402A1 (en) * 1998-03-25 1999-09-29 Research Institute of Innovative Technology for the Earth Method for producing carbon
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
JP4598994B2 (en) * 2000-06-30 2010-12-15 三菱重工業株式会社 Carbon dioxide reduction equipment
JP2015514670A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method and system for capturing and sequestering carbon and reducing the mass of carbon oxide in a waste gas stream
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945402A1 (en) * 1998-03-25 1999-09-29 Research Institute of Innovative Technology for the Earth Method for producing carbon
JP4598994B2 (en) * 2000-06-30 2010-12-15 三菱重工業株式会社 Carbon dioxide reduction equipment
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
JP2015514670A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method and system for capturing and sequestering carbon and reducing the mass of carbon oxide in a waste gas stream
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
JP2018104282A (en) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide

Similar Documents

Publication Publication Date Title
WO2008089255A2 (en) Procedures for ammonia production
GB1299666A (en) Process for the reactivation of a catalyst
AU601781B2 (en) Improved process for synthesizing ammonia
US4568530A (en) Ammonia synthesis
US5084247A (en) Apparatus for performing catalytic reactions
US4520003A (en) Method of manufacturing sulphur-trioxide for the production of sulphuric acid
JPS63159210A (en) Decomposition of carbon dioxide gas
US4744966A (en) Process for synthesizing ammonia
JP3482122B2 (en) Generation of a low dew point oxygen-free protective atmosphere for performing heat treatment.
ES8607754A1 (en) Improved catalytic gas synthesis process and apparatus.
JPH0246645B2 (en)
WO2007056835A1 (en) A method of converting natural gas into fuels
US4117102A (en) Thermochemical process for producing methane and oxygen from carbon oxides and water
JPH02267116A (en) Synthesis of ammonia
US4985217A (en) Method for removing nitrogen oxides from gases
US1102715A (en) Purification of mixtures containing nitrids.
CN109641821A (en) Method for methanol production
JPS5939701A (en) Method for reforming methanol with steam
KR20010061928A (en) Method for producing hydrocyanic acid synthesis catalyst
JPS58152093A (en) Reduction of carbon monoxide content in town gas
US1050160A (en) Process of manufacturing concentrated nitric acid.
US3336113A (en) Hydrogen isotope exchange processes
JPS6313242Y2 (en)
RU2070865C1 (en) Method of producing nitrogen oxides
RU1751991C (en) Method for production of sponge iron in shaft furnace