JPH0255460B2 - - Google Patents

Info

Publication number
JPH0255460B2
JPH0255460B2 JP61159228A JP15922886A JPH0255460B2 JP H0255460 B2 JPH0255460 B2 JP H0255460B2 JP 61159228 A JP61159228 A JP 61159228A JP 15922886 A JP15922886 A JP 15922886A JP H0255460 B2 JPH0255460 B2 JP H0255460B2
Authority
JP
Japan
Prior art keywords
powder
tio
paste
conductive
rutile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61159228A
Other languages
Japanese (ja)
Other versions
JPS6315866A (en
Inventor
Yoshiaki Taniguchi
Toshio Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP15922886A priority Critical patent/JPS6315866A/en
Publication of JPS6315866A publication Critical patent/JPS6315866A/en
Publication of JPH0255460B2 publication Critical patent/JPH0255460B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Cuペースト、或いはAu、Agを主成
分とするAuペースト、Agペースト、Ag−Pd系
ペースト、Ag−Pt系ペースト等の厚膜導電性ペ
ースト用の導電性組成物に関し、特に例えば、レ
ーザーによる穿孔加工を施こされたスルーホール
の平滑内壁等への被着に用いて好適な厚膜ペース
ト用の導電性組成物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to Cu paste, or Au paste containing Au or Ag as a main component, Ag paste, Ag-Pd type paste, Ag-Pt type paste, etc. The present invention relates to a conductive composition for a film conductive paste, and particularly to a conductive composition for a thick film paste, which is suitable for application to, for example, the smooth inner wall of a through hole that has been subjected to a laser drilling process.

〔従来技術〕[Prior art]

Auペースト、Agペースト、Ag−Pdペースト
は、各種厚膜導電回路の形成に用いられており、
近時は安価で高導電率であることから、Cuペー
ストも注目を集めている。斯る厚膜導電ペースト
は基板表面上だけでなく、スルーホール内壁や基
板端面にも塗付されて導電路を形成するために用
いられる。
Au paste, Ag paste, and Ag-Pd paste are used to form various thick film conductive circuits.
Recently, Cu paste has also been attracting attention because it is inexpensive and has high conductivity. Such a thick film conductive paste is applied not only to the surface of the substrate but also to the inner wall of the through hole and the end surface of the substrate to form a conductive path.

ところで、上記スルーホールが、例えばセラミ
ツク基板を型抜き穿孔して形成されたものは、そ
の内壁は微視的に見て比較的凹凸があるが、レー
ザー加工によつて穿孔されたスルーホールの内壁
は、微視的に見ても略鏡面状の極めて平滑な表面
となつている。このレーザー加工によるスルーホ
ール内壁へ、厚膜導電ペーストを基板の表裏より
印刷することによつて導電路を形成した場合、焼
成時の引張り応力等によつてスルーホール内壁の
“導体はがれ”が生じ易いものであつた。
By the way, when the above-mentioned through-hole is formed by punching and punching a ceramic substrate, for example, the inner wall is relatively uneven when viewed microscopically, but the inner wall of the through-hole formed by laser processing is relatively uneven. Even when viewed microscopically, it has an extremely smooth surface that is almost mirror-like. If a conductive path is formed on the inner wall of the through hole by laser processing by printing a thick film conductive paste from the front and back of the board, "conductor peeling" of the inner wall of the through hole may occur due to tensile stress during firing, etc. It was easy.

この様子を示したのが第4図および第5図で、
第4図はスルーホールを縦に切断した要部断端面
図、第5図は第4図のB−B線切断端面図であ
る。
Figures 4 and 5 show this situation.
FIG. 4 is a cross-sectional view of a main part of the through hole cut vertically, and FIG. 5 is a cross-sectional view taken along the line B--B in FIG. 4.

同各図において、1はセラミツク基板、2はレ
ーザー加工によつて穿設されたスルーホール、3
は導電体で、厚膜導電ペースト、例えばガラスボ
ンデイングタイプのCuペーストをセラミツク基
板1の表裏からスクリーン印刷で塗付し、これを
焼成することによつて形成される。
In each figure, 1 is a ceramic substrate, 2 is a through hole drilled by laser processing, and 3 is a ceramic substrate.
is a conductor, and is formed by applying a thick film conductive paste, such as a glass bonding type Cu paste, to the front and back of the ceramic substrate 1 by screen printing, and then firing it.

ところで、上述した構成においてレーザー加工
によつて形成されたスルーホール2の内壁面は、
前述したようにその表面が極めて平滑であるた
め、導電体のスルーホール2内壁面への喰付き力
が弱いと考えられること、また、レーザー加工を
行なつた場合通常多用されている96%アルミナ基
板等において、スルーホール2の内壁表面が通常
よりもAl2O3プアーな状態(換言するなら、アル
ミナ基板中の結合添加材たるMgO・SiO2等がリ
ツチな状態)となることが実験で確認され、この
ため、CuAl2O4化合物生成によるCuペーストで
期待される界面の結合メカニズムの一部が阻害さ
れると推察されること等によつて、焼結時に働ら
くスルーホール中心方向に向うCuの収縮・引張
力が、スルーホール2内壁表面と導電体1との界
面の接着力に勝り、図示のように、亀裂、剥れが
生じるものであつた。(なお、Cuペースト等の導
電ペーストの接着メカニズム、導電性金属粉体の
焼結時の金属成長・引張力等については現状100
%確実に解析し得ず、上述の理由は推察によるも
のと理解されたい。) 〔発明の目的〕 従つて本発明の目的とするところは、レーザー
加工で穿設されたスルーホール等にも信頼性高く
被着可能な、厚膜ペーストの導電性組成物を提供
するにある。
By the way, in the above-mentioned configuration, the inner wall surface of the through hole 2 formed by laser processing is as follows.
As mentioned above, since the surface is extremely smooth, the biting force of the conductor to the inner wall surface of the through hole 2 is considered to be weak. Experiments have shown that in substrates, etc., the inner wall surface of through hole 2 is in a state that is poorer in Al 2 O 3 than usual (in other words, it is rich in MgO, SiO 2, etc., which are bonding additives in the alumina substrate). As a result, it is assumed that part of the interfacial bonding mechanism expected in Cu paste due to the formation of CuAl 2 O 4 compounds is inhibited. The shrinkage and tensile force of the Cu on the other side exceeded the adhesive force at the interface between the inner wall surface of the through hole 2 and the conductor 1, causing cracks and peeling as shown in the figure. (The adhesion mechanism of conductive pastes such as Cu paste, metal growth and tensile force during sintering of conductive metal powder, etc. are currently 100%
% cannot be analyzed with certainty, and the above reasons should be understood to be speculation. ) [Object of the Invention] Therefore, an object of the present invention is to provide a conductive composition in the form of a thick film paste that can be reliably applied to through holes etc. drilled by laser processing. .

〔問題点を解決するための技術手段〕[Technical means to solve problems]

発明者らは種々検討の結果、Cu粉末、Au粉
末、Ag粉末のうちの少くとも1種を主成分とす
る導電性組成物に、TiO2粉末を添加した厚膜ペ
ースト用導電性組成物によつて上記目的が達成さ
れることを見出した。
As a result of various studies, the inventors developed a conductive composition for thick film paste, which is made by adding TiO 2 powder to a conductive composition whose main component is at least one of Cu powder, Au powder, and Ag powder. It has thus been found that the above object can be achieved.

また、本発明の好ましい実施態様によれば、前
記TiO2粉末は、粒径0.5μm以下のルチル形TiO2
粉末とされる。
Further, according to a preferred embodiment of the present invention, the TiO 2 powder is rutile TiO 2 with a particle size of 0.5 μm or less.
It is considered a powder.

〔作用〕[Effect]

通常厚膜導電ペーストに用いられる0.8〜1.5μ
m程度の粒径のCu粉体、Au粉体、Ag粉体よりも
充分に粒径の小さい、即ち、粒径が0.5μm以下の
ルチル形のイオン結晶構造をもつTiO2粉末を適
量上記導電性金属粉末と混合し、これを、ガラス
フリツト、Bi2O3、Sb2O3と共に混合したものを、
有機ビヒクルと混練して厚膜導電ペーストを作製
する。このように作製された導電ペーストの状態
では、TiO2粉末はその粒径が小さいので導電性
金属粉末(例えばCu粉末)の隙間に分散して存
在している。そして、この導電ペーストを印刷後
焼成すると、この焼成過程でCuの成長に伴つて、
TiO2は針状結晶として成長し、該針状結晶同志
が結合して立体網目構造を形成する。そして、こ
の立体網目構造によるTiO2のネツトワークは、
軟化導電性金属の可動性を或る程度制限する(収
縮を制限する)膜内構造強化ネツトワークとして
作用すると考えられる。また、アルミナ基板と
は、Al2O3・TiO2相互の反応・結合による接着反
応層を生成することが期待される。
0.8~1.5μ usually used for thick film conductive paste
An appropriate amount of TiO 2 powder having a rutile ionic crystal structure with a particle size of 0.5 μm or less, which is sufficiently smaller than the Cu powder, Au powder, or Ag powder with a particle size of about This is mixed with glass frit, Bi 2 O 3 and Sb 2 O 3 ,
A thick film conductive paste is made by kneading with an organic vehicle. In the state of the conductive paste produced in this way, the TiO 2 powder has a small particle size, so it exists dispersed in the gaps between the conductive metal powders (for example, Cu powder). Then, when this conductive paste is fired after printing, as Cu grows during this firing process,
TiO 2 grows as needle-like crystals, and the needle-like crystals combine to form a three-dimensional network structure. The TiO 2 network with this three-dimensional network structure is
It is believed that it acts as an intra-film structural reinforcing network that limits the mobility (limits shrinkage) of the softened conductive metal to some extent. Furthermore, with an alumina substrate, it is expected that an adhesion reaction layer will be formed due to mutual reaction and bonding of Al 2 O 3 and TiO 2 .

〔実施例の概要〕[Summary of the example]

発明者らは、レーザー加工によつて形成された
スルーホール内壁にも密着性良く被着形成可能な
厚膜ペースト用の導電性組成物を種々検討した。
そして、Cuペースト、Agペースト、Auペースト
等において、密着性の強化と焼成時の収縮抑止を
計るため、導電性金属粉末に相当量の割合で各種
無機粉末を混合することによつて上記改善が見ら
れるかを検討した。添加・混合する無機粉として
は、化学的に安定で、且つ工業的に安定供給され
て安価であることに留意し、Al2O3粉末の各種粒
径のもの、ルチル形とアナターゼ形のTiO2粉末
の各種粒径のもの、市販のガラスフリツト各種を
選定し、それぞれ混合比を変えて、焼成膜条件・
回路用導体との親和性・シート抵抗値・アルミナ
基板との密着性およびその経時変化・スルーホー
ル部信頼性の各項目を検討した結果、粒径0.5μm
以下のルチル形TiO2粉末を適量混合したものが、
上記諸条件を満足し、好適なものであることが判
明した。
The inventors have studied various conductive compositions for thick film pastes that can be formed with good adhesion even on the inner walls of through holes formed by laser processing.
In order to strengthen adhesion and suppress shrinkage during firing in Cu paste, Ag paste, Au paste, etc., the above improvements can be achieved by mixing a considerable amount of various inorganic powders with conductive metal powder. I considered seeing it. The inorganic powders to be added and mixed include Al 2 O 3 powder with various particle sizes, rutile and anatase TiO, keeping in mind that they are chemically stable, industrially supplied stably, and inexpensive. 2Select various particle sizes of powder and various types of commercially available glass frits, change the mixing ratio of each, and adjust the firing film conditions.
As a result of examining various items such as compatibility with circuit conductors, sheet resistance value, adhesion with alumina substrate and its change over time, and through-hole reliability, the particle size was determined to be 0.5 μm.
A mixture of appropriate amounts of the following rutile TiO 2 powder is
It was found that the above conditions were satisfied and that it was suitable.

実施例 1 今、導電性金属粉末をCu粉末とすると共に、
Cuペースト全体を100重量部とした時刻Cu粉末を
80.5重量部、Bi2O3粉末を4.8重量部、Sb2O3粉末
を1.5重量部、ガラスフリツト2.0重量部、有機ビ
ヒクルを11.2重量部としたもの(従来型Cuペース
ト)をベース配分とした。この組成配分の内、
Cu粉末以外の重量比は固定して、上記80.5重量部
のCu粉末の幾割かを、他の無機粉末と置換して
なるCuペーストを各種作製した。実験の都合上、
Cu粉末と置換する形で混合される無機粉末は、
容積比でCu粉末と無機粉末との割合が9:1〜
4:6とされ、無機粉末としては前述したよう
に、各種粒径のAl2O3粉末、各種ガラスフリツ
ト、各種粒径のアナターゼ形TiO2粉末、各種粒
径のルチル形TiO2粉末のうちの1種を選定した。
(なお、耐薬品性に乏しく化学的に不安定な他の
代表的無機粉、例えばZnO等は予め除外した。) 上述のように作製した各種Cuペーストを印
刷・焼成した結果、 (a) Al2O3粉末を混入したものは、Al2O3とCuペ
ースト中のCuとの所謂「ぬれ性」が悪いこと
に起因して、Cu粒子同志の結合・成長が阻害
され、Cuが未焼結になり易く、空孔を多数発
生し、焼結性の点で問題があつた。
Example 1 Now, the conductive metal powder is Cu powder, and
Cu powder was prepared using 100 parts by weight of the entire Cu paste.
The base distribution was 80.5 parts by weight, 4.8 parts by weight of Bi 2 O 3 powder, 1.5 parts by weight of Sb 2 O 3 powder, 2.0 parts by weight of glass frit, and 11.2 parts by weight of organic vehicle (conventional Cu paste). Of this composition distribution,
Various Cu pastes were prepared by replacing some of the above 80.5 parts by weight of Cu powder with other inorganic powders while keeping the weight ratio of the components other than the Cu powder fixed. For experimental reasons,
The inorganic powder that is mixed to replace Cu powder is
The volume ratio of Cu powder to inorganic powder is 9:1~
As mentioned above, the inorganic powders include Al 2 O 3 powder of various particle sizes, various glass frits, anatase TiO 2 powder of various particle sizes, and rutile TiO 2 powder of various particle sizes. One type was selected.
(In addition, other typical inorganic powders that have poor chemical resistance and are chemically unstable, such as ZnO, were excluded in advance.) As a result of printing and firing various Cu pastes prepared as described above, (a) Al In the case of mixed 2 O 3 powder, the so-called "wettability" between Al 2 O 3 and Cu in the Cu paste is poor, which inhibits the bonding and growth of Cu particles and causes unburned Cu to form. It easily sintered, produced many pores, and had problems in terms of sinterability.

(b) ガラスフリツトを相当量混入したもの(前記
2.0重量部のガラスボンデイング用のガラスフ
リツト以外に前述した比でCuと置き換えてガ
ラスを混入したもの)は、回路基板中の他の
Cu導電パターンの親和性が悪く、他のパター
ンとの重なり部分で「ふくれ」が発生し、この
点で実用化に不向きであることが判明した。
(b) Mixed with a considerable amount of glass frit (as mentioned above)
In addition to 2.0 parts by weight of glass frit for glass bonding, glass is mixed in to replace Cu in the ratios mentioned above).
It was found that the copper conductive pattern had poor affinity, causing "bulges" to occur in areas where it overlapped with other patterns, making it unsuitable for practical use.

(c) アナターゼ形のTiO2粉末を混入したものは、
アナターゼ形の結晶構造が焼結時にルチル形に
転位する影響から、TiO2が10μm程度の針状結
晶に成長した。このことは、通常1μm前後の
Cuが3μm程度まで成長しないことを勘案する
と、TiO2の成長結晶で形成されるネツトワー
クの網目構造が大きすぎることを意味し、空孔
が大きくなつてこれまた実用性に乏しいことが
判明した。
(c) Mixed with anatase-form TiO 2 powder,
Due to the influence of the anatase crystal structure being rearranged to the rutile crystal structure during sintering, TiO 2 grew into needle-shaped crystals of approximately 10 μm. This means that the diameter is usually around 1μm.
Taking into account that Cu does not grow to about 3 μm, this means that the network structure formed by the grown TiO 2 crystals is too large, and the pores become large, making it impractical. .

これに対し、ルチル形TiO2粉末を混入したも
のは、半田付け性以外の各チエツク項目で総べて
良好な結果を示すことが判明した。特に、ルチル
形TiO2の粒径は0.5μm以下が好適で、更に望ま
しくは焼成・成長したCu粒子の平均径2.5〜4μm
に対して1/4〜1/8の粒径のTiO2粉末であると、
適当な大きさの針状結晶からなるネツトワークを
形成する。また、Cu粉末とルチル形TiO2粉末の
混合比は、両者の混合物全体を100重量部として、
ルチル形TiO2粉末を7〜20wt%の範囲(Cuと
TiO2との容積比において、略々85:15〜65:35
の範囲)にすることが望ましい。即ち、ルチル形
TiO2粉末が7wt%未満であると基板との密着力が
弱まり、加速環境試験500hr後の引張り試験にお
いて2Kg/2mm□以下となるものがでる。一方、
ルチル形TiO2粉末が上記20wt%を超えるとシー
ト抵抗値が10mΩ/□を超えて、Cuペーストに
本来求められる低抵抗値が維持できなくなる。
(勿論、シート抵抗値が10mΩ/□を超えても、
市販のAg−Pd系ペーストのそれが13〜35mΩ/
□であることに比すると高い値ではないが。) 実験例 1 Cu粉末として、三井金属鉱山(株)製の粒径1.25μ
mのCu粉末と、同社製の粒径0.38μmのCu粉末
を、前者と後者の重量比で7:3の割合で混合し
たものを用意した。このCu粉末と、粒径0.25μm
のルチル形TiO2粉末〔石原産業(株)、商品名CR−
90〕とを合わせたものを100重量部とした時、
TiO2を10wt%(容量比でCu:TiO2が略8:2)
混入した。このCuとTiO2の混合物72gに対し、
ホウケイ酸鉛系のガラスフリツト〔旭硝子(株)製、
商品名ASF−1381〕2g、球状型のBi2O3粉末
〔住友金属鉱山(株)製〕4.8g、球状型のSb2O3粉末
〔住友金属鉱山(株)製〕2.0gを調合し、これに有機
ビヒクル14gと分散剤スポイト3滴を合わせたも
のを、3本ロールに充分に分散・混合してCuペ
ーストを作製した。なお、ガラスフリツトはボー
ルミルにて充分粉砕したものを用意し、上記有機
ビヒクルとしては、アクリール系樹脂〔三菱レー
ヨン(株)製、BR−101〕と、容剤としてジエチル
フタレート〔(株)大八化学工業所製〕とを1:4の
重量比で混合したものとし、また分散剤としては
共栄社油脂化学工業(株)製の商品名フローレンAC
−300を用いた。
On the other hand, it was found that the product containing rutile TiO 2 powder showed good results in all check items other than solderability. In particular, the grain size of rutile TiO 2 is preferably 0.5 μm or less, and more preferably the average diameter of fired and grown Cu particles is 2.5 to 4 μm.
TiO 2 powder with a particle size of 1/4 to 1/8 of
Forms a network of needle-like crystals of appropriate size. In addition, the mixing ratio of Cu powder and rutile TiO 2 powder is as follows, assuming that the entire mixture of both is 100 parts by weight.
Rutile type TiO2 powder in the range of 7~20wt% (Cu and
Approximately 85:15 to 65:35 in volume ratio with TiO 2
range). That is, rutile form
If the TiO 2 powder content is less than 7wt%, the adhesion to the substrate will be weakened, and some will show less than 2 kg/2 mm□ in the tensile test after 500 hours of accelerated environmental testing. on the other hand,
If the rutile TiO 2 powder exceeds the above 20 wt%, the sheet resistance value will exceed 10 mΩ/□, making it impossible to maintain the low resistance value originally required for the Cu paste.
(Of course, even if the sheet resistance value exceeds 10mΩ/□,
The commercially available Ag-Pd paste has a resistance of 13 to 35 mΩ/
Although it is not a high value compared to □. ) Experimental example 1 As Cu powder, particle size 1.25 μ manufactured by Mitsui Kinzoku Mining Co., Ltd.
A mixture of Cu powder with a particle diameter of 0.38 μm and a Cu powder manufactured by the same company with a particle size of 0.38 μm in a weight ratio of 7:3 was prepared. This Cu powder and particle size 0.25μm
Rutile TiO 2 powder [Ishihara Sangyo Co., Ltd., product name CR-]
90] and 100 parts by weight,
10wt% TiO 2 (Cu:TiO 2 in volume ratio is approximately 8:2)
It got mixed in. For 72g of this mixture of Cu and TiO2 ,
Lead borosilicate glass frit [manufactured by Asahi Glass Co., Ltd.]
Mix 2 g of product name ASF-1381, 4.8 g of spherical Bi 2 O 3 powder [manufactured by Sumitomo Metal Mining Co., Ltd.], and 2.0 g of spherical Sb 2 O 3 powder [manufactured by Sumitomo Metal Mining Co., Ltd.]. A combination of 14 g of organic vehicle and 3 drops of a dispersant dropper was thoroughly dispersed and mixed in 3 rolls to prepare a Cu paste. The glass frit was thoroughly ground in a ball mill, and the organic vehicle used was acrylic resin [BR-101, manufactured by Mitsubishi Rayon Co., Ltd.], and diethyl phthalate [Daihachi Chemical Co., Ltd.] was used as the container. manufactured by Kogyo Co., Ltd.] at a weight ratio of 1:4, and the dispersant was Fluorene AC manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd.
−300 was used.

上記Cuペーストを、京セラ(株)製の96%アルミ
ナ基板上および該基板上にレーザー加工によつて
穿設したスルーホールにスクリーン印刷によつて
塗布した。印刷条件は、325メツシユスクリーン
を使用し、スキージ硬度HSを70、スキージギヤ
ツプSGを1mm、スキージ圧SPを2Kg、スキージ
スピードSSを40mm/secとし、焼成後の膜厚が
10μm弱となるように設定した。上記条件で印刷
後、5分間のレベリング、150℃で10分間の乾燥
後、ピーク温度900℃の60分プロフアイルにてチ
ツ素雰囲気中で焼成を行なつた。
The above-mentioned Cu paste was applied by screen printing onto a 96% alumina substrate manufactured by Kyocera Corporation and into through holes drilled on the substrate by laser processing. The printing conditions were as follows: 325 mesh screen was used, squeegee hardness HS was 70, squeegee gap SG was 1 mm, squeegee pressure SP was 2 kg, squeegee speed SS was 40 mm/sec, and the film thickness after baking was
It was set to be a little less than 10 μm. After printing under the above conditions, leveling for 5 minutes, drying at 150°C for 10 minutes, and baking in a nitrogen atmosphere at a peak temperature of 900°C for 60 minutes.

このように形成されたCuペーストによる導電
体は、電子顕微鏡による表面および断面観察にお
いて空孔のない緻密で良好な焼結膜であることが
確認された。また、焼結後の基板との密着性も極
めて良好で、第2,3図示のようにセラミツク基
板1のスルーホール2の内壁に導電体3が完全に
密着していることが確認された。また、90℃と0
℃の繰返しヒートシヨツク試験においても、良好
な信頼性が維持され、100回の繰返しヒートシヨ
ツク試験後のスルーホール部の拡大観察の結果、
剥れ、裂け、収縮が略100%認められなかつた。
また、4端子法によるシート抵抗値測定につれば
膜厚15μm換算で5mΩ/□という極めて高い導
電率が示された。
The conductor made of Cu paste thus formed was confirmed to be a dense and well-sintered film without pores by surface and cross-sectional observation using an electron microscope. Further, the adhesion with the substrate after sintering was also very good, and it was confirmed that the conductor 3 was completely in close contact with the inner wall of the through hole 2 of the ceramic substrate 1 as shown in the second and third figures. Also, 90℃ and 0
Good reliability was maintained even in repeated heat shock tests at ℃, and as a result of magnified observation of the through-hole section after 100 repeated heat shock tests,
Approximately 100% no peeling, tearing, or shrinkage was observed.
In addition, when sheet resistance was measured using a four-probe method, an extremely high conductivity of 5 mΩ/□ was shown when converted to a film thickness of 15 μm.

第1図は上述のように形成された導電体1中の
Cuを、熱濃硫酸でエツチング除去した後の無機
粉体の焼結構造を示す、電子顕微鏡撮影による1
万倍拡大写真である。(なお、第1図は表面の状
態を示していが、断面各部の観察においても同図
と同等の構造を呈している。)第1図から明らか
なように該実験例におけるCuペーストによる導
電膜(導電体1)中には、無機物による針状結晶
が結合した立体網目構造によるネツトワークが形
成されている。この針状結晶は添加した無機物の
比重と混合比を勘案するとルチル形TiO2粉体を
主体としたものが針状に成長して立体網目状の比
較的強固なネツトワークを形成するものと考察さ
れる。(何んとなればTiO2無添加のCuペースト
による導電膜をエツチングすると、アルミナ基板
の表面の粒子のみが観察された。)第1図におい
て下部の横線の長さが1μmの指標で、これから
明らかなように粒径0.25μmのルチル形TiO2粉末
は、長さ2〜3μm程度の針状結晶に成長してお
り、TiO2ネツトワークの空隙で示されるCuは粒
径3μm程度に成長し、各個が結合・導通してい
る。
FIG. 1 shows the inside of the conductor 1 formed as described above.
Electron micrograph 1 showing the sintered structure of inorganic powder after Cu was removed by etching with hot concentrated sulfuric acid.
This is a 10,000 times enlarged photo. (Although Fig. 1 shows the surface condition, the structure is the same as that shown in the cross-sectional observation of each part.) As is clear from Fig. 1, the conductive film made of Cu paste in this experimental example In (the conductor 1), a network is formed with a three-dimensional network structure in which needle-like crystals made of inorganic substances are combined. Considering the specific gravity and mixing ratio of the added inorganic materials, it is assumed that these needle-like crystals are mainly composed of rutile TiO 2 powder that grows into needle-like shapes to form a relatively strong three-dimensional network. be done. (For what it's worth, when etching a conductive film made of TiO 2 -free Cu paste, only particles on the surface of the alumina substrate were observed.) In Figure 1, the horizontal line at the bottom is an index of 1 μm in length, and from now on As is clear, the rutile TiO 2 powder with a particle size of 0.25 μm has grown into needle-like crystals with a length of about 2 to 3 μm, and the Cu shown in the voids of the TiO 2 network has grown to a particle size of about 3 μm. , each piece is connected and conductive.

上記したCu、TiO2の成長過程メカニズムの詳
細は明らかではないが、CuとTiO2との融点から
見て、焼結時の加熱によつてCuが先ず軟化して
その幾つか同志が一体化して成長を始め、次に
Cu間の隙間でTiO2が針状に成長して、Cuの成長
と併行もしくは追行する形で上述のネツトワーク
を形成するものと窺え、このネツトワークの存在
が軟化したCuの流動を阻止して導電膜の収縮を
阻止する一助となるものと推考される。
The details of the mechanism of the growth process of Cu and TiO 2 mentioned above are not clear, but judging from the melting points of Cu and TiO 2 , Cu first softens due to heating during sintering, and some of them become integrated. begins to grow, then
It appears that TiO 2 grows in needle-like shapes in the gaps between Cu, forming the network described above in parallel with or following the growth of Cu, and the existence of this network prevents the flow of softened Cu. It is thought that this helps prevent contraction of the conductive film.

また、この導電膜とアルミナ基板との接合部
を、X線解析した結果、アルミナ基板成分中のα
−Al2O3とルチル形TiO2の両結晶相の他に、2つ
の結晶相のピーク(結晶面間隔d=2.19Åおよび
1.62Åの結晶相のピーク)が存在していることが
判明し(なお、TiO2無添加の資料ではα−Al2O3
結晶相のみが検出される)、この新らたな結晶相
による化合物は詳らではないが、ルチル形TiO2
とα−Al2O3間で反応を生じ、この生成物が基板
との接合強化に関与していると推考される。
In addition, as a result of X-ray analysis of the joint between this conductive film and the alumina substrate, α in the alumina substrate component was found to be
-In addition to both Al 2 O 3 and rutile TiO 2 crystal phases, two crystal phase peaks (crystal spacing d = 2.19 Å and
(1.62 Å crystal phase peak) was found to exist (in addition, in the material without TiO 2 addition, α-Al 2 O 3
(Only a crystalline phase is detected), but the compound due to this new crystalline phase is not clear, but rutile TiO 2
It is presumed that a reaction occurs between α-Al 2 O 3 and α-Al 2 O 3 , and this product is involved in strengthening the bond with the substrate.

一方また、該実験例1による資料を恒温層にて
150℃の加速環境試験を行ない、該環境試験500時
間後において、該資料上の導電膜を清浄してこの
上に市販のTiO2無添加のCuペースト
(Cermalloy社製、7229Cuペースト)で、当該実
験例1と同等の印刷・焼成条件で導電膜を形成
し、この上に引張り試験ピンを半田付けして、経
時後の引張強度を測定した結果、5Kgf/2mm□
という極めて良好な結果を示した。また、当該実
験例1による導電膜作成後に、上記市販のCuペ
ーストによる導電膜を形成し、この直後、および
500時間加速環境試験後においても、同等の引張
強度を示すことが確認され、経時使用化において
も引張強度の変化が殆んどないことが確認され
た。そしてまた、この引張試験のための市販Cu
ペーストによる多層膜形成によつて、他のCu回
路導体との親和性も極めて良好であることが確認
された。
On the other hand, the material from Experimental Example 1 was placed in a constant temperature bath.
An accelerated environmental test was conducted at 150°C, and after 500 hours of the environmental test, the conductive film on the material was cleaned and a commercially available TiO 2 -free Cu paste (manufactured by Cermalloy, 7229Cu paste) was applied on top of the conductive film. A conductive film was formed under the same printing and firing conditions as in Experimental Example 1, and a tensile test pin was soldered onto the film, and the tensile strength after time was measured. The result was 5Kgf/2mm□
The results showed extremely good results. In addition, after the conductive film was created according to Experimental Example 1, a conductive film was formed using the commercially available Cu paste, and immediately after that, and
It was confirmed that the same tensile strength was exhibited even after a 500-hour accelerated environmental test, and it was confirmed that there was almost no change in tensile strength even after use over time. And also commercially available Cu for this tensile test.
It was confirmed that multilayer film formation using paste has extremely good compatibility with other Cu circuit conductors.

実験例 2 実験例1と全く同一の材料を用い、Cu粉末と
ルチル形TiO2粉末とを合わせたものを100重量部
とした時、TiO2をそれぞれ5.4wt%、16.0wt%、
19.4wt%(容量比でCu:TiO2がそれぞれ、85:
15、70:30、65:35)混入した。この各々、73.7
g、67.5g、64.8gに対して前記実験例1と全く
同一材料のBi2O3、Sb2O3、ガラスフリツト、有
機ビヒクル、分散剤を実験例1と同一重量分混合
して充分分散・混練してCuペーストを作成した。
これを用いて実験例1と同等の印刷・焼成条件に
て導電膜(導電体1)を形成した結果、Cu:
TiO2の容量比が70:30のものは、シート抵抗値
が8mΩ/□である以外は、他の総べての評価項
目において実験例1と同様の良好な結果を示し
た。またCu:TiO2の容量比が85:15のものは、
シート抵抗値が3.5mΩ/□と極めて良好である
が、前記500時間加速環境試験後(該実験例によ
る試料をムキ出しで環境試験したもの)におい
て、引張強度が2〜3Kgf/2mm□となつたが、
一般の厚膜ペーストの引張強度の合格ライン2Kg
f/2mm□をクリアした。他の評価項目は実験例
1と同等の良好な結果を示した。また、Cu:
TiO2の容量比が65:35のものは、シート抵抗値
が10mΩ/□程度(この程度でもAg−Pdペース
トに比すと良好で、Cuペーストに求められる高
導電率を維持している)を示した以外は、実験例
1と同様の良好な結果を示した。
Experimental Example 2 Using the same materials as in Experimental Example 1, when the combined Cu powder and rutile TiO 2 powder is 100 parts by weight, TiO 2 is 5.4wt%, 16.0wt%, respectively.
19.4wt% (Cu: TiO2 in volume ratio: 85:
15, 70:30, 65:35). Each of these, 73.7
g, 67.5 g, and 64.8 g, Bi 2 O 3 , Sb 2 O 3 , glass frit, organic vehicle, and dispersant, which are exactly the same materials as in Experimental Example 1, were mixed in the same weight amounts as in Experimental Example 1 to ensure sufficient dispersion. A Cu paste was prepared by kneading.
Using this, a conductive film (conductor 1) was formed under the same printing and firing conditions as in Experimental Example 1. As a result, Cu:
The sample with a TiO 2 capacity ratio of 70:30 showed the same good results as Experimental Example 1 in all other evaluation items, except for the sheet resistance value of 8 mΩ/□. In addition, the Cu:TiO 2 capacity ratio is 85:15.
The sheet resistance value is extremely good at 3.5 mΩ/□, but after the 500-hour accelerated environmental test (the environmental test was conducted with the sample according to the experimental example stripped), the tensile strength was 2 to 3 Kgf/2 mm□. However,
Passing line for tensile strength of general thick film paste: 2Kg
Cleared f/2mm□. Other evaluation items showed good results equivalent to Experimental Example 1. Also, Cu:
When the TiO 2 capacitance ratio is 65:35, the sheet resistance value is around 10 mΩ/□ (even at this level, it is better than Ag-Pd paste and maintains the high conductivity required for Cu paste). The same good results as in Experimental Example 1 were shown except that .

実施例 2 前述した実施例1と同一の手法で、Auペース
トを各種検討した。この結果、Auと置き換えら
れるルチル形TiO2の量を、Au粉末と該ルチル形
TiO2粉末とを合わせた混合物全体を100重量部と
した時、ルチル形TiO2を3.5〜10wt%とした場合
に(容量比でAu:TiO2が85:15〜65:35)、前
記実施例1のCuペーストと同等の良好なシート
抵抗値、引調強度、経時信頼性を示し、レーザー
加工によるスルーホールへの密着強度も良好で、
前述したヒートシヨツクによつても不良品は見ら
れなかつた。
Example 2 Various Au pastes were examined using the same method as in Example 1 described above. As a result, the amount of rutile TiO2 that can be replaced with Au is reduced between the Au powder and the rutile TiO2.
When the entire mixture including TiO 2 powder is 100 parts by weight, and the rutile TiO 2 is 3.5 to 10 wt% (Au:TiO 2 in volume ratio is 85:15 to 65:35), the above implementation is performed. It shows good sheet resistance, undertone strength, and reliability over time equivalent to the Cu paste in Example 1, and also has good adhesion strength to through holes by laser processing.
No defective products were found even through the heat shock described above.

また、使用されるAu粉末の粒径は0.5〜3μmの
ものが選定され、これに対しルチル形TiO2粉末
の粒径は0.5μm以下が適当であることが判明し
た。
Furthermore, the particle size of the Au powder used was selected to be 0.5 to 3 μm, whereas it was found that the particle size of the rutile TiO 2 powder was suitably 0.5 μm or less.

実験例 3 粒径1μmのAu粉末〔田中マツセイ(株)製、
TR114G〕と、前記実験例1と同一のルチル形
TiO2粉末とを両者の混合物全体を100重量部とし
て時、TiO2を4.9wt%(容量比でAu:TiO2
8:2)混入した。このAuとTiO2粉末の混合物
147.2gに対し、前記実験例1と同一材料、同一
重量分のBi2O3、Sb2O3、ガラスフリツト、分散
剤、有機ビヒクルを混合し、充分分散・混合して
Auペーストを作成した。
Experimental Example 3 Au powder with a particle size of 1 μm [manufactured by Tanaka Matsusei Co., Ltd.]
TR114G] and the same rutile type as in Experimental Example 1 above.
TiO 2 powder and TiO 2 were mixed in an amount of 4.9 wt % (Au:TiO 2 in a volume ratio of 8:2) when the total mixture of the two was 100 parts by weight. This mixture of Au and TiO2 powder
To 147.2 g, the same materials and weights of Bi 2 O 3 , Sb 2 O 3 , glass frit, dispersant, and organic vehicle as in Experimental Example 1 were mixed, and the mixture was thoroughly dispersed and mixed.
I created an Au paste.

このAuペースとを実験例1と同一条件で印刷
し、5分間のレベリング、150℃で10分間の乾燥
後、ピーク温度870℃の60分プロフアイルにて焼
成を行なつた。
This Au paste was printed under the same conditions as in Experimental Example 1, leveled for 5 minutes, dried at 150°C for 10 minutes, and then fired at a peak temperature of 870°C for 60 minutes.

この結果、総べての評価項目において実験例1
と同等の良好な結果を示し、シート抵抗値は4.5
mΩ/□、500時間加速環境試験後の引張強度も
5Kgf/2mm□以上であり、レーザー加工による
スルーホールへの密着性も良好であつた。
As a result, in all evaluation items, Experimental Example 1
The sheet resistance value is 4.5.
mΩ/□, tensile strength after 500 hours accelerated environmental test was 5Kgf/2mm□ or more, and adhesion to through holes formed by laser processing was also good.

実施例 3 前述した実施例1と同一の手法でAgペースト
を各種検討した。この結果、Agと置き換えられ
るルチル形TiO2の量を、Ag粉末と該ルチル形
TiO2粉末とを合わせた混合物全体を100重量部と
した時、ルチル形TiO2を6.3〜17wt%とした場合
に(容量比でAg:TiO2が85:15〜65:35)、前
記実施例1のCuペーストと略々同等の好結果を
示し、レーザー加工によるスルーホールへも密着
信頼性良く被着した。
Example 3 Various Ag pastes were examined using the same method as in Example 1 described above. As a result, the amount of rutile TiO 2 that can be replaced with Ag is reduced between Ag powder and the rutile TiO2.
When the entire mixture including TiO 2 powder is 100 parts by weight, and the rutile TiO 2 is 6.3 to 17 wt% (Ag:TiO 2 in volume ratio is 85:15 to 65:35), the above implementation is performed. It showed almost the same good results as the Cu paste of Example 1, and adhered to through holes formed by laser processing with good adhesion and reliability.

また、使用されるAg粉末の粒径は1〜2μmの
ものが選定され、これに対しルチル形TiO2粉末
の粒径は0.5μm以下のものが適当であることが判
定した。
Furthermore, the particle size of the Ag powder used was selected to be 1 to 2 μm, whereas it was determined that the particle size of the rutile-type TiO 2 powder was 0.5 μm or less.

実験例 4 粒径1μmのAg粉末〔(株)高純度化学研究所製、
E−20〕と、前記実験例1と同一のルチル形
TiO2粉末とを両者の混合物全体を100重量部とし
た時、TiO2を8.6wt%(容量比でAg:TiO2
8:2)混入した。このAgとTiO2の混合物83.7
gに対し、前記実験例1と同一材量、同一重量分
のBi2O3、Sb2O3、ガラスフリツト、分散剤、有
機ビヒクルを混合し、充分分散、混合してAgペ
ーストを作成した。
Experimental example 4 Ag powder with a particle size of 1 μm [manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.]
E-20] and the same rutile form as in Experimental Example 1 above.
When the total mixture of both TiO 2 powder and TiO 2 powder was 100 parts by weight, 8.6 wt % of TiO 2 (Ag:TiO 2 in a volume ratio of 8:2) was mixed. This mixture of Ag and TiO283.7
The same amounts and weights of Bi 2 O 3 , Sb 2 O 3 , glass frit, dispersant, and organic vehicle as in Experimental Example 1 were added to the Ag paste, and the Ag paste was sufficiently dispersed and mixed.

このAgペーストを実験例1と同一条件で印刷
し、5分間のレベリング、150℃で10分間の乾燥
後、ピーク温度850℃の60分プロフアイルにて焼
成を行なつた。
This Ag paste was printed under the same conditions as in Experimental Example 1, leveled for 5 minutes, dried at 150°C for 10 minutes, and then fired at a peak temperature of 850°C for 60 minutes.

この結果、総べての評価項目において実験例1
と同等の良好な結果を示し、シート抵抗値は約5
mΩ/□、500時間加速環境試験後の引張強度も
5Kgf/2mm□以上であり、レーザー加工による
スルーホールへの密着性も良好であつた。
As a result, in all evaluation items, Experimental Example 1
The sheet resistance value was approximately 5.
mΩ/□, tensile strength after 500 hours accelerated environmental test was 5Kgf/2mm□ or more, and adhesion to through holes formed by laser processing was also good.

以上、Cuペースト、Auペースト、Agペースト
について述べたが、Ag−Pd系ペースト等におい
ても本発明は適用可能であり、粒径0.5μm以下の
ルチル形TiO2と、例えば8:2型のAg−Pd粉末
とを容量比で、85:15〜65:35で混合することに
よつて、前記各実施例と同様のレーザー加工面へ
の密着信頼性を計れることが期待できる。更には
また、Bi2O3、Sb2O3、ガラスフリツトを添加し
たガラスボンドタイプの厚膜ペーストを示した
が、CdO、NiO等のケミカルボンデイングメカニ
ズムのためのものを混入しても良く、有機ビヒク
ル用の樹脂としてはアクリル系以外にもセルロー
ル系が、また容剤としてはα−テルピネオール、
トリデカノール等々が適用可能で、本発明の精神
を逸脱しない範囲で種々のバリエーシヨンが考え
られる。
The above has described Cu paste, Au paste, and Ag paste, but the present invention is also applicable to Ag-Pd pastes, etc., and the present invention can be applied to rutile-type TiO 2 with a particle size of 0.5 μm or less and, for example, 8:2-type Ag -Pd powder at a volume ratio of 85:15 to 65:35, it is expected that the same reliability of adhesion to the laser-processed surface as in each of the above embodiments can be achieved. Furthermore, although we have shown a glass bond type thick film paste containing Bi 2 O 3 , Sb 2 O 3 , and glass frit, materials for chemical bonding mechanisms such as CdO and NiO may also be mixed, and organic In addition to acrylic resins, cellulose resins are used as vehicle resins, and α-terpineol,
Tridecanol and the like are applicable, and various variations are possible without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、レーザー
加工で穿設されたスルーホール等にも信頼性高く
密着して被着・形成可能な厚膜導電ペーストを提
供できて、その価値は多大である。
As detailed above, according to the present invention, it is possible to provide a thick film conductive paste that can be reliably adhered to and formed into through holes etc. drilled by laser processing, and its value is enormous. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例に係り、第1
図は本発明の実施例によるCuをエツチングで除
去した状態の膜の針状結晶構造を示す図面代用写
真、第2図および第3図はスルーホールへの被着
状態を示す断正面図並びに第2図A−A線断面
図、第4図および第5図は従来例によるスルーホ
ールへの被着状態を示す要部断正面図並びに第4
図B−B線断面図である。 1……セラミツク基板(アルミナ基板)、2…
…スルーホール、3……導電体。
Figures 1 to 3 relate to embodiments of the present invention;
The figure is a photograph substituted for a drawing showing the acicular crystal structure of a film with Cu removed by etching according to an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional front views showing the state of adhesion to through holes. Figure 2 is a cross-sectional view taken along the line A-A, and Figures 4 and 5 are a cross-sectional front view of main parts showing the state of adhesion to the through hole according to the conventional example, and Figure 4.
It is a sectional view taken along the line B-B in FIG. 1... Ceramic substrate (alumina substrate), 2...
...Through hole, 3...Conductor.

Claims (1)

【特許請求の範囲】 1 Cu粉末、Au粉末、Ag粉末のうちの少くとも
1種を主成分とする導電性組成物に、TiO2粉末
を添加したことを特徴とする厚膜ペースト用導電
性組成物。 2 前記TiO2粉末は、粒径0.5μm以下のルチル
形TiO2粉末であることを特徴とする特許請求の
範囲第1項記載の厚膜ペースト用導電性組成物。 3 導電性金属をCu粉末とし、該Cu粉末と前記
ルチル形TiO2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO2粉末は7〜20wt%とされ
ていることを特徴とする特許請求の範囲第2項記
載の厚膜用導電性組成物。 4 導電性金属をAu粉末とし、該Au粉末と前記
ルチル形TiO2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO2粉末は3.5〜10wt%とされ
ていることを特徴とする特許請求の範囲第2項記
載の厚膜ペースト用導電性組成物。 5 導電性金属をAg粉末とし、該Ag粉末と前記
ルチル形TiO2粉末の混合物全体を100重量部とし
た場合、ルチル形TiO2粉末は6.3〜17wt%とされ
ていることを特徴とする特許請求の範囲第2項記
載の厚膜ペースト用導電性組成物。
[Claims] 1. Conductive material for thick film paste, characterized in that TiO 2 powder is added to a conductive composition containing at least one of Cu powder, Au powder, and Ag powder as a main component. Composition. 2. The conductive composition for thick film paste according to claim 1, wherein the TiO 2 powder is a rutile TiO 2 powder with a particle size of 0.5 μm or less. 3. A patent characterized in that when the conductive metal is Cu powder and the entire mixture of the Cu powder and the rutile TiO 2 powder is 100 parts by weight, the rutile TiO 2 powder is 7 to 20 wt%. The conductive composition for thick films according to claim 2. 4. A patent characterized in that when the conductive metal is Au powder and the entire mixture of the Au powder and the rutile TiO 2 powder is 100 parts by weight, the rutile TiO 2 powder is 3.5 to 10 wt%. The conductive composition for thick film paste according to claim 2. 5 A patent characterized in that when the conductive metal is Ag powder and the entire mixture of the Ag powder and the rutile TiO 2 powder is 100 parts by weight, the rutile TiO 2 powder is 6.3 to 17 wt%. The conductive composition for thick film paste according to claim 2.
JP15922886A 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste Granted JPS6315866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15922886A JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15922886A JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Publications (2)

Publication Number Publication Date
JPS6315866A JPS6315866A (en) 1988-01-22
JPH0255460B2 true JPH0255460B2 (en) 1990-11-27

Family

ID=15689136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15922886A Granted JPS6315866A (en) 1986-07-07 1986-07-07 Electrically conductive composition for thick-film paste

Country Status (1)

Country Link
JP (1) JPS6315866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239136A (en) * 2002-07-17 2010-10-21 Ngk Spark Plug Co Ltd Wiring board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2649081B2 (en) * 1989-03-29 1997-09-03 昭栄化学工業株式会社 Thick film copper paste
JPH0824217B2 (en) * 1990-04-19 1996-03-06 富士通株式会社 Method for forming via on multilayer ceramic substrate
CA2105448A1 (en) * 1992-09-05 1994-03-06 Michio Horiuchi Aluminum nitride circuit board and method of producing same
JP3769152B2 (en) * 1999-09-03 2006-04-19 京セラケミカル株式会社 Conductive paste
JP2006278071A (en) * 2005-03-29 2006-10-12 Toyo Aluminium Kk Paste composition, electrode, and solar battery element equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730309A (en) * 1980-07-29 1982-02-18 Tdk Electronics Co Ltd Electrode pasge for porcelain capacitor
JPS6047412A (en) * 1983-08-24 1985-03-14 ティーディーケイ株式会社 Method of producing electronic part and conductive paste composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730309A (en) * 1980-07-29 1982-02-18 Tdk Electronics Co Ltd Electrode pasge for porcelain capacitor
JPS6047412A (en) * 1983-08-24 1985-03-14 ティーディーケイ株式会社 Method of producing electronic part and conductive paste composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239136A (en) * 2002-07-17 2010-10-21 Ngk Spark Plug Co Ltd Wiring board

Also Published As

Publication number Publication date
JPS6315866A (en) 1988-01-22

Similar Documents

Publication Publication Date Title
US6841495B2 (en) Glass and conductive paste using the same
US4172919A (en) Copper conductor compositions containing copper oxide and Bi2 O3
US4521329A (en) Copper conductor compositions
KR100680461B1 (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
US4514321A (en) Thick film conductor compositions
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
US4540604A (en) Thick film conductor compositions
IE59654B1 (en) Copper conductor compositions
JPH01128488A (en) Thick film copper conductor ink
JP2008226771A (en) Copper conductive paste, conductor circuit board, and electronic component
JPH0563110B2 (en)
JP3507084B2 (en) Copper conductor composition
JP3237497B2 (en) Conductive paste, conductor and ceramic substrate using the same
JP2003077336A (en) Conductive paste and laminated ceramic capacitor using the same
JP3297531B2 (en) Conductive paste
JPH0255460B2 (en)
JP4423832B2 (en) Glass composition and thick film paste using the same
KR100568638B1 (en) Terminal Electrode Compositions for Multilayer Ceramic Capacitors
JP2003257243A (en) Conductive paste
US6406774B1 (en) Electrically conductive composition for use in through hole of electric component
JP2589433B2 (en) Plateable thick film copper conductor paste composition
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP2941002B2 (en) Conductor composition
US3592781A (en) Conductive glaze composition and method for preparation
JPH06231612A (en) Conductive ink