JPS6315770Y2 - - Google Patents

Info

Publication number
JPS6315770Y2
JPS6315770Y2 JP1982076453U JP7645382U JPS6315770Y2 JP S6315770 Y2 JPS6315770 Y2 JP S6315770Y2 JP 1982076453 U JP1982076453 U JP 1982076453U JP 7645382 U JP7645382 U JP 7645382U JP S6315770 Y2 JPS6315770 Y2 JP S6315770Y2
Authority
JP
Japan
Prior art keywords
tube
pipe
measuring
air
exterior body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982076453U
Other languages
Japanese (ja)
Other versions
JPS58178615U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7645382U priority Critical patent/JPS58178615U/en
Publication of JPS58178615U publication Critical patent/JPS58178615U/en
Application granted granted Critical
Publication of JPS6315770Y2 publication Critical patent/JPS6315770Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は管内芯出装置に関し、被測定管内で
の測定器の位置決め、芯出しが簡単でしかも正確
に行なえるものを提供しようとしている。
[Detailed Description of the Invention] This invention relates to an in-pipe centering device, and is intended to provide an apparatus that can easily and accurately position and center a measuring instrument within a pipe to be measured.

従来より各種の鋼管等に対して、管内面におけ
る腐食状態の測定や管厚の測定を行なう方法とし
ては、触針等にて機械的に凹凸を計測したり、超
音波によつて管厚を測定する等種の方法が提案さ
れている。
Conventionally, methods for measuring the corrosion state on the inner surface of various steel pipes and measuring the pipe thickness include mechanically measuring irregularities with a stylus, etc., and measuring pipe thickness using ultrasonic waves. Various methods have been proposed to measure this.

しかし何れの方法においても、測定器を被測定
管内へ挿入して、管軸方向または管円周方向に沿
つて順次測定する場合には、測定器を上記管内で
自由に移動できると共に、正確に位置決めしなけ
れば、管内全体にわたつて精密な測定を行なうこ
とは困難であつた。
However, in either method, when inserting a measuring instrument into a pipe to be measured and sequentially measuring along the pipe axis or circumferential direction, the measuring instrument can be moved freely within the pipe and cannot be accurately measured. Without positioning, it was difficult to perform accurate measurements throughout the pipe.

そこでこの考案においては上記測定器の移動お
よび管内における芯出し等の位置決めが容易でし
かも正確に行なえるものを提供するものであり、
その構成としては、被測定管内を軸方向に移動自
在な外装体の中央には円周方向に回動自在な回転
体を取付け、回転体には管厚等の測定部を設ける
と共に測定用ケーブルおよび回動用レリーズケー
ブルを連結してあり、上記外装体の外周には測定
部の前後にリング状をなす管内芯出用の内部を互
いに連通してなるエアーチユーブを設け、この前
後のエアーチユーブに対して圧力エアーを供給自
在になすエアーホースを連結してなることを特徴
としている。
Therefore, in this invention, it is an object of the present invention to provide a device that allows the movement of the measuring device and the positioning such as centering within the pipe to be performed easily and accurately.
Its structure is such that a rotating body that can freely rotate in the circumferential direction is attached to the center of an exterior body that can move freely in the axial direction within the pipe to be measured, and a measuring section for measuring pipe thickness, etc. is installed on the rotating body, and a measurement cable is attached to the rotating body that can freely rotate in the circumferential direction. and a release cable for rotation are connected, and air tubes are provided on the outer periphery of the above-mentioned exterior body, and the ring-shaped interiors for centering the tube are communicated with each other before and after the measuring section. It is characterized by being connected to an air hose that can freely supply pressurized air.

次いでこの考案の実施態様について図を参照し
ながら以下に例示する。
Next, embodiments of this invention will be illustrated below with reference to the drawings.

1は外装体であり、被測定管Pの内径より少し
小さな円筒状をなし、管P内部を軸方向に自由に
移動できるようになつている。外装体1の中央に
はベアリング10を介して回転体2が取付けてあ
り、回転体2は外装体1とは別個に円周方向に自
由に回動できるようになつており、回転体2の端
部に連結した回動用レリーズケーブル20を管P
の外部へ延長し、レリーズケーブル20を捩り回
動することにより、回転体2の回動を遠隔操作で
きるようになつている。
Reference numeral 1 denotes an exterior body, which has a cylindrical shape slightly smaller than the inner diameter of the tube P to be measured, and is designed to be able to freely move inside the tube P in the axial direction. A rotating body 2 is attached to the center of the exterior body 1 via a bearing 10, and the rotary body 2 can freely rotate in the circumferential direction independently of the exterior body 1. The rotational release cable 20 connected to the end of the tube P
By extending the release cable 20 to the outside and twisting and rotating the release cable 20, the rotation of the rotating body 2 can be controlled remotely.

回転体2の中心には管厚等の測定部として超音
波の送受信を行なう探触子3が設けてあり、探触
子3に連結した測定用ケーブル30を上記レリー
ズケーブル20と共に管外へと延長して、探触子
3の作動および測定結果の情報を管Pの外部で遠
隔操作および記録ができるようになつている。
A probe 3 for transmitting and receiving ultrasonic waves is provided at the center of the rotating body 2 as a part for measuring pipe thickness, etc., and a measurement cable 30 connected to the probe 3 is connected to the release cable 20 to the outside of the pipe. By extension, information on the operation of the probe 3 and measurement results can be remotely controlled and recorded outside the tube P.

次に4はゴムまたは合成樹脂からなり弾力性の
あるリング状のエアーチユーブであり、前記外装
体1のうち中央の測定部となる探触子3を挾んで
前後の外周を取巻くように2本のエアーチユーブ
4が内部を互いに連通して設けてありエアーチユ
ーブ4にはフレキシブルなエアーホース40が連
結してあつて管P外より圧力エアーを2本のエア
ーチユーブ4内に対して供給自在になつている。
Next, reference numeral 4 denotes elastic ring-shaped air tubes made of rubber or synthetic resin, and two of them are arranged so as to surround the front and rear outer periphery of the probe 3 which is the central measuring part of the exterior body 1. A flexible air hose 40 is connected to the air tube 4 so that pressurized air can be freely supplied into the two air tubes 4 from outside the pipe P. It's summery.

以上のごとき装置を用いて被測定管Pの管厚を
測定する方法について説明する。
A method of measuring the thickness of the pipe P to be measured using the above-mentioned apparatus will be explained.

まず被測定管Pへ外装体1等を挿入し所定の測
定位置へ移動する際には、エアーチユーブ4に圧
力エアーを供給せず、軸方向へ自由に移動できる
ようにしておく。
First, when inserting the exterior body 1 etc. into the tube to be measured P and moving it to a predetermined measurement position, pressurized air is not supplied to the air tube 4 so that it can freely move in the axial direction.

所定の測定位置にくると、エアーチユーブ4に
エアーホース40から圧力エアーを送り込み、エ
アーチユーブ4を円周方向に膨張させる。すると
膨張したエアーチユーブ4が管Pの内面に当接し
押圧するので、外装体1は管内で固定され前後へ
の移動が阻止されると共に、エアーチユーブ4は
内部が互いに連通されているため円周方向に均等
に膨張押圧するので外装体1等は管Pと同心位置
に正確に芯出しされた状態になる。
When a predetermined measurement position is reached, pressurized air is fed into the air tube 4 from the air hose 40 to inflate the air tube 4 in the circumferential direction. Then, the expanded air tube 4 contacts and presses the inner surface of the tube P, so the exterior body 1 is fixed within the tube and prevented from moving forward and backward, and since the insides of the air tube 4 are interconnected, the circumference Since it is expanded and pressed evenly in the direction, the exterior body 1 etc. is in a state where it is accurately centered concentrically with the pipe P.

この状態で探触子3から管壁へ向けて正確に垂
直方向に超音波を発信すると共に、管壁からの反
射破等を受信し、受信信号を測定用ケーブル30
を経て管外のブラウン管5等の表示部または記録
計へと伝達することにより、管厚を測定できるも
のである。なお管内には予め水を充填しておき、
いわゆる水浸法によつて超音波測定を行なうもの
とする。
In this state, the probe 3 emits ultrasonic waves precisely in the vertical direction toward the tube wall, receives reflected waves from the tube wall, and transfers the received signal to the measurement cable 30.
The tube thickness can be measured by transmitting the signal to a display section or recorder of a cathode ray tube 5 or the like outside the tube. Please fill the pipe with water in advance.
The ultrasonic measurement will be carried out by the so-called water immersion method.

上記超音波による測定についてさらに詳しく説
明すると、探触子3の振動子31から発信された
超音波は管内の水中を伝わり、その一部が被測定
管Pの内側表面で反射した後、再び探触子3へ戻
り受信されるS1。管Pの表面では残りの一部の超
音波が管内に伝わり、管Pの裏面即ち外面で反射
した後、上記同様探触子3へと戻り受信される
B1。さらに上記管Pの裏面で反射した超音波の
一部は再度管Pの表面および裏面で反射されて探
触子3へと戻る超音波も存在するB2,B3…。
To explain the ultrasonic measurement in more detail, the ultrasonic wave emitted from the transducer 31 of the probe 3 travels through the water inside the tube, and after a part of it is reflected on the inner surface of the tube to be measured P, it is probed again. S 1 is returned to the probe 3 and received. On the surface of the tube P, some of the remaining ultrasonic waves are transmitted into the tube, and after being reflected on the back or outer surface of the tube P, they return to the probe 3 and are received as above.
B1 . Further, some of the ultrasonic waves reflected on the back surface of the tube P are reflected again on the front and back surfaces of the tube P and return to the probe 3 B 2 , B 3 . . .

そして被測定管P内の音速は略一定であるか
ら、管内の表面から裏面へと超音波が往復するの
に要する時間tを上記受信信号S1,B1,B2…の
間隔から測定すれば、管Pの厚みが求められるも
ので、図示したブラウン管5上の時間目盛りを読
み取るか、電気的に計測すればよい(第2図参
照)。
Since the speed of sound inside the pipe P to be measured is approximately constant, the time t required for the ultrasonic waves to travel back and forth from the front surface to the back surface of the pipe can be measured from the intervals of the received signals S 1 , B 1 , B 2 . . . For example, the thickness of the tube P can be determined by reading the time scale on the illustrated cathode ray tube 5 or by measuring it electrically (see FIG. 2).

上記のごとき管厚の測定を、探触子3を取付け
た回転体2を円周方向に回動しながら順次測定し
ていくことによつて、管Pの一断面位置で円周方
向の全体にわたつて管厚の測定が行なえる。そし
て管Pの一端面における管厚測定が終われば、エ
アーチユーブ4の圧力エアーを抜き、外装体1の
固定を解いて軸方向に移動させた後、再び上記工
程を経て順次測定していく。
By sequentially measuring the pipe thickness as described above while rotating the rotating body 2 to which the probe 3 is attached in the circumferential direction, it is possible to measure the entire circumferential direction at one cross-sectional position of the pipe P. Pipe thickness can be measured over a period of time. When the thickness measurement at one end of the pipe P is completed, the pressurized air from the air tube 4 is removed, the exterior body 1 is unfixed and moved in the axial direction, and the measurements are sequentially performed again through the above steps.

上記管厚の超音波測定によれば管内面の腐食に
よる肉厚減少や内部欠陥等も測定可能であり、測
定時に管内面を傷つける心配もなく好適な実施と
なる。
According to the ultrasonic measurement of the tube thickness, it is possible to measure the wall thickness reduction due to corrosion on the inner surface of the tube, internal defects, etc., and there is no need to worry about damaging the inner surface of the tube during measurement, making it suitable for implementation.

なお、測定部としては上記超音波探触子3によ
るもののほか、片持ち針式の触針によつて管内面
の凹凸状態を測定するもの、放射線やX線による
探傷検査を行なうもの等種々の測定機構が設置で
きる。
In addition to the above-mentioned ultrasonic probe 3, the measurement section may be of various types, such as one that measures the unevenness of the inner surface of the tube using a cantilever type stylus, or one that performs flaw detection using radiation or X-rays. Measurement mechanism can be installed.

被測定管Pとしては直管だけでなく、弧状に湾
曲した曲管であつても、測定用ケーブルや回動用
レリーズケーブルおよびエアーホースを可撓性の
あるもので形成しておけば、自由に外装体1等の
移動および測定が可能になる。
The pipe P to be measured is not only a straight pipe but also an arcuate curved pipe, as long as the measurement cable, rotating release cable, and air hose are made of flexible materials. It becomes possible to move and measure the exterior body 1 and the like.

以上のごとく構成された、この考案によれば、
被測定管内を軸方向に移動自在な外装体に対し円
周方向に回動自在な回転体を取付け、この回転体
に測定部を設けている為、管内の軸方向および円
周方向の全体にわたつて任意の個所での測定が可
能になる。
According to this idea configured as above,
A rotating body that can freely rotate in the circumferential direction is attached to the exterior body that can freely move in the axial direction inside the pipe to be measured, and the measuring section is installed on this rotating body, so that the entire axial and circumferential direction inside the pipe is covered. Measurements can be made at any location across the board.

そして適宜測定位置においては、内部を互いに
連通したエアーチユーブを均等に膨張させて管内
面を押圧し、外装体および測定部等を管と同芯上
に正確に位置決めして固定することができると共
に、前後2個のエアーチユーブにより直管あるい
は曲管の何れであつても管の軸方向と測定部等の
軸方向とを正確に平行に設定維持することが可能
となる。また弾力的なエアーチユーブであるから
管内径に多少の変動があつても容易に対応でき
る。従つて管内面に対して測定部を正確に位置決
めしなければならない超音波探触子等による測定
の場合には非常に好都合となる。
Then, at the appropriate measurement position, the air tube, whose insides are communicated with each other, is evenly expanded to press the inner surface of the tube, allowing the exterior body, measuring section, etc. to be accurately positioned and fixed concentrically with the tube. The two air tubes, front and rear, make it possible to maintain the axial direction of the tube accurately parallel to the axial direction of the measurement section, etc., regardless of whether it is a straight tube or a curved tube. Furthermore, since it is an elastic air tube, it can easily accommodate slight variations in the inner diameter of the tube. Therefore, it is very convenient for measurements using an ultrasonic probe or the like where the measuring part must be accurately positioned with respect to the inner surface of the tube.

そして測定位置の軸方向への移動に際しては、
一旦エアーチユーブの空気を抜けば外装体等は管
内で自由に移動でき、次の測定位置で再びエアー
チユーブを膨張させて固定すれば、非常に能率的
な移動および再固定が行なえ至便である。また固
定時には管内面に弾力性のあるエアーチユーブが
当接して押圧するだけであるから、管内面に無理
な力が加わつたり傷をつけたりする心配もなく、
良好に測定を行なうことができる等種々の優れた
効果を有するものである。
When moving the measurement position in the axial direction,
Once the air is removed from the air tube, the exterior body etc. can be moved freely within the tube, and if the air tube is inflated and fixed again at the next measurement position, it can be moved and re-fixed very efficiently and conveniently. In addition, when fixing, the elastic air tube simply contacts and presses the inner surface of the tube, so there is no need to worry about applying excessive force or damaging the inner surface of the tube.
It has various excellent effects such as being able to perform measurements well.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案の実施態様を例示するものであ
り、第1図は測定時の断面図、第2図は測定原理
を示す概略図である。 1……外装体、2……回転体、20……レリー
ズケーブル、3……測定部、30……測定ケーブ
ル、4……エアーチユーブ、40……エアーホー
ス、P……管。
The drawings illustrate an embodiment of this invention; FIG. 1 is a sectional view during measurement, and FIG. 2 is a schematic diagram showing the principle of measurement. DESCRIPTION OF SYMBOLS 1... Exterior body, 2... Rotating body, 20... Release cable, 3... Measuring part, 30... Measuring cable, 4... Air tube, 40... Air hose, P... Pipe.

Claims (1)

【実用新案登録請求の範囲】 1 被測定管内を軸方向に移動自在な外装体の中
央には円周方向に回動自在な回転体を取付け、
回転体には管厚等の測定部を設けると共に測定
用ケーブルおよび回動用レリーズケーブルを連
結してあり、上記外装体の外周には測定部の前
後にリング状をなす管内芯出用の内部を互いに
連通してなるエアーチユーブを設け、この前後
のエアーチユーブに対して圧力エアーを供給自
在になすエアーホースを連結してなることを特
徴とする管内芯出装置。 2 測定部としては、超音波探触子を備えてなる
上記実用新案登録請求の範囲第1項記載の管内
芯出装置。
[Scope of Claim for Utility Model Registration] 1. A rotating body that is rotatable in the circumferential direction is attached to the center of the exterior body that is movable in the axial direction within the pipe to be measured,
The rotating body is equipped with a measuring section for measuring pipe thickness, etc., and is connected to a measuring cable and a release cable for rotation. On the outer periphery of the above-mentioned exterior body, there is a ring-shaped inner part for centering the pipe in front and behind the measuring section. A pipe centering device comprising air tubes that communicate with each other and air hoses that can freely supply pressurized air to the front and rear air tubes. 2. The tube centering device according to claim 1 of the above-mentioned utility model registration, which comprises an ultrasonic probe as the measuring section.
JP7645382U 1982-05-24 1982-05-24 In-pipe centering device Granted JPS58178615U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7645382U JPS58178615U (en) 1982-05-24 1982-05-24 In-pipe centering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7645382U JPS58178615U (en) 1982-05-24 1982-05-24 In-pipe centering device

Publications (2)

Publication Number Publication Date
JPS58178615U JPS58178615U (en) 1983-11-29
JPS6315770Y2 true JPS6315770Y2 (en) 1988-05-06

Family

ID=30085768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7645382U Granted JPS58178615U (en) 1982-05-24 1982-05-24 In-pipe centering device

Country Status (1)

Country Link
JP (1) JPS58178615U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254945A (en) * 2002-02-27 2003-09-10 Yuushin Kk Corrosively thinned thickness measuring and inspecting device for steel pipe, and its using method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217880A (en) * 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127451U (en) * 1976-03-25 1977-09-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217880A (en) * 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254945A (en) * 2002-02-27 2003-09-10 Yuushin Kk Corrosively thinned thickness measuring and inspecting device for steel pipe, and its using method

Also Published As

Publication number Publication date
JPS58178615U (en) 1983-11-29

Similar Documents

Publication Publication Date Title
WO1980001842A1 (en) Improvements in or relating to ultrasonic pipe inspection apparatus
EP0051912B1 (en) Apparatus for monitoring the topography of the internal surface of a pipe
JPS6450903A (en) Measuring apparatus of shape of inside of tube
EP0024396B1 (en) Pipe inspection apparatus
US4365514A (en) Method and apparatus for non-destructive inspection of tires
US5760306A (en) Probe head orientation indicator
JPS6315770Y2 (en)
EP0251696B1 (en) Bore mapping and surface time measurement system
US4241609A (en) Tube internal measuring instrument
JP3033438B2 (en) Ultrasonic flaw detection method for piping
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
JPS6159458B2 (en)
JPS59200958A (en) Traveling body in pipe
JPH10213409A (en) Apparatus for measuring pipe thickness
JP2001208732A (en) Ultrasonic measuring method from inner surface side of tube
CN112997047B (en) Ultrasonic probe and method for measuring thickness of pipe to be inspected using same
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JPH0438287Y2 (en)
JPS6247079Y2 (en)
GB2046911A (en) Method and apparatus for measuring the wall thickness of tubes
JPH09184827A (en) Ultrasonic probe apparatus of type inserted in pipe
JPH0147741B2 (en)
JP2023103502A (en) Ultrasonic phased array inspection device and ultrasonic phased array inspection method using the same
CN116058866A (en) Depth detection device and detection method for ultrasonic imaging equipment
JPS5985955A (en) Method for detecting direction of ultrasonic wave probe