JPS61133857A - Method and apparatus for diagnosing corrosion of underground pipeline - Google Patents

Method and apparatus for diagnosing corrosion of underground pipeline

Info

Publication number
JPS61133857A
JPS61133857A JP59256690A JP25669084A JPS61133857A JP S61133857 A JPS61133857 A JP S61133857A JP 59256690 A JP59256690 A JP 59256690A JP 25669084 A JP25669084 A JP 25669084A JP S61133857 A JPS61133857 A JP S61133857A
Authority
JP
Japan
Prior art keywords
electromagnetic ultrasonic
ultrasonic sensor
receiver
conduit
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256690A
Other languages
Japanese (ja)
Inventor
Katsuhiko Honjo
克彦 本庄
Keiichi Sudo
佳一 須藤
Fujio Hirabayashi
平林 富士夫
Junichi Masuda
順一 増田
Kishio Arita
紀史雄 有田
Yoshitaka Koide
小出 美孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59256690A priority Critical patent/JPS61133857A/en
Publication of JPS61133857A publication Critical patent/JPS61133857A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Abstract

PURPOSE:To improve the inspection speed and inspection operability, by diagnosing the corrosion of an underground buried pipeline noncontact using an electromagnetic ultrasonic wave. CONSTITUTION:A rotary unit 2 and a driver 3 are self-driven by the driver 3 and moves through a pipeline 7 to be set at a measuring point. An electromagnetic ultrasonic sensor 11 is started with a transmitter/receiver 4a to excite an incident wave 14 and a bottom surface echo 12 or a defect echo 13 are received. The echo signal thus obtained is converted into an electrical signal and sent to an arithmetic unit 4 through the transmitter/receiver 4a to calculate thickness at the measuring point from the difference in the reception time. Likewise, this apparatus is moved from measuring point to determine the thickness at various measuring points by repeating measurement and the minimum thickness and the position thereof are found out. A display/recorder 5 connects thickness values at various measuring points to calculate the corroded part 27 and the area thereof by 2-D plotting and displays and records the results.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電!1超音波厚さ測定を用いて地下埋設管路
の腐食を診断する方法及びその装置に関する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention is an electric! 1. A method and apparatus for diagnosing corrosion of underground pipelines using ultrasonic thickness measurement.

〔従来の技術) 従来、この種の地下管路の腐食を診断する方法あるいは
装置には、第10図に示すような超音波法が広く用いら
れている。第11図は、この原理を示すもので、超音波
センサ1を構成する超音波探触子内の圧電素子8によっ
て電気信号を超音波信号に変換し、これを、カップリン
グ剤1aを介して管路7の内壁へ入射させる。そして、
管路7の内周面(入射面)と外周面(反射面)とから反
射してくる超音波を圧電素子8によって電気信号に戻し
、これらの時間差から管路7の肉厚を求めていた。なお
、第10図、第11図中、2は超音波センサ1を管路7
の周方向に回転する回転装置、3は超音波センサ1と回
転装置2とを管路7の長手方向に一体に移動させる駆動
装置、4は管路7の肉厚を計算する演算装置、5は演算
結果を表示記録する表示・記録装置、6は駆動装置3等
の電源、9は圧電素子8用の外部電圧源、10は超音波
の伝播方向を示すものである。
[Prior Art] Conventionally, an ultrasonic method as shown in FIG. 10 has been widely used as a method or apparatus for diagnosing corrosion of underground pipes of this type. FIG. 11 shows this principle, in which an electrical signal is converted into an ultrasonic signal by the piezoelectric element 8 in the ultrasonic probe constituting the ultrasonic sensor 1, and this is transmitted via the coupling agent 1a. The light is made incident on the inner wall of the conduit 7. and,
The ultrasonic waves reflected from the inner circumferential surface (incident surface) and outer circumferential surface (reflection surface) of the conduit 7 are converted back into electrical signals by the piezoelectric element 8, and the wall thickness of the conduit 7 is determined from the time difference between them. . In addition, in FIGS. 10 and 11, 2 indicates that the ultrasonic sensor 1 is connected to the conduit 7.
3 is a drive device that moves the ultrasonic sensor 1 and the rotation device 2 together in the longitudinal direction of the pipe 7; 4 is a calculation device that calculates the wall thickness of the pipe 7; 5 is a rotating device that rotates in the circumferential direction; 1 is a display/recording device for displaying and recording calculation results, 6 is a power source for the driving device 3, etc., 9 is an external voltage source for the piezoelectric element 8, and 10 indicates the propagation direction of the ultrasonic wave.

〔発明が解決しようとする問題点) ところで、1達した従来の測定においては、超音波セン
サ1を管路7の内周面に接触させるだめの時間が必要な
土に、接触状態が管路面あるいは測定機構・精度に大き
く影響を及ぼし、非接触で測定する方法に比べてかなり
測定操作性が劣る欠点があった。
[Problems to be Solved by the Invention] By the way, in the conventional measurement when the ultrasonic sensor 1 is brought into contact with the inner circumferential surface of the pipe line 7, it is necessary to contact the soil with the inner peripheral surface of the pipe line 7. Another drawback is that it greatly affects the measurement mechanism and accuracy, and is significantly inferior in operability compared to non-contact measurement methods.

〔問題点を解決するための手段] 上記の欠点を克服するためにこの発明は、電磁超音波を
用いることにより、非接触で地下埋設管路の腐食を診断
することを特徴とし、これによって、地下埋設管路の検
査スピードと検査操作性の向上を実現させることを目的
とする。
[Means for Solving the Problems] In order to overcome the above-mentioned drawbacks, the present invention is characterized in that corrosion of underground pipes is diagnosed in a non-contact manner by using electromagnetic ultrasound, and thereby, The purpose is to improve the inspection speed and operability of underground pipelines.

〔作用] ここで、電磁超音波による1II11定原理を簡単に説
明する。第2図は、この原理を示したものである。
[Operation] Here, the 1II11 constant principle based on electromagnetic ultrasonic waves will be briefly explained. FIG. 2 illustrates this principle.

この図において、15は直流磁界を発生させる励磁コイ
ル、16は電磁超音波の発生・検出コイル、17は直流
磁界、18は発生・検出コイル16によって発生する渦
電流、19は渦電流18と直流磁界17によって生じる
ローレンツ力、20は管路7と電磁超音波センサ11と
の間のギャップである。まず、励磁コイル15によって
管路7の内周表面に直流磁界17を印加し、前記表面に
渦電流18を発生させる。この渦電流18と直流磁界1
7とにより、これらに直角な方向にローレンツ力19が
動いて、管路表面上に渦電流18の周波数と同じサクシ
で超音波が発生する。発生した超音波は伝播ルート10
をたどって管路7の外周面で反射し、この反射した超音
波が、上記の過程を全く逆にした過程で検知される。
In this figure, 15 is an excitation coil that generates a DC magnetic field, 16 is an electromagnetic ultrasound generation/detection coil, 17 is a DC magnetic field, 18 is an eddy current generated by the generation/detection coil 16, and 19 is an eddy current 18 and a DC The Lorentz force caused by the magnetic field 17, 20 is the gap between the conduit 7 and the electromagnetic ultrasonic sensor 11. First, a DC magnetic field 17 is applied to the inner circumferential surface of the conduit 7 by the excitation coil 15 to generate an eddy current 18 on the surface. This eddy current 18 and the DC magnetic field 1
7, the Lorentz force 19 moves in a direction perpendicular to these, and ultrasonic waves are generated on the pipe surface at the same frequency as the eddy current 18. The generated ultrasonic wave propagation route 10
This reflected ultrasonic wave is detected in a process that is the complete reversal of the above process.

第3図は、この原理による管路7の肉厚の測定方法を示
す図である。この図において、電磁超音波センサ11よ
り送信された超音波入射波14は、管路7の外壁健全部
で反射されて底面エコー12となる一方、腐食部で反射
されて欠陥エコー13となる。これらのエコー12.1
3は電磁超音波センサ11によって検知され、このとき
の管路7の残肉厚さTdは、入射波14とエコー13と
の伝播時間差Δtから、音速度■を用いて、Td=1/
2・■・Δt     (1)で与えられる。本発明は
以上説明した原理に塁づ゛いて地下管路の腐食状態を非
接触で測定するものである。
FIG. 3 is a diagram showing a method for measuring the wall thickness of the conduit 7 based on this principle. In this figure, an incident ultrasonic wave 14 transmitted from an electromagnetic ultrasonic sensor 11 is reflected by a healthy part of the outer wall of the conduit 7 and becomes a bottom echo 12, while it is reflected by a corroded part and becomes a defective echo 13. These echoes 12.1
3 is detected by the electromagnetic ultrasonic sensor 11, and the remaining wall thickness Td of the pipe line 7 at this time is calculated from the propagation time difference Δt between the incident wave 14 and the echo 13, using the sound velocity ■, Td=1/
It is given by 2・■・Δt (1). The present invention is based on the principle explained above to measure the corrosion state of underground pipes in a non-contact manner.

(実施例) 以下、図面を参照して本発明の詳細な説明する。第1図
は、本発明の一実施例の構成を示すブロック図である。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

この図において、2は、電磁超音波センサ11を管路7
の円周方向に回転させる回転装置であり、ステップモー
タ等によって動作するものである。前記電磁超音波セン
サ11および回転装置2は駆動装置3によって管路7の
長手方向に一体に移動されるようになっている。ここで
電磁超音波センサ11は、第4図に示すように、励磁コ
イル15と発生・検出コイル16とコア21とを有して
なり、すでに説明した!vI乍によって、非接触で管路
7に超音波を発生させろく第2図参照)。また、駆動装
置3は、第5図に示すように、駆動モータ22と、タイ
ヤ23と、回転装置3および電磁超音波センサ11を保
持する保持バネ24とを有し、管路7の長手方向に移動
する。
In this figure, 2 indicates that the electromagnetic ultrasonic sensor 11 is connected to the conduit 7.
This is a rotating device that rotates the motor in the circumferential direction, and is operated by a step motor or the like. The electromagnetic ultrasonic sensor 11 and the rotation device 2 are moved together in the longitudinal direction of the conduit 7 by a drive device 3. Here, the electromagnetic ultrasonic sensor 11 has an excitation coil 15, a generation/detection coil 16, and a core 21, as shown in FIG. 4, and has already been described! (See Figure 2) to generate ultrasonic waves in the conduit 7 without contact. Further, as shown in FIG. 5, the drive device 3 includes a drive motor 22, a tire 23, and a holding spring 24 that holds the rotation device 3 and the electromagnetic ultrasonic sensor 11. Move to.

再び第1図に戻り、4aは、′R磁超超音波センサ11
送信パルスを送る一方、底面エコー12および欠陥エコ
ー13(第3図)に対応する電気パルスを受信する送受
信装置であり、この出力は演惇装@4へ供給される。演
算装置4は、電磁超音波センサ11から発信または受信
される電気信号をコントロールする制御部と、各エコー
の受信時間差△tnを検出する検知部と、受信時間差Δ
tnから測定位置の肉厚Tdnを計算する演算部とから
なる。そして、演算結果は、表示・記録装置5へ供給さ
れ、ここで、最小肉厚が求められ、第6図に示すように
2次元表示される。この図において、(a)は管路7の
円周方向に走査したときの表示であり、管路7の横断面
を2次元表示し、〈b+は管路7の長手方向に走査した
ときの表示であり、管路7の縦断面を2次元表示するよ
うになっている。、なお、記録部には上記各データが数
値的に記録される。
Returning to FIG. 1 again, 4a is the 'R magnetic ultrasonic sensor 11
It is a transceiver device that sends out transmit pulses while receiving electrical pulses corresponding to the bottom echo 12 and the defect echo 13 (FIG. 3), the output of which is supplied to the station @4. The arithmetic unit 4 includes a control unit that controls the electrical signals transmitted or received from the electromagnetic ultrasonic sensor 11, a detection unit that detects the reception time difference Δtn of each echo, and a detection unit that detects the reception time difference Δtn of each echo.
and an arithmetic unit that calculates the wall thickness Tdn at the measurement position from tn. The calculation result is then supplied to the display/recording device 5, where the minimum wall thickness is determined and displayed two-dimensionally as shown in FIG. In this figure, (a) is a display when scanning the pipe line 7 in the circumferential direction, a two-dimensional display of the cross section of the pipe line 7, and <b+ is a display when scanning the pipe line 7 in the longitudinal direction. This is a two-dimensional display of a vertical cross section of the conduit 7. Note that each of the above data is numerically recorded in the recording section.

次に、第7図〜第9図を参照して本実施例の動作を説明
する。
Next, the operation of this embodiment will be explained with reference to FIGS. 7 to 9.

第7図は、管路7の長手方向の走査例を示すものであり
、回転装置2および駆動装置3は、駆動装置3によって
自走するか、けん引蓋25に巻回されたローブ26によ
ってけん引されて信士し、管路7の長手方向に測定間隔
△Lで移動し、測定点n (n=1.2・・・)にセッ
トされる。(第9図(工))。
FIG. 7 shows an example of scanning in the longitudinal direction of the conduit 7, in which the rotating device 2 and the driving device 3 are either self-propelled by the driving device 3 or towed by the lobe 26 wound around the towing lid 25. It moves in the longitudinal direction of the conduit 7 at a measurement interval ΔL, and is set at a measurement point n (n=1.2...). (Figure 9 (engineering)).

こうして、測定点nが定まると、電磁超音波センサ11
が送受信装置4aによって起動されて第3図に示す入射
波14が励起され、底面エコー12または欠陥エコー1
3が受信される。こうして得られたエコー信号は電気信
号に変換され、送受信装置4aを介して演譚信@4に送
られ、受信時間差Δtnから測定点nでの肉厚Tdnが
計算される(第9図(II)  (III))。
In this way, when the measurement point n is determined, the electromagnetic ultrasonic sensor 11
is activated by the transmitting/receiving device 4a to excite the incident wave 14 shown in FIG.
3 is received. The echo signal obtained in this way is converted into an electrical signal and sent to the transmission @ 4 via the transmitting/receiving device 4a, and the wall thickness Tdn at the measurement point n is calculated from the reception time difference Δtn (Fig. 9 (II) ) (III)).

以下、同様に、測定点nを1つずつ移動して上記測定を
繰り返し、各測定点nでの肉厚Tdnを求めて、その中
での最小肉厚min Td (X、 V)とその位置(
x、y)を求める(第9図(■))。
Similarly, the measurement points n are moved one by one and the above measurements are repeated to find the wall thickness Tdn at each measurement point n, and the minimum wall thickness min Td (X, V) and its position are calculated. (
x, y) (Figure 9 (■)).

ざらに、表示・記録装置5は各測定点nでの肉厚Tdn
を直線で結んで2次元プロットし、第7図に示す腐食部
27とその面積Sとを計算して、これらを記憶するとと
もに、上記各データを第6図(b+に示すように表示記
録する(第9図(IV))。
Roughly speaking, the display/recording device 5 displays the wall thickness Tdn at each measurement point n.
are connected with straight lines and plotted two-dimensionally, and the corroded part 27 and its area S shown in Fig. 7 are calculated and memorized, and each of the above data is displayed and recorded as shown in Fig. 6 (b+) (Figure 9 (IV)).

次に、第8図は円周方向の走査例を示すものである。こ
の場合、N超超音波センサ11は回転装置2によって管
路7の円周方向に回転され、各測定点n毎に上と同様に
して肉厚Tdnが測定される。また、腐食面積S、R小
肉厚m1nTd(r。
Next, FIG. 8 shows an example of scanning in the circumferential direction. In this case, the N ultrasonic sensor 11 is rotated by the rotating device 2 in the circumferential direction of the conduit 7, and the wall thickness Tdn is measured at each measurement point n in the same manner as above. In addition, corrosion area S, R small wall thickness m1nTd(r.

θ)とその位置(r、θ)を求め、第6図(ωに示すよ
うに表示記録する。
θ) and its position (r, θ) are determined and displayed and recorded as shown in FIG. 6 (ω).

これらの動作によって地下管路の腐食した肉厚を管路の
内壁から自動的に検知し、その@食面積と腐食、による
最小肉厚を非接触で測定し、しかもその測定断面を2次
元的に再現できる。
Through these operations, the corroded wall thickness of underground pipes is automatically detected from the inner wall of the pipe, the corrosion area and the minimum wall thickness due to corrosion are measured without contact, and the measurement cross section is two-dimensionally measured. can be reproduced.

なお、以上の動作の組合わせることによって、電r!1
超音波センサを管内で螺施状に走査させることも可能で
ある。
Note that by combining the above operations, electric r! 1
It is also possible to scan the ultrasonic sensor in a spiral manner within the tube.

〔発明の効果) 以上説明したように、本発明は、地下管路の腐食による
肉厚の測定に電磁超音波センサを応用し、自動的にしか
も非接触で管路の腐食面積、位置、最小肉厚を測定する
ものであるから、従来の方法あるいは装置より、検査ス
ピードが速く、操作性に優れるという利点が得られる。
[Effects of the Invention] As explained above, the present invention applies an electromagnetic ultrasonic sensor to measure the wall thickness due to corrosion of underground pipes, and automatically and non-contactly measures the corroded area, position, and minimum of the pipes. Since this method measures wall thickness, it has the advantage of faster inspection speed and superior operability than conventional methods or devices.

このため、金属材料構造物の厚さ、寸法の測定、オンラ
インで製造される鋼板、配管、薄板の品質検査、水、液
体等の接触をきらう製品・構造物の厚さ測定、メッキ、
塗膜を施した製品・構造物の基板材料の厚さ測定を、製
品・構造物を動かすことなしに自動的に検査・診断でき
る利点がある。
For this reason, we measure the thickness and dimensions of metal material structures, inspect the quality of steel plates, piping, and thin plates manufactured online, measure the thickness of products and structures that do not want contact with water, liquids, etc., plate,
This method has the advantage of automatically inspecting and diagnosing the thickness of the substrate material of coated products and structures without moving the product or structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による地下管路腐食診断装
置の構成を示すブロック図、第2図は電磁超音波法の原
理図、第3図〈Jは電磁超音波厚さ測定の方法を示す図
、同図中)はエコーパルスと時間との関係を示す図、第
4図は電磁超音波センサ11の構成を示す概略図、第5
図は駆動装置3の構成を示す概略図、第6図は表示・記
録装置の表示状態を示す図で、同図(alは管路断面表
示、(b+は長手断面表示、第7図は管路長手方向の診
断走査を説明するための部分断面図、第8図は管路円周
方向の診断走査を説明するための図、第9図は上記実施
例の測定ブロック図、第10図は従来の地下管路腐食診
断装置の構成を示す概略図、第11図は従来の超音波厚
さ測定方法を説明するための概略図である。 2・・・・・・回転装置、3・・・・・・駆動装置、4
・・・・・・演算装置、4a・・・・・・送受信装置、
5・・・・・・表示・記録装置、7・・・・・・管路、
11・・・・・・電磁超音波センサ、n・・・・・・測
定点。 【 第3 図 図 と  龍 第4図 第5図 第6図 (Q) (b) 第7図 27;、著裏)P 第8図
Fig. 1 is a block diagram showing the configuration of an underground pipe corrosion diagnosis system according to an embodiment of the present invention, Fig. 2 is a principle diagram of the electromagnetic ultrasonic method, and Fig. 3 (J is the electromagnetic ultrasonic thickness measurement method). Figure 4 is a diagram showing the relationship between echo pulses and time; Figure 4 is a schematic diagram showing the configuration of the electromagnetic ultrasonic sensor 11;
The figure is a schematic diagram showing the configuration of the drive device 3, and FIG. 6 is a diagram showing the display state of the display/recording device. FIG. 8 is a partial sectional view for explaining diagnostic scanning in the longitudinal direction of the pipe, FIG. 9 is a diagram for explaining diagnostic scanning in the circumferential direction of the pipe, FIG. 9 is a measurement block diagram of the above embodiment, and FIG. A schematic diagram showing the configuration of a conventional underground pipe corrosion diagnosis device, and FIG. 11 is a schematic diagram for explaining a conventional ultrasonic thickness measurement method. 2...Rotating device, 3... ... Drive device, 4
... Arithmetic device, 4a... Transmission/reception device,
5...Display/recording device, 7...Pipeline,
11... Electromagnetic ultrasonic sensor, n... Measurement point. [ Fig. 3 and Dragon Fig. 4 Fig. 5 Fig. 6 (Q) (b) Fig. 7 27;, back of the book) P Fig. 8

Claims (2)

【特許請求の範囲】[Claims] (1)地下管路の内壁面を非接触で走査する電磁超音波
センサより得られた管路肉厚を前記管路の各位置に対し
て集計・演算し、この演算結果を前記管路の各位置に対
して表示・記録することを特徴とする地下管路腐食診断
方法。
(1) The pipe wall thickness obtained by an electromagnetic ultrasonic sensor that non-contact scans the inner wall surface of the underground pipe is aggregated and calculated for each position of the pipe, and this calculation result is used for the An underground pipe corrosion diagnosis method characterized by displaying and recording information for each location.
(2)地下管路の内壁に対して非接触で配置された電磁
超音波発信・受信子を有する電磁超音波センサと、この
電磁超音波センサを前記管路の円周方向に回転させる回
転装置と、前記電磁超音波センサおよび回転装置を、前
記管路の内壁面長手方向に一体に移動させる駆動装置と
、前記電磁超音波センサと電気的に接続された送受信装
置と、この送受信装置の入出力信号に基づいて前記管路
の各測定位置における肉厚を計算する演算装置と、この
演算結果を表示・記録する表示・記録装置とを具備する
ことを特徴とする地下管路腐食診断装置。
(2) An electromagnetic ultrasonic sensor having an electromagnetic ultrasonic transmitter/receiver placed in a non-contact manner on the inner wall of the underground conduit, and a rotation device that rotates this electromagnetic ultrasonic sensor in the circumferential direction of the conduit. a drive device that integrally moves the electromagnetic ultrasonic sensor and the rotation device in the longitudinal direction of the inner wall surface of the conduit; a transmitter/receiver electrically connected to the electromagnetic ultrasonic sensor; and an input/receiver for the transmitter/receiver. An underground pipe corrosion diagnostic apparatus comprising: a calculation device that calculates the wall thickness at each measurement position of the pipe based on an output signal; and a display/recording device that displays and records the calculation results.
JP59256690A 1984-12-05 1984-12-05 Method and apparatus for diagnosing corrosion of underground pipeline Pending JPS61133857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256690A JPS61133857A (en) 1984-12-05 1984-12-05 Method and apparatus for diagnosing corrosion of underground pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256690A JPS61133857A (en) 1984-12-05 1984-12-05 Method and apparatus for diagnosing corrosion of underground pipeline

Publications (1)

Publication Number Publication Date
JPS61133857A true JPS61133857A (en) 1986-06-21

Family

ID=17296119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256690A Pending JPS61133857A (en) 1984-12-05 1984-12-05 Method and apparatus for diagnosing corrosion of underground pipeline

Country Status (1)

Country Link
JP (1) JPS61133857A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014704A (en) * 2001-07-02 2003-01-15 Nkk Corp Corrosion inspection method
JP2003021621A (en) * 2001-07-09 2003-01-24 Nkk Corp Corrosion diagnosing system
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
CN105229460A (en) * 2013-02-28 2016-01-06 阿海珐有限公司 Detect about the main body of metal wall thickness, the method for time dependent thermal and mechanical stress and/or stress gradient
JP6768990B1 (en) * 2019-02-21 2020-10-14 株式会社テイエルブイ probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476282A (en) * 1977-11-30 1979-06-18 Nitto Eng Service Method of detecting flaw and thickness of of pipe by ultrasonic waves
JPS58132657A (en) * 1982-02-02 1983-08-08 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic flaw detector for slender pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476282A (en) * 1977-11-30 1979-06-18 Nitto Eng Service Method of detecting flaw and thickness of of pipe by ultrasonic waves
JPS58132657A (en) * 1982-02-02 1983-08-08 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic flaw detector for slender pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014704A (en) * 2001-07-02 2003-01-15 Nkk Corp Corrosion inspection method
JP2003021621A (en) * 2001-07-09 2003-01-24 Nkk Corp Corrosion diagnosing system
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP4718857B2 (en) * 2005-02-10 2011-07-06 東京計器株式会社 Rail bottom corrosion detection device and rail bottom corrosion detection method
CN105229460A (en) * 2013-02-28 2016-01-06 阿海珐有限公司 Detect about the main body of metal wall thickness, the method for time dependent thermal and mechanical stress and/or stress gradient
JP6768990B1 (en) * 2019-02-21 2020-10-14 株式会社テイエルブイ probe

Similar Documents

Publication Publication Date Title
US3944963A (en) Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
US7963165B2 (en) Non-contact feature detection using ultrasonic Lamb waves
US4523468A (en) Phased array inspection of cylindrical objects
Alleyne et al. Optimization of Lamb wave inspection techniques
US5460046A (en) Method and apparatus for ultrasonic pipeline inspection
US5619423A (en) System, method and apparatus for the ultrasonic inspection of liquid filled tubulars and vessels
JP4620398B2 (en) Apparatus for inspecting structures ultrasonically and method for inspecting structures
US4641529A (en) Pipeline inspection device using ultrasonic apparatus for corrosion pit detection
US4567747A (en) Self-calibration system for ultrasonic inspection apparatus
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
JPS61133856A (en) Method and apparatus for diagnosing underground pipeline
US4702112A (en) Ultrasonic phase reflectoscope
EP1196740A1 (en) Measuring system including positioning and date transfer
Ti et al. Measurements of coupled Rayleigh wave propagation in an elastic plate
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
Wickramanayake et al. Ultrasonic thickness measuring in-pipe robot for real-time non-destructive evaluation of polymeric spray linings in drinking water pipe infrastructure
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
RU197520U1 (en) Robotic flaw detector for non-destructive testing of pipelines
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
JPH07333201A (en) Ultrasonic flaw detection of piping
JPS6228869B2 (en)
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
Bhowmick Ultrasonic inspection for wall thickness measurement at thermal power stations
JPH1114608A (en) Electromagnetic ultrasonic probe
JPS61172055A (en) Apparatus for inspecting interior of piping