JPS6315866A - Electrically conductive composition for thick-film paste - Google Patents

Electrically conductive composition for thick-film paste

Info

Publication number
JPS6315866A
JPS6315866A JP15922886A JP15922886A JPS6315866A JP S6315866 A JPS6315866 A JP S6315866A JP 15922886 A JP15922886 A JP 15922886A JP 15922886 A JP15922886 A JP 15922886A JP S6315866 A JPS6315866 A JP S6315866A
Authority
JP
Japan
Prior art keywords
powder
tio2
paste
rutile
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15922886A
Other languages
Japanese (ja)
Other versions
JPH0255460B2 (en
Inventor
Yoshiaki Taniguchi
義章 谷口
Toshio Yoshihara
俊雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP15922886A priority Critical patent/JPS6315866A/en
Publication of JPS6315866A publication Critical patent/JPS6315866A/en
Publication of JPH0255460B2 publication Critical patent/JPH0255460B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To enable coating to be applied to through-holes perforated with laser processing with high reliability, by adding TiO2 powder to an electrically conductive compsn. for thick-film paste, which is mainly composed of Cu powder, Au powder or Ag powder, etc. CONSTITUTION:TiO2 powder is added to an electrically conductive compsn. for thick-film paste, which is mainly composed of at least one electrically conductive metal selected from the group consisting of Cu powder, Au powder and Ag powder. As the TiO2 powder, rutile TiO2 powder having a particle size of not larger than 0.5mu is preferred.The rutile TiO2 powder is used in such an amount that when Cu powder is used as the electrically conductive metal, the amount of TiO2 powder is 7-20wt%, when Au powder is used, that of TiO2 is 3.5-10wt% and when Ag powder is used, that of TiO2 is 6.3-17wt%, each amount being per 100pts.wt. of the combined amount of the electrically conductive metal and TiO2 powders.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発朗は、Cuペースト、或いは、AU、Agを主成分
とするAL+ペース)・、Agペースト、A g−P 
d系ペースト、Ag−pt系ペースト等の厚膜導電性ペ
ースト用の導電性組成物に関し、特K例えば、レーザー
てよる穿孔加工を施こされたスルーホールの平滑内壁等
への被着π用(・て好適な厚膜ペースト用の導電性組成
物に関する。
[Detailed description of the invention] [Industrial application field] The present invention is based on Cu paste, AU, and AL+paste whose main components are Ag), Ag paste, and Ag-P.
Concerning conductive compositions for thick film conductive pastes such as d-type pastes and Ag-PT-type pastes, special K is used for adhesion to smooth inner walls of through holes, etc. that have been subjected to laser drilling. (Relating to a conductive composition suitable for thick film paste.

〔従来技術〕[Prior art]

Auペースト1.Agペースト、AgPdぺ−ストは、
各種厚膜導電回路の形成て用いられており、近時は安価
で高導電率であることから、Cuペーストも注目を集め
ている。斯る厚膜導電ペーストは基板表面上だけではな
く、スルーホール内壁や基板端面にも塗付されて導電路
を形成するために用いられる。
Au paste 1. Ag paste and AgPd paste are
Cu paste is used to form various thick film conductive circuits, and recently Cu paste has also attracted attention because it is inexpensive and has high conductivity. Such a thick film conductive paste is applied not only to the surface of the substrate but also to the inner wall of the through hole and the end surface of the substrate to form a conductive path.

ところで、上記スルーホールが、例えばセラミック基板
を型抜き穿孔して形成されたものは、その内壁は微視的
て見て比較的凹凸があるが、レーザー加工によって穿孔
されたスルーポールの内壁は、微視的に見ても略鏡面状
の極めて平滑な表面となって−・る。このレーザー加工
によるスルーホール内壁へ、厚膜導電ペーストを基板の
表裏より印刷することによって導電路を形成した場合、
焼成時の引張り応力等によってスルーホール内壁の“′
導体はがれ″が生じ易いものであった。
By the way, the inner wall of the above-mentioned through hole formed by punching and punching a ceramic substrate, for example, is relatively uneven when viewed microscopically, but the inner wall of a through hole drilled by laser processing is Even when viewed microscopically, it has an extremely smooth surface that is almost mirror-like. If a conductive path is formed by printing a thick film conductive paste from the front and back of the substrate on the inner wall of the through hole created by laser processing,
Due to tensile stress during firing, etc., the inner wall of the through hole may
The conductor was likely to peel off.

この様子を示したのか第4図および第5図で、第4図は
スルーホールを縦に切断した要部断端面図、第5図は第
4図のB−B線切断端面図である。
This situation is shown in Figures 4 and 5. Figure 4 is a cross-sectional view of the main part of the through hole cut vertically, and Figure 5 is a cross-sectional view taken along the line B--B in Figure 4. .

同各図において、1はセラミック基板、2はし一ザー加
工によって穿設されたスルーホール、3は導電体で、厚
膜導電ペースト、例えばガラスボンディングタイプのC
uペーストをセラミック基板1の表裏からスクリーン印
刷で塗付し、これを焼成することによって形成される。
In each figure, 1 is a ceramic substrate, 2 is a through hole drilled by laser machining, and 3 is a conductor, which is a thick film conductive paste, such as glass bonding type C.
It is formed by applying U-paste to the front and back sides of the ceramic substrate 1 by screen printing and firing it.

ところで、上述した構成においてレーザー加工によって
形成されたスルーポール2の内壁面は、前述したように
その表面が極めて平滑であるため、導電体のスルーホー
ル2内壁面への喰付き力が弱いと考えられること、また
、レーザー加工を行なった場合通常多用されている96
係アルミナ基板等において、スルーホール2の内壁表面
が通常よりもA、 l 203プアーな状態(換言する
なら、アルミナ基板中の結合添加材たるMgO・5IO
2等がリッチな状態)となることが実験で確認され、こ
のため、CuA1204化合物生成によるCuペースト
で期待される界面の結合メカニズムの一部が阻害される
と推察されること等によって、焼結時に働らくスルーホ
ール中心方向に向うCuの収縮・引張力が、スルーホー
ル2内壁表面と導電体1との界面の接着力に勝り、図示
のように、亀裂、剥れが生じるものであった。(なお、
Cuペースト等の導電ペーストの接着メカニズム、導電
性金属粉体の焼結時の金属成長・引張、力等については
現状1. OO係確実て解析し得す、上述の理由は推察
によるものと理解されたい。) 〔発明の目的〕 従って本発明の目的とするところは、レーサー加工で穿
設されたスルーホール等πも信頼性高く被着可能な、厚
膜ペースト用の導電性組成物を提供するにある。
By the way, since the inner wall surface of the through hole 2 formed by laser processing in the above-mentioned configuration is extremely smooth as described above, it is thought that the biting force of the conductor to the inner wall surface of the through hole 2 is weak. 96, which is commonly used when laser processing is performed.
In the alumina substrate, etc., the inner wall surface of the through hole 2 is in a state where the inner wall surface of the through hole 2 is A, l 203 poorer than usual (in other words, MgO.
It has been experimentally confirmed that the bonding mechanism at the interface expected for Cu paste due to the formation of CuA1204 compound is partially inhibited. At times, the contraction and tensile force of Cu directed toward the center of the through hole overcomes the adhesive force at the interface between the inner wall surface of the through hole 2 and the conductor 1, resulting in cracking and peeling as shown in the figure. . (In addition,
At present, the adhesion mechanism of conductive pastes such as Cu paste, metal growth, tension, force, etc. during sintering of conductive metal powders are as follows: 1. It should be understood that the above reasons, which the OO staff can certainly analyze, are based on speculation. ) [Object of the Invention] Therefore, an object of the present invention is to provide a conductive composition for thick film paste that can be reliably adhered to π holes such as through holes made by racer processing. .

〔問題点を解決するだめの技術的手段〕発明者らは種々
検討の結果、Cu粉末、ALI粉末、Ag粉末のうちの
少くとも1種を主成分とする導電性組成物に、TiO2
粉末を添加した厚膜ペースト用導電性組成物によって上
記目的が達成されることを見出した。
[Technical means to solve the problem] As a result of various studies, the inventors found that TiO2 was added to a conductive composition containing at least one of Cu powder, ALI powder, and Ag powder as a main component.
It has been found that the above object is achieved by a conductive composition for thick film pastes with the addition of powder.

また、本発明の好ましい実施態様によれば、前記TiO
2粉末は、粒径0.5μm以下のルチル形T i 02
粉末とされる。
Further, according to a preferred embodiment of the present invention, the TiO
2 powder is rutile type T i 02 with a particle size of 0.5 μm or less.
It is considered a powder.

〔作用〕[Effect]

通常厚膜導電ペーストに用いられる0、8〜1.57ノ
m程度の粒径のCu粉体、ALI粉イ茶、Ag粉体より
も充分に粒径の小さい、即ち、粒径が0、511m以下
のルチル形のイオン結晶構造をもつTiO2粉末を適量
上記導電性金属粉末と混合し、これを、ガラスフリット
、B’203.5t)203と共に混合したものを、有
機ビヒクルと混練して厚膜導電ペーストを作製する。こ
のように作製された導電ペーストの状態では、TiO2
粉末はその粒径が小さいので導電性金属粉末(例えばC
u粉末)の隙間に分散して存在している。そして、この
導電ペーストを印刷後焼成すると、この焼成過程でCu
の成長に伴って、TiO2は針状結晶として成長し、該
針状結晶同志が結合して立体網目構造を形成する。そし
て、この立体網目構造によるTiO2のネットワークは
、軟化導電性金属の可動性を成る程度制限する(収縮を
制限する)膜内構造強化ネットワークとして作用すると
考えられる。また、アルミナ基板とは、Al2O3・T
 IO2相互の反応・結合による接着反応層を生成する
ことが期待される。
The particle size is sufficiently smaller than Cu powder, ALI powder, and Ag powder with a particle size of about 0.8 to 1.57 nm, which is usually used for thick film conductive paste, that is, the particle size is 0. An appropriate amount of TiO2 powder having a rutile ionic crystal structure of 511 m or less is mixed with the above conductive metal powder, and this is mixed with glass frit, B'203.5t) 203, and the mixture is kneaded with an organic vehicle to form a thick Prepare a membrane conductive paste. In the state of the conductive paste prepared in this way, TiO2
Because the powder has a small particle size, it is suitable for conductive metal powders (e.g. C
(U powder). Then, when this conductive paste is fired after printing, Cu
With the growth of TiO2, TiO2 grows as needle-like crystals, and the needle-like crystals combine to form a three-dimensional network structure. The TiO2 network formed by this three-dimensional network structure is considered to act as an intra-film structure reinforcing network that limits the mobility of the softened conductive metal (limits its contraction) to some extent. In addition, the alumina substrate is Al2O3・T
It is expected that an adhesive reaction layer will be generated due to mutual reaction and bonding of IO2.

〔実施例の概要〕[Summary of the example]

発明者らは、レーザー加工によって形成されたスルーホ
ール内壁ても密着性良く被着形成可能な厚膜ペースト用
の導電性組成物を種々検討した。
The inventors have studied various conductive compositions for thick film pastes that can be formed with good adhesion even on the inner walls of through holes formed by laser processing.

そして、Cuペースト、Agペース1−1A IJペー
スト等において、密着性の強化と焼成時の収縮抑止を計
るため、導電性金属粉末に相当量の割合で各種無機粉末
を混合することてよって上記改善が見られるかを検討し
た。添加・混合する無機粉としては、化学的に安定で、
且つ工業的に安定供給されて安価であることに留意し、
Al2O3粉末の各種粒径のもの、ルチル形とアナター
ゼ形のTiO2粉末の各種粒径のもの、市販のガラスフ
リット各種を選定し、それぞれ混合比を変えて、焼成膜
条件・回路用導体との親和性・シート抵抗値・アルミナ
基板との密着性およびその経時変化・スルーホール部信
頼性の各項目を検討した結果、粒径05μm以下のルチ
ル形T I 02粉末を適量混合したものが、上記諸条
件を満足し、好適なものであることが判明した。
In Cu paste, Ag paste 1-1A IJ paste, etc., in order to strengthen adhesion and suppress shrinkage during firing, various inorganic powders are mixed in a considerable amount with conductive metal powder, thereby improving the above. We considered whether it could be seen. As an inorganic powder to be added and mixed, it is chemically stable and
Also, keeping in mind that it is industrially stably supplied and inexpensive,
We selected various particle sizes of Al2O3 powder, various particle sizes of rutile-type and anatase-type TiO2 powder, and various commercially available glass frits, and changed the mixing ratio of each to find compatibility with the firing film conditions and circuit conductor. As a result of examining the following items: properties, sheet resistance, adhesion to the alumina substrate and its change over time, and reliability of the through-hole part, we found that a mixture of an appropriate amount of rutile type T I 02 powder with a particle size of 05 μm or less would meet the above requirements. It was found that the conditions were met and it was suitable.

〔実施例−1〕 今、導電性金属粉末をCL]粉末とすると共に、Cuペ
ース)・全体を’l−00重量部としだ時該□u粉末を
80.5重量部、Bi2O3粉末を4.8重量部、5b
203粉末を15重量部、ガラスフリット20重量部、
有機ビヒクルを11.2重量部としたもの(従来型Cu
ペースl−)をペース配分とした。この組成配分の内、
Cu粉末以外の重量比は固定して、上記80.5重量部
のCu粉末の幾割かを、他の無機粉末と置換してなるC
uペーストを各種作製した。実験の都合上、Cu粉末と
置換する形で混合される無機粉末は、容積比でCu粉末
と無機粉末との割合が9:1〜4:6とされ、無機粉末
としては前述したように、各種粒径のAl2O3粉末、
各種ガラスフリノ)・、各種粒径のアナターゼ形T】0
2粉末、各種粒径のルチル形TiO2粉末のうちの1種
を選定した。(なお、耐薬品性に乏しく化学的に不安定
な他の代表的無機粉、例えばZr]0等は予め除外した
。) 上述のように作製した各種□uペーストを印刷・焼成し
た結果、 (a) A I 203粉末を混入したものは、A I
 203とCuペースト中のCuとの所謂「ぬれ性」が
悪いことに起因して、Cu粒子同志の結合・成長が阻害
され、Cuが未焼結になり易く、空孔も多数発生し、焼
結性の点で問題があった。
[Example-1] Now, let the conductive metal powder be CL] powder, Cu paste) and the entire '1-00 parts by weight. .8 parts by weight, 5b
15 parts by weight of 203 powder, 20 parts by weight of glass frit,
11.2 parts by weight of organic vehicle (conventional Cu
Pace l-) was used as the pace distribution. Of this composition distribution,
C obtained by replacing some of the above 80.5 parts by weight of Cu powder with other inorganic powder while fixing the weight ratio of other than Cu powder.
Various u-pastes were prepared. For the convenience of the experiment, the inorganic powder mixed to replace the Cu powder has a volume ratio of Cu powder to inorganic powder of 9:1 to 4:6, and as mentioned above, the inorganic powder is Al2O3 powder of various particle sizes,
Various glass frino), anatase type T]0 of various particle sizes
One type of rutile TiO2 powder with various particle sizes was selected. (Note that other typical inorganic powders that have poor chemical resistance and are chemically unstable, such as Zr]0, were excluded in advance.) As a result of printing and firing the various □u pastes prepared as described above, ( a) Products mixed with A I 203 powder are A I
Due to the so-called "poor wettability" between 203 and the Cu in the Cu paste, the bonding and growth of the Cu particles with each other is inhibited, the Cu tends to become unsintered, many voids are generated, and the sintering There was a problem with binding.

(1))  ガラスフリノ)・を相当量混入したもの(
前記20重量部のガラスボンティング用のカラスフリッ
ト以外に前述した比でCuと置き換えてカラスを混入し
たもの)は、回路基板中の他のCu導電パターンとの親
和性が悪く、他のパターンとの重なり部分でしふくれ」
が発生し、この点で実用化π不向きであることが判明し
た。
(1)) Contains a considerable amount of glass frino).
In addition to the 20 parts by weight of glass frit used for glass bonding, glass is mixed in place of Cu in the ratio mentioned above), which has poor compatibility with other Cu conductive patterns in the circuit board and is not compatible with other patterns. It swells at the overlapped part of the
occurred, and it was found that π was not suitable for practical use in this respect.

(C)  アナターゼ形のT 102粉末を混入したも
のは、アナターゼ形の結晶構造が焼結19[ルチル形に
転位する影響から、′rlo2が]Oμm程度の針状結
晶に成長した。このことは、通常]、 II m前後の
Cuが3μm程度まで成長し→ないことを勘案すると、
TiO2の成長結晶で形成されるネットワークの網目構
造が大きすぎることを意味し、空孔が大きくなってこれ
また実用性に乏しいことが判明した。
(C) In the case where anatase-type T 102 powder was mixed, the anatase-type crystal structure grew into acicular crystals with a size of about 19 ['rlo2 due to the effect of dislocation to the rutile type] Oμm. Considering that Cu around II m usually does not grow to about 3 μm,
It was found that this means that the network structure formed by the grown TiO2 crystal is too large, and the pores become large, which is also impractical.

これに対し、ルチル形TiO2粉末を混入したものは、
半田付は性無以外の各チェック項目で総べて良好な結果
を示すことが判明した。特に、ルチル形TiO2の粒径
は05μm以下が好適で、更に望ましくは焼成・成長し
たCu粒子の平均径25〜4μmに対して1/4〜]/
8の粒径のTiO2粉末であると、適当な大きさの針状
結晶からなるネットワークを形成する。また、Cu粉末
とルチル形T+02粉末の混合比は、両者の混合物全体
を100重量部として、ルチル形TiO2粉末を7〜2
Qwt%の範囲(CuとTiO2との容積比において、
略々85:15〜65:35の範囲)Kすることが望ま
しい。即ち、ルチル形TiO2粉末が7wt%未満であ
ると基板との密着力が弱まり、加速環境試験5 Q Q
 h r後の引張り試1験において2 kg/ 2 n
m ’以下となるものがでる。一方、ルチル形TiO2
粉末が上記20 W t %を超えるとシート抵抗値が
1.OmQ/口を超えて、Cuペーストに本来求められ
る1Mへ接値が維持できなくなる。
On the other hand, the one containing rutile TiO2 powder is
It was found that soldering showed good results in all check items except for gender. In particular, the grain size of the rutile TiO2 is preferably 0.5 μm or less, and more preferably 1/4 to 1/4 of the average diameter of the fired and grown Cu particles of 25 to 4 μm.
TiO2 powder with a particle size of 8.8 forms a network consisting of needle-like crystals of appropriate size. In addition, the mixing ratio of Cu powder and rutile type T+02 powder is 7 to 2 parts by weight of rutile type TiO2 powder, with the entire mixture of both being 100 parts by weight.
Qwt% range (in the volume ratio of Cu and TiO2,
(approximately within the range of 85:15 to 65:35) is desirable. That is, if the amount of rutile TiO2 powder is less than 7 wt%, the adhesion to the substrate will be weakened, resulting in accelerated environmental test 5.
2 kg/2 n in one tensile test after hr
There are some that are less than m'. On the other hand, rutile TiO2
If the powder exceeds the above 20 Wt%, the sheet resistance value will be 1. If the value exceeds OmQ/mouth, the contact value to 1M, which is originally required for Cu paste, cannot be maintained.

(勿論、シート抵抗値が10mΩ/口を超えても、市販
のAg−Pd系ペーストのそれが13〜35InΩ/[
]であることに比すると高い値ではないが。)(実験例
−1) Cu粉末として、三井金属鉱山(ト)→製の粒径125
11mのCu粉末と、同社製の粒径0.38/7mのC
u粉末を、前者と後者の重量比で7:3の割合で混合し
たものを用意した。このCu粉末と、粒径0.2577
mのルチル形TiO2粉末〔石原産業■、商品名CR−
90)とを合わせたものを100重量部とした時、’r
ho2を1. Q W tφ(容量比でCu:TiO2
が略8:2)混入した。このCuと′rlO2の混合物
72gに対し、ホウケイ酸鉛系のガラスフリット〔旭硝
子■製、商品名ASF−1381、] 29、球状型の
I3+203粉末〔住友金属鉱山■製〕48g、球状型
のS b 203粉末〔住友金属鉱山■製〕20gを調
合し、これて有機ビヒクル14 gと分散剤スポイ)・
3滴を合わせたものを、3本ロールにて充分て分散・混
合してCuペーストを作製した。なお、ガラスフリット
はボールミルにて充分粉砕したものを用意し、上記有機
ビヒクルとしては、アクリール系樹脂〔三菱レーヨン■
製、BR−101〕と、溶剤としてジエチルフタレート
〔■犬へ化学工業所製〕とを1=4の重量比で混合した
ものとし、また分散剤としては共栄社油脂化学工業■製
の商品名フローレンAC−300を用いた。
(Of course, even if the sheet resistance value exceeds 10 mΩ/[
] Although it is not a high value compared to that. ) (Experimental example-1) As Cu powder, particle size 125 manufactured by Mitsui Kinzoku Mining (T) →
11m Cu powder and C with a particle size of 0.38/7m made by the same company.
U powder was prepared by mixing the former and the latter at a weight ratio of 7:3. This Cu powder and particle size 0.2577
m rutile type TiO2 powder [Ishihara Sangyo ■, product name CR-
90) and 100 parts by weight, 'r
ho2 to 1. Q W tφ (Cu:TiO2 in capacitance ratio
(approximately 8:2). To 72 g of this mixture of Cu and 'rlO2, 29 g of lead borosilicate glass frit [manufactured by Asahi Glass ■, trade name ASF-1381], 48 g of spherical I3+203 powder [manufactured by Sumitomo Metal Mining ■], and 48 g of spherical S B Mix 20g of 203 powder (manufactured by Sumitomo Metal Mining), and add 14g of organic vehicle and dispersant dropper).
The three drops were sufficiently dispersed and mixed using three rolls to prepare a Cu paste. In addition, the glass frit was sufficiently ground in a ball mill, and the organic vehicle was acrylic resin [Mitsubishi Rayon ■].
BR-101] and diethyl phthalate (Inuhe Kagaku Kogyo Co., Ltd.) as a solvent at a weight ratio of 1=4, and as a dispersant, Fluoren (trade name, manufactured by Kyoeisha Yushi Kagaku Kogyo ■) was mixed. AC-300 was used.

上記CLJペーストを、京セラ■製の96係アルミナ基
板上および該基板上にレーザー加工によって穿設したス
ルーホールてスクリーン印刷によって塗布した。印刷条
件は、325メソシユスクリーンを使用し、スキージ硬
度H8を70、スキージギャップSGを1mm、スキー
ジ圧spを2kg。
The above-mentioned CLJ paste was applied onto a 96-type alumina substrate manufactured by Kyocera ■ and by screen printing using through holes drilled on the substrate by laser processing. The printing conditions were as follows: 325 mesh screen was used, squeegee hardness H8 was 70, squeegee gap SG was 1 mm, and squeegee pressure SP was 2 kg.

スキージスピードSSを40 mm/ SeCとし、焼
成後の膜厚がl Q p m弱となるように設定した。
The squeegee speed SS was set to 40 mm/SeC, and the film thickness after firing was set to be a little less than 1 Q p m.

上記条件で印刷後、5分間のl/ベリング、150℃で
10分間の乾燥後、ピーク温度900℃の60分プロフ
ァイルにてチノ素雰囲気中で焼成を行なった。
After printing under the above conditions, 1/belling for 5 minutes and drying at 150° C. for 10 minutes, baking was performed in a chinoline atmosphere at a peak temperature of 900° C. for 60 minutes.

このように形成されたCuペーストによる導電体は、電
子顕微鏡による表面および断面観察において空孔のない
緻密で良好な焼結膜であることが確認された。また、焼
結後の基板との密着性も極めて良好で、第2,3図示の
ようにセラミック基板1のスルーホール2の内壁て導電
体3が完全に密着してし・ることか確認された。また、
90℃と0°Cの繰返しヒートショック試験においても
、良好な信頼性が維持され、100回の繰返しヒートシ
ョック試験後のスルーホール部の拡大観察の結果、剥れ
、裂け、収縮が略100係認められなかった。また、4
端子法によるシート抵抗値測定によれば膜厚15 p 
m換算で5mΩ/口という極めて高い導電率が示された
The surface and cross-sectional observation of the Cu paste conductor thus formed was confirmed to be a dense and well-sintered film with no pores when the surface and cross section were observed using an electron microscope. In addition, the adhesion with the substrate after sintering was extremely good, and it was confirmed that the conductor 3 was completely adhered to the inner wall of the through hole 2 of the ceramic substrate 1 as shown in the second and third figures. Ta. Also,
Good reliability was maintained even in repeated heat shock tests at 90°C and 0°C, and as a result of magnified observation of the through-hole section after 100 repeated heat shock tests, peeling, tearing, and shrinkage were approximately 100%. I was not able to admit. Also, 4
According to the sheet resistance value measurement using the terminal method, the film thickness was 15 p.
An extremely high conductivity of 5 mΩ/hole was shown in terms of m.

第1図は上述のように形成された導電体1中のCuを、
熱濃硫酸でエツチング除去した後の無機粉体の焼結構造
を示す、電子顕微鏡撮影による1万倍拡大写真である。
FIG. 1 shows Cu in the conductor 1 formed as described above.
This is a 10,000 times enlarged photograph taken using an electron microscope, showing the sintered structure of inorganic powder after it has been etched away with hot concentrated sulfuric acid.

(なお、第1図は表面の状態を示しているが、断面各部
の観察においても同図と同等の構造を呈している。)第
1図から明らかなように該実験例ておけるCuペースト
による導電膜(導電体1)中には、無機物による針状結
晶が結合した立体網目構造によるネットワークが形成さ
れている。この針状結晶は添加した無機物の比重と混合
比を勘案するとルチル形TiO2粉体を主体としたもの
が針状に成長して立体網目状の比較的強固なネットワー
クを形成するものと考察される。(何んとなればTiO
2無添加のCuペーストによる導電膜をエツチングする
と、アルミナ基板の表面の粒子のみが観察された。)第
1図において下部の横線の長さが1μmの指標で、これ
から明らかなように粒径0.25μmのルチル形TiO
2粉末は、長さ2〜3μm程度の針状結晶に成長してお
り、TiO2ネットワークの空隙で示されるCuは粒径
3/7m程度に成長し、各個が結合・導通している。
(Although Fig. 1 shows the surface condition, the observation of each cross-sectional part also shows the same structure as in the same figure.) As is clear from Fig. 1, the Cu paste in the experimental example In the conductive film (conductor 1), a network is formed with a three-dimensional network structure in which needle-shaped inorganic crystals are combined. Considering the specific gravity and mixing ratio of the added inorganic materials, it is thought that these needle-like crystals are mainly composed of rutile TiO2 powder and grow into needle-like shapes to form a relatively strong three-dimensional network. . (After all, TiO
When a conductive film made of a Cu paste without the addition of 2 was etched, only particles on the surface of the alumina substrate were observed. ) In Figure 1, the length of the horizontal line at the bottom is an index of 1 μm, and as is clear from this, it is rutile TiO with a particle size of 0.25 μm.
The two powders have grown into needle-like crystals with a length of about 2 to 3 μm, and the Cu, which is represented by the voids in the TiO2 network, has grown to a particle size of about 3/7 m, and each piece is bonded and electrically conductive.

上記したCu、TiO2の成長過程メカニズムの詳細は
明らかではないが、CuとTiO2との融点から見て、
焼結時の加熱によってCuが先ず軟化してその幾つか同
志が一体化して成長を始め、次KCu間の隙間でTiO
2が針状て成長して、Cuの成長と併行もしくは退行す
る形で」二連のネットワークを形成するものと窺え、と
のネットワークの存在が軟化したCuの流動を阻止して
導電膜の収縮を阻止する一助となるものと推考される。
The details of the growth process mechanism of Cu and TiO2 mentioned above are not clear, but from the viewpoint of the melting points of Cu and TiO2,
The Cu first softens due to the heating during sintering, some of them become integrated and begin to grow, and then TiO is formed in the gaps between the KCu.
It appears that 2 grows in the form of needles and forms a double network in parallel or regression with the growth of Cu, and the existence of this network blocks the flow of the softened Cu and causes the conductive film to contract. It is assumed that this will help prevent this.

また、この導電膜とアルミナ基板との接合部を、X線回
析した結果、アルミナ基板成分中のα−A I 203
とルチル形TiO2の固結晶相の他に、2つの結晶相の
ピーク(結晶面間隔d=2.1.9Aおよび162Aの
結晶相のピーク)が存在していることが判明しくなお、
TiO2無添加の資料ではα−AI 203結晶相のみ
が検出される)、この新らたな結晶相てよる化合物は詳
らではないが、ルチル形TiO2とα−AI 203間
で反応を生じ、この生成物が基板との接合強化に関与し
ていると推考される。
Furthermore, as a result of X-ray diffraction of the joint between this conductive film and the alumina substrate, α-A I 203 in the alumina substrate component was detected.
It is clear that in addition to the solid crystal phase of rutile TiO2, there are two crystal phase peaks (crystal phase peaks with crystal plane spacing d = 2.1.9 A and 162 A).
(Only the α-AI 203 crystal phase is detected in the material without TiO2 addition).Although the compound responsible for this new crystal phase is not clear, a reaction occurs between rutile TiO2 and α-AI 203, It is assumed that this product is involved in strengthening the bond with the substrate.

一方また、該実験例−1による資料を恒温橿にて150
℃の加速環境試験を行ない、該環境試験500時間後に
おいて、該資料上の導電膜を清浄してこの上に市販のT
iO2無添加のCuペースト(Cermal 1oy社
製、7229Cuペースト)で、当該実験例−1と同等
の印刷・焼成条件で導電膜を形成し、この上に引張り試
験ピンを半田付けして、経時T支台の引張強度を測定し
た結果、5に9f / 2 rnm口という極めて良好
な結果を示した。
On the other hand, the material from Experimental Example-1 was heated to 150°C in a constant temperature oven.
After 500 hours of the environmental test, the conductive film on the material was cleaned and a commercially available T
A conductive film was formed using iO2-free Cu paste (manufactured by Cermal 1oy, 7229Cu paste) under the same printing and firing conditions as in Experimental Example 1, and a tensile test pin was soldered thereon, and the test was performed over time. The tensile strength of the abutment was measured and showed an extremely good result of 5 to 9 f/2 rnm.

また、当該実験例−1,による導電膜作成後に、上記市
販のCuペーストによる導電膜を形成し、この直後、お
よび500時間加速環境試験後冗封口ても、同等の引張
強度を示すことが確認され、経時使用下にお(゛・ても
引張強度の変化が殆んどないことが確認された。そして
また、との引張試験のための市販Cuペーストによる多
層膜形成てよって、他の(、u回路導体との親和性も極
めて良好であることが確認された。
In addition, after forming the conductive film according to Experimental Example-1, a conductive film was formed using the commercially available Cu paste, and it was confirmed that it showed the same tensile strength even after being sealed immediately after and after a 500-hour accelerated environmental test. It was confirmed that there was almost no change in tensile strength even after use over time.Also, by forming a multilayer film using a commercially available Cu paste for the tensile test with It was confirmed that the compatibility with the u circuit conductor was also extremely good.

(実験例−2) 実験例−1と全く同一の材料を用い、Cu粉末とルチル
形TiO2粉末とを合わせたものを100重量部とした
時、TiO2をそれぞれ5.4wt%、16.0wt%
、19.4.wt%(容量比でCu:TiO2がそれぞ
れ、85:15,70:30゜65:35)混入した。
(Experimental example-2) Using the same materials as in experimental example-1, when the sum of Cu powder and rutile TiO2 powder is 100 parts by weight, TiO2 is 5.4 wt% and 16.0 wt%, respectively.
, 19.4. wt% (Cu:TiO2 in volume ratio: 85:15, 70:30°65:35, respectively) was mixed.

この各々、73.79゜67.59,64..89に対
して前記実験例−1と全く同一材料のB ’ 203 
+ S b203 +ガラスフリット、有機ビヒクル、
分散剤を実験例−1と同−重量分混合して充分分散・混
練してCuペーストを作成した。これを用いて実験例−
1と同等の印刷・焼成条件にて導電膜(導電体1)を形
成した結果、cu : TiO2の容量比が70:30
のものは、シート抵抗値が8mΩ/口である以外は、他
の総べての評価項目において実験例−1と同様の良好な
結果を示した。またCu:TiO2の容量比が85:1
5のものは、シート抵抗値が3.5mΩ/口と極めて良
好であるが、前記500時間加速環境試験後の引張試験
(該実験例による試料をムキ出しで環境試験したもの)
において、引張強度が2〜3に9f/2mm口となった
が、一般の厚膜ペーストの引張強度の合格ライン2 k
gf / 2 mm口をクリアした。他の評価項目は実
験例−1と同等の良好な結果を示した。また、Cu:T
iO2の容量比が65:35のものは、シート抵抗値が
lQm、Q/日程度(この程度でもAg−Pdペースト
に比すと良好で、Cuペーストに求められる高導電率を
維持している)を示した以外は、実験例−1と同様の良
好な結果を示した。
Each of these is 73.79°67.59,64. .. 89, B' 203 made of the same material as in Experimental Example-1
+ S b203 + glass frit, organic vehicle,
The same amount of dispersant as in Experimental Example 1 was mixed and thoroughly dispersed and kneaded to prepare a Cu paste. Experimental example using this
As a result of forming a conductive film (conductor 1) under the same printing and firing conditions as 1, the capacitance ratio of cu:TiO2 was 70:30.
Except for the sheet resistance value of 8 mΩ/mouth, the sample showed the same good results as Experimental Example 1 in all other evaluation items. Also, the capacity ratio of Cu:TiO2 is 85:1
No. 5 has a very good sheet resistance value of 3.5 mΩ/mouth, but the tensile test after the 500-hour accelerated environmental test (the environmental test was performed on the sample according to the experimental example by peeling it out)
, the tensile strength was 2 to 3 at 9f/2mm, but the tensile strength pass line for general thick film paste was 2k.
Cleared gf/2mm mouth. Other evaluation items showed good results equivalent to Experimental Example-1. Also, Cu:T
The one with an iO2 capacitance ratio of 65:35 has a sheet resistance value of about 1Qm, Q/day (even this level is better than Ag-Pd paste and maintains the high conductivity required for Cu paste). ), the same good results as in Experimental Example 1 were obtained.

〔実施例−2〕 前述した実施例−1と同一の手法で、Auペーストを各
種検討した。この結果、Auと置き換えられるルチル形
TiO2の量を、Au粉末と該ルチル形TiO2粉末と
を合わせた混合物全体を100重量部とした時、ルチル
形TiO2を3.5〜lQwt%とじた場合に(容量比
でAu:TiO2が85:15〜65:35)、前記実
施例−1の(uペーストと同等の良好なシート抵抗値、
引張強度、経時信頼性を示し、レーザー加工によるスル
ーホールへの密着強度も良好で、前述したヒートショッ
クによっても不良品は見られなかった。
[Example-2] Various Au pastes were examined using the same method as in Example-1 described above. As a result, the amount of rutile TiO2 that can replace Au is 3.5 to 1Qwt% when the entire mixture of Au powder and the rutile TiO2 powder is 100 parts by weight. (Capacitance ratio of Au:TiO2 is 85:15 to 65:35), Example-1 (good sheet resistance value equivalent to U paste,
It exhibited good tensile strength and reliability over time, and had good adhesion strength to through-holes formed by laser processing, and no defective products were found even after the heat shock described above.

また、使用されるAu粉末の粒径は05〜3μmのもの
が選定され、これに対しルチル形TiO2粉末の粒径は
Q、51Jm以下が適当であることが判明した。
Further, the particle size of the Au powder used was selected to be 05 to 3 μm, whereas it was found that the particle size of the rutile TiO2 powder was Q, 51 Jm or less.

(実験例−3) 粒径1 /J mのA 1+粉末〔国中マソセイ■製、
TR1,14Glと、前記実1験例−1と同一のルチル
形TiO2粉末とを両者の混合物全体を100重量部と
した時、TiO2を4.9wt係(容量比でAu:Ti
O2が8=2)混入した。このALIとTiO2粉末の
混合物]、 47.2 gに対し、前記実験例−1と同
一材料、同−重量分のl3i203 、5b203+ガ
ラスフリツト、分散剤、有機ビヒクルを混合し、充分分
散・混合してAullベースを作成した。
(Experimental Example-3) A1+ powder with a particle size of 1/J m [manufactured by Kuninaka Masosei,
When the total mixture of TR1,14Gl and the same rutile TiO2 powder as in Experiment 1 is 100 parts by weight, the proportion of TiO2 is 4.9wt (Au:Ti in volume ratio).
O2 (8=2) was mixed in. To 47.2 g of this mixture of ALI and TiO2 powder, the same materials and the same weight of l3i203, 5b203 + glass frit, dispersant, and organic vehicle as in Experimental Example 1 were mixed, and the mixture was thoroughly dispersed and mixed. All base was created.

このA llペースとを実験例−1と同一条件で印刷し
、5分間のレベリング、150℃で10分間の乾燥後、
ピーク温度870℃の60分プロファイルにて焼成を行
なった。
This All Pace was printed under the same conditions as Experimental Example-1, leveled for 5 minutes, and dried at 150°C for 10 minutes.
Firing was performed using a 60 minute profile with a peak temperature of 870°C.

この結果、総べての評価項目πおいて実験例=1と同等
の良好な結果を示し、シート抵抗は45mΩ/[]、5
00時間加速環境試1験後の引張強度も5に9.f/2
mm口以上であり、レーザー加工てよるスルーホールへ
の密着性も良好であった。
As a result, in all evaluation items π, it showed good results equivalent to experimental example = 1, and the sheet resistance was 45 mΩ/[], 5
The tensile strength after one 00-hour accelerated environmental test was also 5 to 9. f/2
mm or more, and the adhesion to the through-hole by laser processing was also good.

〔実施例−3〕 前述した実施例−1と同一の手法でAgペーストを各種
検討した。この結果、Agと置き換えられるルチル形T
iO2の量を、Ag粉末と該ルチル形TiO2粉末とを
合わせた混合物全体を100重量部とした時、ルチル形
TiO2を63〜l 7wt%とした場合に(容量比で
Ag:TiO2が85 : 1.5〜65:35)、前
記実施例−1のCuペーストと略々間等の好結果を示し
、レーザー加工によるスルーポールへも密着信頼性良く
被着した。
[Example 3] Various Ag pastes were examined using the same method as in Example 1 described above. As a result, the rutile type T which can be replaced with Ag
When the amount of iO2 is 100 parts by weight of the entire mixture of Ag powder and the rutile TiO2 powder, and when the rutile TiO2 is 63 to 7 wt% (the volume ratio is Ag:TiO2 is 85: 1.5 to 65:35), the results were almost as good as those of the Cu paste of Example 1, and the paste adhered to through-poles formed by laser processing with good adhesion and reliability.

また、使用されるAg粉末の粒径は1〜2μmのものが
選定され、これに対しルチル形TiO2粉末の粒径は0
5μm以下のものが適当であることが判定した。
In addition, the particle size of the Ag powder used was selected to be 1 to 2 μm, whereas the particle size of the rutile-type TiO2 powder was 0.
It was determined that a thickness of 5 μm or less was suitable.

(実1験例−4) 粒径1 p rnのAg粉末〔■高純度化学研究新製、
E−201と、前記実験例−]と同一のルチル形TiO
2粉末とを両者の混合物全体を1. O0重量部とした
時、TiO2を8.6wt係(容量比でAg:TiO2
が8:2)混入した。 このAgとTiO2の混合物8
37gに対し、前記実験例−1と同一材量、同−重量分
のB ’ 203 + S b203 +ガラスフリッ
ト、分散剤、有機ビヒクルを混合し、充分分散、混合し
てAgペーストを作成した。
(Experiment 1-4) Ag powder with a particle size of 1 prn [■Kojundo Kagaku Kenkyushin,
E-201 and the same rutile TiO as in the above experimental example-]
2 powder and the entire mixture of both powders 1. When O0 parts by weight, TiO2 is 8.6wt (volume ratio Ag:TiO2
8:2). This mixture of Ag and TiO2 8
To 37 g, the same amount and weight of B' 203 + S b203 + glass frit, dispersant, and organic vehicle as in Experimental Example 1 were mixed, and sufficiently dispersed and mixed to prepare an Ag paste.

このAgペーストを実験例−1と同一条件で印刷し、5
分間のレベリング、150℃で10分間の乾燥後、ピー
ク温度850℃の60分プロファイルてて焼成を行なっ
た。
This Ag paste was printed under the same conditions as Experimental Example-1, and
After leveling for 1 minute and drying at 150°C for 10 minutes, firing was performed using a profile with a peak temperature of 850°C for 60 minutes.

この結果、総べての評価項目において実験例−1と同等
の良好な結果を示し、シート抵抗値は約5mΩ/■、5
00時間加速環境試、験後の引張強度も5 kgf /
 2 mm[]以上であり、レーザー加工によるスルー
ボールへの密着性も良好であった。
As a result, the results showed good results equivalent to those in Experimental Example-1 in all evaluation items, and the sheet resistance values were approximately 5 mΩ/■, 5
00 hours accelerated environmental test, tensile strength after test is 5 kgf /
It was 2 mm[] or more, and the adhesion to the through ball by laser processing was also good.

以上、Cuペースト、Auペースト、Agペーストにつ
いて述べたが、A g −IJ d 系ペースト等にお
いても本発明は適用可能であり、粒径0.57on以下
のルチル形TiO2と、例えば8:2型のAg−Pd粉
末とを容量比で、85:15〜65 : 35で混合す
ることてよって、前e実施例と同様のし一ザー加工面へ
の密着信頼性を計れることが期待できる。更にはまた、
B i 20315l)203 +  ガラスフリット
を添加したガラスボンドタイプの厚膜ペーストを示した
が、CdO,NiO等のケミカルボンディングメカニズ
ムのためのものを混入しても良(、有機ビヒクル用の樹
脂としてはアクリル系以外にもセルロール系が、また溶
剤としてはα−テルピネオール、トリデカノール等々が
適用可能で、本発明の精神を逸脱しない範囲で種々のバ
リエーションが考えられる。
Although the above has described Cu paste, Au paste, and Ag paste, the present invention is also applicable to A g -IJ d type paste, etc. By mixing the Ag--Pd powder in a volume ratio of 85:15 to 65:35, it is expected that the same reliability of adhesion to the polished surface as in the previous Example e can be achieved. Furthermore,
B i 20315l) 203 + Glass bond type thick film paste added with glass frit is shown, but substances for chemical bonding mechanism such as CdO and NiO may also be mixed (as a resin for organic vehicle) In addition to the acrylic type, cellulose type can be used, and as the solvent, α-terpineol, tridecanol, etc. can be used, and various variations can be considered without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、レーザー加工で穿
設されたスルーホール等にも信頼性高く密着して被着・
形成可能な厚膜導電ペーストを提供できて、その価値は
多大である。
As described in detail above, according to the present invention, even through holes etc. drilled by laser processing can be adhered and adhered with high reliability.
The value of being able to provide a thick film conductive paste that can be formed is significant.

【図面の簡単な説明】 第1図〜第3図は本発明の実施例て係り、第1図は本発
明の実施例によるCuをエツチングで除去した状態の膜
を示す拡大写真図、第2図および第3図はスルーホール
への被着状態を示す断正面図並びに第2図A−A線断面
図、第4図および第5図は従来例によるスルーホールへ
の被着状態を牢す要部断正面図並びて第4図B−B線断
面図である。 1・・・・・セラミンク基板(アルミナ基板)2・・・
スルーホール 3・・・・・・導電体
[Brief Description of the Drawings] Figures 1 to 3 relate to embodiments of the present invention; Figure 1 is an enlarged photograph showing a film with Cu removed by etching according to the embodiment of the present invention; 3 and 3 are a sectional front view and a sectional view taken along the line A-A in FIG. FIG. 4 is a sectional front view of main parts and a sectional view taken along the line B-B in FIG. 1...Ceramink substrate (alumina substrate) 2...
Through hole 3... Conductor

Claims (5)

【特許請求の範囲】[Claims] (1)Cu粉末、Au粉末、Ag粉末のうちの少くとも
1種を主成分とする導電性組成物に、TiO_2粉末を
添加したことを特徴とする厚膜ペースト用導電性組成物
(1) A conductive composition for thick film paste, characterized in that TiO_2 powder is added to a conductive composition containing at least one of Cu powder, Au powder, and Ag powder as a main component.
(2)前記TiO_2粉末は、粒径0、5μm以下のル
チル形TiO_2粉末であることを特徴とする特許請求
の範囲第1項記載の厚膜ペースト用導電性組成物。
(2) The conductive composition for thick film paste according to claim 1, wherein the TiO_2 powder is a rutile TiO_2 powder with a particle size of 0.5 μm or less.
(3)導電性金属をCu粉末とし、該Cu粉末と前記ル
チル形TiO_2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO_2粉末は7〜20wt%とさ
れていることを特徴とする特許請求の範囲第2項記載の
厚膜用導電性組成物。
(3) A patent characterized in that when the conductive metal is Cu powder and the entire mixture of the Cu powder and the rutile TiO_2 powder is 100 parts by weight, the rutile TiO_2 powder is 7 to 20 wt%. The conductive composition for thick films according to claim 2.
(4)導電性金属をAu粉末とし、該Au粉末と前記ル
チル形TiO_2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO_2粉末は3.5〜10wt%
とされていることを特徴とする特許請求の範囲第2項記
載の厚膜ペースト用導電性組成物。
(4) When the conductive metal is Au powder and the entire mixture of the Au powder and the rutile TiO_2 powder is 100 parts by weight, the rutile TiO_2 powder is 3.5 to 10 wt%.
The conductive composition for thick film paste according to claim 2, characterized in that:
(5)導電性金属をAg粉末とし、該Ag粉末と前記ル
チル形TiO_2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO_2粉末は6.3〜17wt%
とされていることを特徴とする特許請求の範囲第2項記
載の厚膜ペースト用導電性組成物。
(5) When the conductive metal is Ag powder and the entire mixture of the Ag powder and the rutile TiO_2 powder is 100 parts by weight, the rutile TiO_2 powder is 6.3 to 17 wt%.
The conductive composition for thick film paste according to claim 2, characterized in that:
JP15922886A 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste Granted JPS6315866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15922886A JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15922886A JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Publications (2)

Publication Number Publication Date
JPS6315866A true JPS6315866A (en) 1988-01-22
JPH0255460B2 JPH0255460B2 (en) 1990-11-27

Family

ID=15689136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15922886A Granted JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Country Status (1)

Country Link
JP (1) JPS6315866A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256106A (en) * 1989-03-29 1990-10-16 Shoei Chem Ind Co Copper paste for thick film
JPH043496A (en) * 1990-04-19 1992-01-08 Fujitsu Ltd Forming method of viahole of multilayer ceramic board
EP0587382A2 (en) * 1992-09-05 1994-03-16 Shinko Electric Industries Co. Ltd. Aluminum nitride circuit board and method of producing it
JP2001076534A (en) * 1999-09-03 2001-03-23 Toshiba Chem Corp Conductive paste
JP2006278071A (en) * 2005-03-29 2006-10-12 Toyo Aluminium Kk Paste composition, electrode, and solar battery element equipped with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285016B2 (en) * 2002-07-17 2013-09-11 日本特殊陶業株式会社 Wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730309A (en) * 1980-07-29 1982-02-18 Tdk Electronics Co Ltd Electrode pasge for porcelain capacitor
JPS6047412A (en) * 1983-08-24 1985-03-14 ティーディーケイ株式会社 Method of producing electronic part and conductive paste composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730309A (en) * 1980-07-29 1982-02-18 Tdk Electronics Co Ltd Electrode pasge for porcelain capacitor
JPS6047412A (en) * 1983-08-24 1985-03-14 ティーディーケイ株式会社 Method of producing electronic part and conductive paste composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256106A (en) * 1989-03-29 1990-10-16 Shoei Chem Ind Co Copper paste for thick film
JPH043496A (en) * 1990-04-19 1992-01-08 Fujitsu Ltd Forming method of viahole of multilayer ceramic board
EP0587382A2 (en) * 1992-09-05 1994-03-16 Shinko Electric Industries Co. Ltd. Aluminum nitride circuit board and method of producing it
EP0587382A3 (en) * 1992-09-05 1994-11-23 Shinko Electric Ind Co Aluminum nitride circuit board and method of producing it.
US5464950A (en) * 1992-09-05 1995-11-07 Shinko Electric Industries Co., Ltd. Aluminum nitride circuit board and method of producing same
JP2001076534A (en) * 1999-09-03 2001-03-23 Toshiba Chem Corp Conductive paste
JP2006278071A (en) * 2005-03-29 2006-10-12 Toyo Aluminium Kk Paste composition, electrode, and solar battery element equipped with the same

Also Published As

Publication number Publication date
JPH0255460B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
EP2650263A1 (en) Low silver content paste composition and method of making a conductive film therefrom
JP5988124B2 (en) Thick film resistor and manufacturing method thereof
KR100668549B1 (en) Terminal Electrode Compositions for Multilayer Ceramic Capacitors
JPH0334162B2 (en)
JPS62265796A (en) Ceramic multilayer interconnection board and manufacture of the same
WO2006003755A1 (en) Electroconductive paste and ceramic electronic parts using the same
TW201511036A (en) Thick print copper pastes for aluminum nitride substrates
JP5988123B2 (en) Resistance composition
JPH0563110B2 (en)
JPS6315866A (en) Electrically conductive composition for thick-film paste
JP2005150120A (en) Thick film conductor paste composition for ltcc tape
JPH0817671A (en) Conductive paste
JP2009170848A (en) Ceramic electronic component and its manufacturing method
US5670089A (en) Conductive paste for MLC termination
JP2022140207A (en) Resistor paste, application thereof and method for manufacturing resistor
JPH0896623A (en) Conductive paste
KR101739744B1 (en) Lead-free thick film resistor composition, resistor and method thereof
TW567511B (en) Ceramic capacitor device, conductive composition and conductive paste
JP2006332284A (en) Electronic component and its manufacturing method
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP3222514B2 (en) Paste composition for bonding ceramics and metal
JPH0547209A (en) Conductor composite and ceramic base using the same
JPH09161539A (en) Conductive compound and ceramic electronic parts using the same
US7300607B2 (en) Conductive sintered compact for fixing electrodes in electronic device envelope
JP2001023438A (en) Conductive paste and ceramic electronic component