JPS5985955A - Method for detecting direction of ultrasonic wave probe - Google Patents

Method for detecting direction of ultrasonic wave probe

Info

Publication number
JPS5985955A
JPS5985955A JP57195924A JP19592482A JPS5985955A JP S5985955 A JPS5985955 A JP S5985955A JP 57195924 A JP57195924 A JP 57195924A JP 19592482 A JP19592482 A JP 19592482A JP S5985955 A JPS5985955 A JP S5985955A
Authority
JP
Japan
Prior art keywords
probe
detecting
ultrasonic wave
pipe
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195924A
Other languages
Japanese (ja)
Inventor
Yoshinori Takesute
義則 武捨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57195924A priority Critical patent/JPS5985955A/en
Publication of JPS5985955A publication Critical patent/JPS5985955A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan

Abstract

PURPOSE:To obtain a method, by which the absolute direction of a probe with respect to the circumferential direction of a pipe and the axial direction of the pipe can be detected, in an ultrasonic wave probe and the like, which are inserted in the pipe, by providing a rotary displacement detector, whose rotary axis is aligned with the axial direction of a body to be checked or aligned with the direction perpendicular to the axial direction, providing a weight in said rotary system, and electrically detecting the direction of the gravity acting on the ultrasonic wave probe. CONSTITUTION:A rotary type potentiometer 8 and a weight 10, which is attached to the tip of a rotary shaft 9 of the potentiometer, are built in a unit. The output voltage Vout the potentiometer 8 is made to correspond to each channel of the channels 1- N-ch of an ultrasonic wave tranceiver unit. For example, when the output of Va (V) is obtained, it is detected that the Na-ch is directed to the direction of gravity. The ultrasonic wave tranceiver piece of N-ch, which is built in an ultrasonic wave flaw detecting probe 2, is switched by every 1 channel by an electronic scanning control circuit 11, and inserted into the pipe of a body to be checked 1, with the flaw detecting of a pipe wall being performed. The result of the flaw detection is recorded in an image memory circuit 12 as a B scope image at every time the flaw detecting scanning is finished and simultaneously displayed on a B scope display part 13 in real time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波探傷グローブに係り、特に管内に挿入し
て管内外部の欠陥を検出する超音波探傷プローブの、管
内における管周方向または、管軸方向の向きを検出する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic flaw detection glove, and particularly to an ultrasonic flaw detection probe inserted into a pipe to detect defects inside and outside the pipe. This invention relates to a method for detecting axial orientation.

〔従来技術〕[Prior art]

第1図は被検査体である長さ80m1内径24關、肉厚
3.5fiのヘリカルコイル状の管1を超音波プローブ
2によシ探傷を行っている図である。
FIG. 1 is a diagram showing a helical coil-shaped tube 1 having a length of 80 m, an inner diameter of 24 mm, and a wall thickness of 3.5 fi, which is an object to be inspected, being subjected to flaw detection using an ultrasonic probe 2.

また、第2図は超音波探傷プロー′プ2の構造図を示し
た図である。
Further, FIG. 2 is a diagram showing a structural diagram of the ultrasonic flaw detection probe 2. As shown in FIG.

この超音波探傷プローブ2は、超音波送波子イ及び超音
波受波子口を管周方向にNch、(チャンネル)配列し
た超音波送受信!5.5’がm1ユニツトとこれらNC
hの送受波子を電子的に1ch、ずつ切換制御を行うた
めの回路部6がm、ユニットの計量ユニットで構成され
、各ユニットは曲管部の探傷に対応できるように廟曲可
能な連結部7で連結されている。
This ultrasonic flaw detection probe 2 has an ultrasonic transmitter and an ultrasonic receiver inlet arranged in Nch (channel) in the tube circumferential direction for ultrasonic transmission and reception! 5.5' is m1 unit and these NC
A circuit section 6 for electronically switching and controlling the transmitter/receiver wave element of 1 channel at a time is composed of a measuring unit of 1 channel, and each unit has a connecting section that can be bent to correspond to flaw detection in a curved pipe section. They are connected by 7.

このようなグローブを水といっしょに管内に挿入して探
傷を行うわけであるが、連結部及びケーブルがフレキシ
ブルであるため、挿入深さが長くなるとプローブ全体が
不規則に回転し七、管内におけ妬送受波子部5.5′の
向きが全く不明となってしまう。したがって、もし欠陥
が検出されてもその欠陥が管周方向のどちらの位置にあ
るかを措握することは困難であり、後の欠陥部補修作業
等において非常に不都合であった。
Flaw detection is carried out by inserting such a glove into a pipe together with water, but since the connecting part and cable are flexible, if the insertion depth becomes long, the entire probe rotates irregularly, which can cause damage to the inside of the pipe. In this case, the direction of the transmitter/receiver section 5,5' becomes completely unknown. Therefore, even if a defect is detected, it is difficult to determine the position of the defect in the circumferential direction of the tube, which is extremely inconvenient in subsequent defect repair work.

また、従来、管内プローブの向きを検出する一方法とし
て管を保持している止め金具からの超音波反射エコーを
基準として判定することも提案されているが、安定した
反射エコーが得られずまだ実現はされていない。
Additionally, as a method of detecting the orientation of a probe inside a tube, it has been proposed to use the ultrasound reflected echo from the stopper that holds the tube as a reference, but it has not been possible to obtain stable reflected echoes. This has not been realized.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、管内に挿入された超音波プローブ等に
おける、管周方向および管軸方向に対する絶対的なプロ
ーブの向きを検出できる方法を提供するにある。
An object of the present invention is to provide a method capable of detecting the absolute orientation of an ultrasonic probe or the like inserted into a tube with respect to the tube circumferential direction and the tube axis direction.

〔発明の概要〕[Summary of the invention]

管状物体の探傷で、特に管内に挿入された超音波探傷プ
ローブの、管周方向の絶対的な向きを検出するためには
何らかの基準が必要となる。
In flaw detection of tubular objects, some kind of standard is required, especially in order to detect the absolute orientation of an ultrasonic flaw detection probe inserted into the pipe in the circumferential direction of the pipe.

従来、この基準の取り方に良い方法がなく、特に曲管を
探傷するプローブはフレキシブルなケーブル先端に接続
されて80mもの長い管内に挿入されることから、その
先方におけるプローブの絶対的な向きを検出することは
困難であった。
Conventionally, there has been no good method for determining this standard, and in particular, since probes for detecting flaws in curved pipes are connected to the tip of a flexible cable and inserted into pipes as long as 80 m, it is difficult to determine the absolute orientation of the probe at the end of the pipe. It was difficult to detect.

そこで、被検体及びプローブに常に同方向に働く力とし
て重力があることを考え、これを、回転変位検出器とお
もりにて電気的にプローブの向きを検出することを発明
した。
Therefore, considering that gravity is a force that always acts on the subject and the probe in the same direction, we invented a method to electrically detect the direction of the probe using a rotational displacement detector and a weight.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例をy、3図により説明する。 Embodiments of the present invention will be described below with reference to Figure 3.

第3図は重力方向を検出するだめの向き1灸出用ユニツ
トの構造を示した図である。ユニット内には回転型ポテ
ンショメータ8と該ポテンショメーターの回転軸9の先
端に取付けられたおもり10とが組み込まれている。
FIG. 3 is a diagram showing the structure of a moxibustion unit for detecting the direction of gravity. A rotary potentiometer 8 and a weight 10 attached to the tip of a rotary shaft 9 of the potentiometer are incorporated in the unit.

また、該ポテンショメーター8の出力電圧V、、。Also, the output voltage V of the potentiometer 8.

は第4図に示すように、超音波送受信部ユニットの1〜
Nch、の各チャンネルと対応させ、たとえば、V、(
V)の出力電圧が得られている場合には、Nach 、
が重力方向(=下方)を向いていることが検知できる。
As shown in FIG.
For example, V, (
When an output voltage of V) is obtained, Nach,
It can be detected that the is facing the direction of gravity (=downward).

第5図に本発明によるプローブを用いて探傷を行う場合
の探傷装置のブロック図を示したう1 以下、第5図に従ってその動作を説明する。超音波探傷
プローブ2に組み込まれたNch、の超音波送受波子は
電子走査制御回路11により1ch。
FIG. 5 shows a block diagram of a flaw detection apparatus for performing flaw detection using the probe according to the present invention.The operation thereof will be described below with reference to FIG. The Nch ultrasonic transducer incorporated in the ultrasonic flaw detection probe 2 is set to 1ch by the electronic scanning control circuit 11.

ずつ切換られ、管壁の探傷を行いながら被検体1の管内
に挿入される。この時の探傷結果は1ch。
The tube is inserted into the tube of the object 1 while performing flaw detection on the tube wall. The flaw detection result at this time was 1ch.

の探傷走査が終る毎に、画像記憶回路12にBスコープ
像として記録されると同時にリアルタイムでBスコープ
表示部13に表示される。
Every time a flaw detection scan is completed, the image is recorded as a B scope image in the image storage circuit 12 and simultaneously displayed on the B scope display section 13 in real time.

このBスコープ像は第6図に示すように、横軸が管周方
向の探傷位置(0〜360 ’ ==l ch、〜Nc
h、)を示し、また、縦軸は管壁内からの反射波の有無
を表示する時間軸である。
In this B scope image, as shown in Fig. 6, the horizontal axis indicates the flaw detection position in the pipe circumferential direction (0~360' ==l ch, ~Nc
h, ), and the vertical axis is a time axis indicating the presence or absence of reflected waves from within the pipe wall.

たとえば、第6図は管壁の肉厚を測定した時の探傷像で
あるが、Sは管内表面からの反射波、Bは管外表面から
の反射波である。そして、8〜10ch、間においては
Bエコーが8エコー側に近づいていることから、管壁外
表面が減肉して薄くなっていることを表示している像で
ある。
For example, FIG. 6 is a flaw detection image obtained when measuring the wall thickness of a tube wall, where S is a reflected wave from the inner surface of the tube, and B is a reflected wave from the outer surface of the tube. Since the B echo approaches the 8th echo side between channels 8 and 10, this image shows that the outer surface of the tube wall is thinning and becoming thinner.

さらに、画面上には、本発明による向き検出信号により
重力方向におるチャンネルを示す1−カーMが8エコー
の上側に表示され、本画面では17ch、が重力方向(
下方)を向いていることが表示されている。これから、
ただちに減肉個所の位置は、グローブ進行方向に向って
管の右側45゜にあることが明確となる。
Furthermore, on the screen, 1-car M indicating the channel in the gravity direction by the direction detection signal according to the present invention is displayed above the 8 echoes, and on this screen, 17ch is displayed in the gravity direction (
(downward). from now,
It is immediately clear that the location of the thinning point is 45° to the right of the tube in the direction of glove travel.

本実施例によれば、管内に挿入された超音波探傷プロー
ブの下向きの特定の1ch、を検出することによシ、管
内のプローブの向きを検知することができ、管壁に存在
する欠陥の管周方向の絶対的な位置を把握できるように
なる。
According to this embodiment, by detecting a specific downward channel of the ultrasonic flaw detection probe inserted into the pipe, the orientation of the probe inside the pipe can be detected, and defects existing on the pipe wall can be detected. It becomes possible to grasp the absolute position in the circumferential direction of the tube.

尚、本実′m飼では、被検体が重力方向に対して何らか
の角度を持っている場合に有効で、重力方向と平行であ
る場合には適用できない。
Note that this method is effective when the subject is at some angle to the direction of gravity, and cannot be applied when the subject is parallel to the direction of gravity.

第7図は本発明による別の実施例を示した図である。同
図は、上下に屈曲する管の内部に挿入された超音波プロ
ーブの軸方向の向きを検出する場合の向き検出ユニット
の構造を示し、管の周方向に回転する内ケース15が、
ベアリング16を介して外ケース17に内蔵され、さら
に内ケースの中にはプローブの軸方向と直角の向きに回
転軸9を持つポテンショメータ8が取付けられ、回転軸
9には、おもり10が取付けられている。また、内ケー
ス内面には、内ケースを常に水平に保つためにおもり1
4が取付けられている。
FIG. 7 is a diagram showing another embodiment according to the present invention. This figure shows the structure of a direction detection unit for detecting the axial direction of an ultrasonic probe inserted into a tube that bends up and down.
A potentiometer 8 is housed in an outer case 17 via a bearing 16 and has a rotating shaft 9 perpendicular to the axial direction of the probe. ing. In addition, a weight 1 is placed on the inner surface of the inner case to keep the inner case horizontal at all times.
4 is installed.

ポテンショメータ8の出力■。VT は、第8図に示す
ようにユニットが水平の場合はvII (v)、垂直上
向きの場合はv、(V)、また垂直下向きの場合にはV
D(V)の出力電圧が得られ、この間連続的に角度に応
じて変化する。
Output of potentiometer 8■. As shown in Figure 8, VT is vII (v) when the unit is horizontal, v, (V) when it is vertically upward, and V when it is vertically downward.
An output voltage of D (V) is obtained, during which time it changes continuously depending on the angle.

したがって、このような構造のユニットを組み込んだ超
音波プローブを管内に挿入し、そのポテンショメータの
出力°電圧を観察すると、V 、 −VD(V)の電圧
が出力される場合はプローブは上向き1、まだV□〜v
n (v)の場合は下向きであることがわかる。
Therefore, when an ultrasonic probe incorporating a unit with such a structure is inserted into a tube and the output voltage of the potentiometer is observed, if a voltage of V, -VD (V) is output, the probe is pointing upward 1, Still V□~v
It can be seen that in the case of n (v), the direction is downward.

本実施例によれば、上下方向に屈曲する管状の被倹体に
挿入された超音波プローブの管軸方向の向きを検知する
ことができるのでグローブの挿入位置をより正確に把握
することができる。
According to this embodiment, it is possible to detect the direction of the tube axis of the ultrasonic probe inserted into the tube-shaped object bent in the vertical direction, so the insertion position of the glove can be determined more accurately. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、管の数十m先においても管壁に存在す
る欠陥の管周方向および管軸方向の絶対的な位置を知る
ことができるので、精度の高い欠陥検出・評価が行える
ようになる、
According to the present invention, it is possible to know the absolute position of defects existing in the tube wall in the tube circumferential direction and tube axis direction even several tens of meters ahead of the tube, so that highly accurate defect detection and evaluation can be performed. become,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波探傷プローブによる探傷図、第2図は超
音波探傷プローブの構造図、第3図は向き検出用ユニッ
トの構造図、第4図は向き検出用ユニットの出力電圧特
性図、第5図は本発明によるプローブを用いた探傷装置
のブロック図、第6図は探傷結果のBスフ−1表示像を
示す図、第7図は軸方向の向き検出ユニットの構造図、
第8図は第7図の向き検出ユニットの出力電圧特性図で
ある。 2・・・超音波探傷プローブ、8・・・ポテンショメー
タ、9・・・ポテンショメータ回転軸、10,1.4・
・・おもり、15・・・内ケース、16・・・ベアリン
グ、17・・・外ケース。 第10 喀20 猶3圀 験40 チャン半lν 第5図 語b 口 寮IV  口 端g図
Fig. 1 is a flaw detection diagram using an ultrasonic flaw detection probe, Fig. 2 is a structural diagram of the ultrasonic flaw detection probe, Fig. 3 is a structural diagram of the orientation detection unit, and Fig. 4 is an output voltage characteristic diagram of the orientation detection unit. FIG. 5 is a block diagram of a flaw detection apparatus using a probe according to the present invention, FIG. 6 is a diagram showing a B-suf-1 display image of the flaw detection results, and FIG. 7 is a structural diagram of an axial orientation detection unit.
FIG. 8 is an output voltage characteristic diagram of the orientation detection unit of FIG. 7. 2... Ultrasonic flaw detection probe, 8... Potentiometer, 9... Potentiometer rotation axis, 10, 1.4.
...Weight, 15...Inner case, 16...Bearing, 17...Outer case. 10th 喀20 3rd experience 40 Changhan lν 5th diagram word b Kuchiryo IV Kuchidan g diagram

Claims (1)

【特許請求の範囲】 1、被検体に装着して、被検体内外部を検査する超音波
グローブにおいて、該超音波プローブに作用する特定の
力の方向を検出することにより、被検体に対する超音波
プローブの向きを把握することを特徴とする超音波プロ
ーブの向き検出方法。 2、特許請求の範囲第1項において、特定の力の方向を
検出する方法として、超音波グローブに作用する重力の
方向を電気的に検出し、特に管内に挿入される超音波プ
ローブの管周方向の向きを検出することを特徴とする超
音波プローブの向き検出方法。 3、特許請求の範囲第2項において、重力の方向を電気
的に検出する方法として、被検体である管の軸方向また
は、これと直角の方向を回転軸とする回転変位検出器と
該回転変位検出器の回転系におもシを備えて、管周方向
または、管軸方向の向きを検出できるようにしたことを
特徴とする超音波プローブの向き検出方法。
[Claims] 1. In an ultrasonic glove that is attached to a subject to inspect the inside and outside of the subject's body, ultrasonic waves are transmitted to the subject by detecting the direction of a specific force acting on the ultrasound probe. A method for detecting the orientation of an ultrasonic probe, characterized by determining the orientation of the probe. 2. In claim 1, the method for detecting the direction of a specific force is to electrically detect the direction of gravity acting on an ultrasonic glove, and in particular to detect the direction of a gravitational force acting on an ultrasonic glove. A method for detecting the orientation of an ultrasonic probe, the method comprising detecting the orientation of an ultrasonic probe. 3. In claim 2, the method for electrically detecting the direction of gravity includes a rotational displacement detector whose rotational axis is the axial direction of the tube to be examined or a direction perpendicular thereto, and the rotational displacement detector. 1. A method for detecting the orientation of an ultrasonic probe, characterized in that a rotation system of a displacement detector is provided with a clamp so that the orientation in a tube circumferential direction or a tube axis direction can be detected.
JP57195924A 1982-11-10 1982-11-10 Method for detecting direction of ultrasonic wave probe Pending JPS5985955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195924A JPS5985955A (en) 1982-11-10 1982-11-10 Method for detecting direction of ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195924A JPS5985955A (en) 1982-11-10 1982-11-10 Method for detecting direction of ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPS5985955A true JPS5985955A (en) 1984-05-18

Family

ID=16349242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195924A Pending JPS5985955A (en) 1982-11-10 1982-11-10 Method for detecting direction of ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPS5985955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226707A (en) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226707A (en) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same

Similar Documents

Publication Publication Date Title
US8453509B2 (en) Method for the non-destructive testing of a test object by way of ultrasound and apparatus therefor
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
US4299128A (en) Ultrasonic satellite-pulse technique for characterizing defects of arbitrary shape
CN101308153A (en) Digital image-forming tube bar material defect nondestructive flaw detection system
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JPH02120659A (en) Non-destructive dimensions and defect inspection for thin tube weld part
US4453410A (en) Method and apparatus for locating material defects in hollow bodies
CN107782789A (en) A kind of acoustic fix ranging C for corrosive pipeline detection sweeps imaging device and method
EP0075997A2 (en) Well logging device
JPS5985955A (en) Method for detecting direction of ultrasonic wave probe
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
CN107894458A (en) The phased array ultrasonic detecting method of Welded housing weld seam
KR100358086B1 (en) Wedge Device of Focused Ultrasonic Transducer for Boiler Tube and Pipe
JPS60205254A (en) Ultrasonic flaw detection for pipe
JP4118487B2 (en) Steel pipe corrosion diagnosis method
GB2200206A (en) Detecting matter in hollow undersea structures
JPS6080761A (en) Ultrasonic diagnosing device
US20220412921A1 (en) Cylindrical ultrasonic scanning apparatus
RU2114447C1 (en) Process of evaluation of profile of pipe during ultrasonic test
Mahzan et al. Failure Screening By Using Ultrasonic Tomography Testing Method
JPH0147741B2 (en)
JPH0210260A (en) Method for checking defect of pipe body
JP2933778B2 (en) Ultrasonic flaw detection method for insulator tube