JPS63149354A - High tension steel sheet for high heat input welding and manufacture thereof - Google Patents

High tension steel sheet for high heat input welding and manufacture thereof

Info

Publication number
JPS63149354A
JPS63149354A JP29630486A JP29630486A JPS63149354A JP S63149354 A JPS63149354 A JP S63149354A JP 29630486 A JP29630486 A JP 29630486A JP 29630486 A JP29630486 A JP 29630486A JP S63149354 A JPS63149354 A JP S63149354A
Authority
JP
Japan
Prior art keywords
less
toughness
heat input
welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29630486A
Other languages
Japanese (ja)
Inventor
Jun Furusawa
古澤 遵
Seiichi Watanabe
征一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29630486A priority Critical patent/JPS63149354A/en
Publication of JPS63149354A publication Critical patent/JPS63149354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a high tension steel sheet for high heat input welding having superior toughness at the weld zone by successively subjecting a steel having a specified compsn. to heating, hot rolling, quenching and tempering under specified conditions. CONSTITUTION:A steel consisting of, by weight, 0.03-0.12% C, 0.05-0.4% Si, 0.7-1.6% Mn, <=0.015% P, <=0.01% S, 0.001-0.05% sol. Al, 0.005-0.02% Ti, 0.005-0.015% Zr, 0.003-0.008% N and the balance Fe with accompanying impurities or further contg. at least one among <=0.5% Cu, <=1.0% Ni, <=0.04% V, <=0.03% Nb and <=0.004% Ca and satisfying formulae I, II, III is heated to 900-1,200 deg.C, hot rolled to a prescribed thickness at >=800 deg.C, immediately water-quenched to room temp. and tempered at 200-450 deg.C. A high tension steel sheet for high heat input welding having >=36kgf/mm<2> yield point is obtd. When the steel sheet is welded with 100-500kJ/cm welding heat input, the weld zone has >=3.5kgf.m toughness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶接部靭性のすぐれた大入熱溶接用高張力鋼
板、特にTiNおよびZrNを均一に分散析出させて成
る大人熱溶接用高張力鋼板およびその製法に間する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a high tensile strength steel plate for high heat input welding with excellent weld toughness, particularly a high tensile strength steel plate for large heat welding in which TiN and ZrN are uniformly dispersed and precipitated. Regarding tensile steel plates and their manufacturing method.

(従来の技術) 従来の高張力鋼板(降伏点36kgf/mob2以上)
は大入熱溶接部(溶接入熱量100kJ/cm以上)の
靭性を改善するために以下のような対策を行ってきたq
Φ銅鋼中N含有量を30ρρ−以下というふうに極力低
減し、これに微量のTiおよびBを含有させることによ
り、靭性に有害な固溶NMの低減を図り、かつTiNお
よびBNの析出物を核としてミクロ組織の微細化を図っ
た低N −Ti−B鋼〔「鉄とtalJ Vol、68
’ (1982) 5638〜5639) −■Ceな
どの希土類元素(RE?I)とBとを含有することによ
り、REM介在物を起点として析出したBNを核として
ミクロ組織の微細化を図ったREM −B鋼C「鉄と綱
J Vol、63(1977) 99.303〜312
) 。
(Conventional technology) Conventional high-strength steel plate (yield point 36 kgf/mob2 or more)
has taken the following measures to improve the toughness of high heat input welds (welding heat input of 100 kJ/cm or more).
By reducing the N content in the Φ copper steel as much as possible to 30ρρ- or less, and incorporating trace amounts of Ti and B, we aim to reduce solid solution NM that is harmful to toughness, and eliminate TiN and BN precipitates. Low N-Ti-B steel with a finer microstructure with a core of
' (1982) 5638-5639) -■ REM containing a rare earth element (RE?I) such as Ce and B to refine the microstructure using BN precipitated from REM inclusions as a core. -B Steel C “Tetsu to Tsuna J Vol, 63 (1977) 99.303-312
).

■Ti添加鋼においてsol、M量を低減させることに
より酸素を増加させて析出したTiOを核としてミクロ
組織の微細化を図った低AQ−TiwJ(r鉄と鋼J 
Vol、72(1986) 5625〜5627)。
■Low AQ-TiwJ (iron and steel J
Vol. 72 (1986) 5625-5627).

(発明が解決しようとする問題点) しかし、構造物の大型化に伴って使用鋼材は肉厚が増加
する傾向にある。これに伴って、溶接入熱量が増加する
傾向にあり、500kJ/cn+程度までの溶接部での
靭性確保が要求されつつある。
(Problems to be Solved by the Invention) However, as structures become larger, the thickness of steel materials used tends to increase. Along with this, there is a tendency for welding heat input to increase, and it is becoming necessary to ensure toughness in welded parts up to about 500 kJ/cn+.

さらに、構造物の運転環境の寒冷地化に伴って、靭性要
求温度は低温化の傾向にあり、−70℃程度までの要求
がされつつある。
Furthermore, as the operating environment for structures becomes colder, the required temperature for toughness tends to be lower, and is now required to be as low as about -70°C.

すなわち、最近の最も苛酷な要求である溶接入熱量50
0kJ/c+mの溶接部でvE−16≧3.5kgf−
raを満足することは上述の対策では不可能である。
In other words, the welding heat input is 50, which is the most severe requirement these days.
vE-16≧3.5kgf- at welded part of 0kJ/c+m
It is impossible to satisfy ra with the above measures.

かくして、本発明の目的は、溶接入熱!500kJ/c
mの溶接部でvE−q。≧3.5kgf−reを満足す
る大人熱溶接用高張力鋼板を提供することである。
Thus, the purpose of the present invention is to reduce welding heat input! 500kJ/c
vE-q at the weld of m. An object of the present invention is to provide a high-strength steel plate for adult heat welding that satisfies ≧3.5 kgf-re.

(問題点を解決するための手段) 本発明者らは、上述の目的を達成する手段として高温加
熱部において安定に存在するZrNを核としたミクロM
i織の微細化に着目した。
(Means for Solving the Problems) As a means to achieve the above-mentioned object, the present inventors have developed a micro-M with ZrN as a core that stably exists in a high-temperature heating section.
We focused on making the i-weave finer.

一連の実験、研究を続けたところ、TiN 、 ZrN
の共存下において初めて溶接入熱量100kJ/cn+
以上という大入熱溶接による溶接部靭性が著しく改善さ
れたことを知り、本発明を完成した。
After a series of experiments and research, we found that TiN, ZrN
Welding heat input of 100kJ/cn+ was achieved for the first time under the coexistence of
The present invention was completed based on the knowledge that the toughness of the weld zone was significantly improved by the above-mentioned high heat input welding.

ここに、本発明の要旨とするところは、重量%で、 C:0.03〜0.12%、Si:0.05〜0.4%
、Mn: 0.70〜1.6%、P :0.015%以
下、s :0.01%以下、S01.八Q:0−001
〜0.050%、Ti:0.005〜0.02%、Zr
:0.005〜0.015%、N :0.003〜0.
008%、 さらに、所望により、Cu:0.5%以下、Ni:1.
0%以下、V:0.04%以下、Nb:0.03 %以
下、およびCa:0.004%以下の少なくとも1種、
Feおよび付随不純物:残部 かつ Ti    Zr □+□ 14.0 Ceq =0.36%以下 である組成を有することを特徴とする、溶接入熱1)0
0〜500kJ/cmの溶接部の靭性(vE−、a)が
3.5kgf一層以上、降伏点36kgf/am”以上
の大入熱溶接用高張力鋼板である。
Here, the gist of the present invention is, in weight%, C: 0.03 to 0.12%, Si: 0.05 to 0.4%.
, Mn: 0.70-1.6%, P: 0.015% or less, s: 0.01% or less, S01. Eighth Q: 0-001
~0.050%, Ti:0.005~0.02%, Zr
:0.005~0.015%, N:0.003~0.
008%, further, if desired, Cu: 0.5% or less, Ni: 1.
0% or less, V: 0.04% or less, Nb: 0.03% or less, and Ca: 0.004% or less,
Welding heat input 1) 0 characterized by having a composition in which Fe and accompanying impurities: balance and Ti Zr □+□ 14.0 Ceq = 0.36% or less
It is a high-strength steel plate for high heat input welding with a welded part toughness (vE-, a) of 0 to 500 kJ/cm of 3.5 kgf or more and a yield point of 36 kgf/am'' or more.

ただし、 St  Mn  Cu  Ni  Cr  Mo  V
Ceq  =C+−+−十−+−+−+−+ −さらに
、別の面からは、本発明は、上記組成を有する鋼を、9
00℃〜1200℃の温度域に加熱した後、熱間圧延に
よって800℃以上の温度で所定の板厚とし、次いで、
直ちに水冷によって室温にまで急冷し、その後200〜
450℃の温度域で焼戻しを行うことから成る、溶接入
熱量100〜500kJ/cmの溶接部の靭性(vE 
−y。)が3.5kgf−m以上を満足することを特徴
とする、降伏点36kgf/l1ls”以上の大入熱溶
接用高張力鋼板の製法である。
However, St Mn Cu Ni Cr Mo V
Ceq =C+-+-10-+-+-+-+ -Furthermore, from another aspect, the present invention provides steel having the above composition with 9
After heating to a temperature range of 00°C to 1200°C, the plate is hot rolled to a predetermined thickness at a temperature of 800°C or higher, and then
Immediately quench with water to room temperature, then heat to 200~
The toughness (vE
-y. ) is 3.5 kgf-m or more, and has a yield point of 36 kgf/l1ls" or more and a method for producing a high-strength steel plate for high heat input welding.

かかる本発明による製法によれば、TiNおよびZrN
は均一に分散析出し、母材の機械的特性の改善、特に強
度および靭性の改善は著しい、溶接部に関しては加工履
歴は消失し、もともと含有されているTiおよびZrの
窒化物の均一分散析出が影響するが、その余の部分に関
しては鋼板製造段階でのTtN、ZrNの均一分散析出
が影響するのである。
According to the manufacturing method according to the present invention, TiN and ZrN
is uniformly dispersed and precipitated, and the mechanical properties of the base metal are improved, especially the strength and toughness are significantly improved. As for the welded part, the processing history disappears, and the originally contained Ti and Zr nitrides are uniformly dispersed and precipitated. However, the rest is influenced by the uniformly dispersed precipitation of TtN and ZrN during the steel plate manufacturing stage.

(作用) 本発明の化学的組成範囲および加工条件を上述のように
限定した理由について以下詳述する。
(Function) The reason why the chemical composition range and processing conditions of the present invention are limited as described above will be explained in detail below.

C:母材の強度(降伏点が36kgf/am2以上)を
確保するため0.03%以上が必要であり、0.12%
を超えると溶接部の靭性が劣化する。
C: 0.03% or more is required to ensure the strength of the base material (yield point is 36 kgf/am2 or more), and 0.12%
If it exceeds this, the toughness of the weld will deteriorate.

Si:鋼のR酸と母材の強度確保のため0.05%以上
が必要であるが、0.4%を超えると溶接部の靭性が劣
化する。
Si: 0.05% or more is required to ensure the strength of the R acid of the steel and the base metal, but if it exceeds 0.4%, the toughness of the weld will deteriorate.

Mn:母材の強度を確保するため0.7%以上が必要で
あるが、1.6%を超えると溶接部の靭性が劣化する。
Mn: 0.7% or more is required to ensure the strength of the base metal, but if it exceeds 1.6%, the toughness of the weld will deteriorate.

P;Pは凝固時に偏析しやすい元素であり、Pの偏析等
が溶接部を硬化させて靭性劣化の原因となるため、その
含有量が低いほど望ましい0本発明の鋼板において溶接
部の靭性を確保するためにはO,015%以下とするこ
とが必要である。
P; P is an element that tends to segregate during solidification, and segregation of P hardens the weld and causes toughness deterioration, so the lower the content, the better. In order to ensure this, it is necessary to keep it below 0.015%.

好ましくは0.01%以下である。Preferably it is 0.01% or less.

SO3は鋼中ではMnS等の介在物となって、靭性、延
性を劣化させるため、0.01%以下にすることが必要
である。
SO3 becomes inclusions such as MnS in steel and deteriorates toughness and ductility, so it is necessary to keep the content to 0.01% or less.

sol、IVl: sol、AQは鋼の脱酸作用を有す
るとともに、MNとして析出してオーステナイト粒の微
細化による母材靭性改善作用を有しており、かかる作用
効果を得るために、o、oot%以上のsol、Mが必
要である。しかし、過剰のsol、Al1は母材および
溶接部の靭性を劣化させるため0.05%以下とするこ
とが必要である。
sol, IVl: sol, AQ has a deoxidizing effect on steel, and also has an effect of improving base metal toughness by precipitating as MN and refining austenite grains. In order to obtain this effect, o, oot % or more of sol, M is required. However, excessive sol and Al1 deteriorate the toughness of the base metal and the welded part, so it is necessary to limit it to 0.05% or less.

Ti: TiはTiNを析出させて、溶接部のMi織機
微細化もたらし、溶接部の靭性を改善する。この効果を
得るためには、o、oos%以上が必要であるが、0.
02%を超えると、母材および溶接部の靭性を低下させ
る。好ましくは、0.01〜0.015%である。
Ti: Ti precipitates TiN, brings about Mi loom refinement in the weld zone, and improves the toughness of the weld zone. In order to obtain this effect, o,oos% or more is required, but 0.
If it exceeds 0.02%, the toughness of the base metal and weld zone will be reduced. Preferably it is 0.01 to 0.015%.

Zr: Zrは1)と同様にZrNを析出させて、溶接
部の&[l機微細化をもらし、溶接部の靭性を改善する
Zr: Zr precipitates ZrN in the same way as in 1), makes the weld zone finer, and improves the toughness of the weld zone.

この効果を得るためには、0.005%以上が必要であ
るが、0.015%を超えると、母材および溶接部の靭
性を低下させる。好ましくは0.007〜0.012%
である。
In order to obtain this effect, a content of 0.005% or more is required, but if it exceeds 0.015%, the toughness of the base metal and weld zone will be reduced. Preferably 0.007-0.012%
It is.

ただし、 □ の比が0.41未満では 14.0 TiNおよびZrNの析出物の数が少なく、上記の効果
が得られない。
However, if the ratio of □ is less than 0.41, the number of 14.0 TiN and ZrN precipitates is small, and the above effect cannot be obtained.

また、1.0を超えるとTiCおよびZrCを析出して
溶接部の靭性が劣化する。そこで0.4〜1.0の範囲
とすることが必要である。更に好ましくは0.5〜0.
8である。
Moreover, if it exceeds 1.0, TiC and ZrC will precipitate and the toughness of the weld will deteriorate. Therefore, it is necessary to set it in the range of 0.4 to 1.0. More preferably 0.5-0.
It is 8.

ここで、TiとZrを同時に添加する理由は次のとおり
である。
Here, the reason for adding Ti and Zr at the same time is as follows.

TiNおよびZrNは溶接時の高温加熱におけるオース
テナイト粒の粗大化抑制およびその後の冷却時のフェラ
イト変態における核としての働きによる1)1mm細化
の二つの効果により最終のミクロ組織を微細化して靭性
を改善する。
TiN and ZrN have two effects: 1) suppressing coarsening of austenite grains during high-temperature heating during welding, and serving as nuclei during ferrite transformation during subsequent cooling; 1) refining the final microstructure by 1 mm, improving toughness Improve.

しかし、TiNおよびZrNには各々長所と短所がある
。すなわち、TiNはZrNに比べて微細に均一分散し
やすく、細粒化の効果が大きい長所を有している。ただ
し、1350 ’Cを超えるとTiNは再溶解して微細
化効果が低下する。これに対してZrNは1450℃程
度まで安定に存在するため、TiNが再溶解するような
高温加熱部(1350〜145[C)の微細化に有効で
ある。ただし、ZrNはTiNに比べて微細に均一分散
しにくいため、1350’C以下に加熱された部分の細
粒化に対してはTiNに比べてその効果が少ない。
However, TiN and ZrN each have advantages and disadvantages. That is, TiN has the advantage that it is easier to disperse finely and uniformly than ZrN, and has a large grain refining effect. However, if the temperature exceeds 1350'C, TiN will be re-dissolved and the refinement effect will be reduced. On the other hand, since ZrN exists stably up to about 1450[deg.] C., it is effective in miniaturizing high-temperature heated parts (1350 to 145[C]) where TiN is remelted. However, since ZrN is more difficult to disperse finely and uniformly than TiN, it is less effective than TiN in refining the grains of the portion heated to 1350'C or less.

そこで本発明ではTiNとZrNの各々の特色を生かし
た複合添加による相乗効果を利用しようとするものであ
る。
Therefore, the present invention attempts to take advantage of the synergistic effect resulting from the combined addition of TiN and ZrN, taking advantage of their respective characteristics.

N:Nは固溶状態で鋼中に存在した場合、溶接部の靭性
を劣化させるためできるだけ低い方が望ましい、しかし
、大入熱溶接部は固溶Nfiの低減だけでは十分な靭性
が得られず、組織の微細化を行うことが良好な靭性を得
るためには不可欠である。
N: If N is present in steel in a solid solution state, it deteriorates the toughness of the weld, so it is desirable to keep it as low as possible. However, in high heat input welds, sufficient toughness cannot be obtained just by reducing solid solution Nfi. First, it is essential to refine the structure in order to obtain good toughness.

すでに述べたように、本発明にあって、溶接部の組織の
微細化は、TiNおよびZrNの均一な分散析出によっ
てもたらされるものであり、TtおよびZrと結合する
Nの量を最適量に制御することが必要である。すなわち
、本発明において、大入熱溶接部の靭性改善に有効な量
のTiNおよびZrNを確保するためには、Nは0.0
03%以上が必要である。しかし、Nが0.008%を
超えると固溶N量が増加して溶接部の靭性が劣化する。
As already mentioned, in the present invention, the refinement of the structure of the weld zone is brought about by uniformly dispersed precipitation of TiN and ZrN, and the amount of N combined with Tt and Zr is controlled to an optimum amount. It is necessary to. That is, in the present invention, in order to ensure an effective amount of TiN and ZrN for improving the toughness of a high heat input weld, N should be 0.0
0.3% or more is required. However, when N exceeds 0.008%, the amount of solid solute N increases and the toughness of the weld zone deteriorates.

そこで、N量は0.003〜0.008%とした。Therefore, the amount of N was set to 0.003 to 0.008%.

上述のI1)&Il成に、所望により、下記の成分を少
なくとも1種更に添加することにより、母材の強度と靭
性および溶接部の靭性を安定化することができる。
The strength and toughness of the base metal and the toughness of the welded part can be stabilized by further adding at least one of the following components to the above-mentioned compositions I1) and Il, if desired.

Cu: Cuは溶接部の靭性を劣化させることなく母材
の強度を上昇させる効果を有するため、その添加が母材
の強度の安定化に有効である。しかし、0.5%を超え
ると、熱間延性を低下させ、溶接時の高温割れ感受性を
高める。
Cu: Since Cu has the effect of increasing the strength of the base metal without deteriorating the toughness of the weld, its addition is effective in stabilizing the strength of the base metal. However, when it exceeds 0.5%, hot ductility decreases and susceptibility to hot cracking during welding increases.

Ni二Niは1.0%までは溶接部の靭性を劣化させる
ことなく母材の強度および靭性を上昇させるため、その
添加は母材の強度と靭性の安定化に有効である。しかし
、1.0%を超えると、溶接部の靭性が劣化する。
Up to 1.0% of Ni increases the strength and toughness of the base metal without deteriorating the toughness of the weld, so its addition is effective in stabilizing the strength and toughness of the base metal. However, if it exceeds 1.0%, the toughness of the weld will deteriorate.

v:vは母材の強度上昇に有効である。しかし、0.0
4%を超えると溶接部の靭性が劣化する。
v: v is effective in increasing the strength of the base material. However, 0.0
If it exceeds 4%, the toughness of the weld will deteriorate.

Nb: Nbは母材の強度および靭性の上昇に有効であ
る。しかし、0.03%を趙えると溶接部の靭性が劣化
する。
Nb: Nb is effective in increasing the strength and toughness of the base metal. However, if it exceeds 0.03%, the toughness of the weld will deteriorate.

Ca: Caは硫化物を球状化して母材の機械的性質の
異方性を減少させる効果を存すると共に、Ca(0、S
)として鋼中に均一に分散させることによって溶接部の
&IN織を微細化して靭性を改善する。しかし、0.0
04%を超えると、その効果が飽和すると同時に、鋼の
清浄度を劣化させる。
Ca: Ca has the effect of spheroidizing sulfide and reducing the anisotropy of the mechanical properties of the base material, and also has the effect of reducing the anisotropy of the mechanical properties of the base material.
), it refines the &IN weave in the weld and improves toughness by uniformly dispersing it in the steel. However, 0.0
If it exceeds 0.4%, the effect reaches saturation and at the same time the cleanliness of the steel deteriorates.

本発明では、以上のように化学成分に制限を加えると共
に、更にCeqの制限を加える。すなわち、以上の化学
成分の限定を行っても、大入熱溶接部は低温靭性(シE
−?。)を安定して3.5kgf−僧以上とすることは
できず、Ceqを0.36%以下とすることによっては
じめてこの低温靭性3.5kgf−一以上の条件が満足
される。
In the present invention, in addition to limiting the chemical components as described above, Ceq is further limited. In other words, even if the chemical components are limited as described above, high heat input welds have poor low-temperature toughness (Sheet E).
−? . ) cannot be stably maintained at 3.5 kgf-1 or more, and this condition of low-temperature toughness of 3.5 kgf-1 or more is satisfied only by setting Ceq to 0.36% or less.

圧延加熱温度ニ オーステナイト中に炭化物を均一に固溶させるために、
900℃以上に加熱することが必要であるが、1200
℃を超えて加熱するとオーステナイト粒が粗大化し、圧
延、再結晶によっても十分に微細化されず、母材の靭性
が劣化する場合がある。好ましくはこの加熱温度は95
0〜1)50℃である。
In order to uniformly dissolve carbides in the rolling heating temperature niostenite,
It is necessary to heat to 900℃ or higher, but 1200℃
If heated above ℃, austenite grains become coarse and cannot be sufficiently refined even by rolling or recrystallization, and the toughness of the base material may deteriorate. Preferably this heating temperature is 95
0-1) 50°C.

圧延仕上温度および圧延後の冷却: 本発明の鋼は大入熱溶接部の靭性を確保するためにCe
qを低く制限しており、母材の強度を確保するためには
圧延後の冷却速度を速くすることが必要である。
Finishing temperature of rolling and cooling after rolling: The steel of the present invention contains Ce in order to ensure the toughness of the high heat input welded part.
q is limited to a low value, and in order to ensure the strength of the base material, it is necessary to increase the cooling rate after rolling.

したがって、圧延終了後直ちに水冷を行って室温まで急
冷することが必要である。さらに、水冷における冷却速
度を確保するためには、圧延仕上温度を800℃以上と
することが必要である。一般にはこの仕上げ温度は82
0℃以上である。
Therefore, it is necessary to perform water cooling immediately after finishing rolling to rapidly cool the product to room temperature. Furthermore, in order to ensure the cooling rate in water cooling, it is necessary to set the finishing rolling temperature to 800° C. or higher. Generally, this finishing temperature is 82
The temperature is 0°C or higher.

焼戻し処理: 水冷ままの鋼板は歪みが多いため降伏点および靭性が低
い、200℃以上の温度で焼戻しを行うことにより、降
伏点および靭性が向上する。しかし、450℃を超えた
温度で焼戻しを行うと引張強さが著しく低下する。好ま
しくは300〜400℃で焼戻し処理を行う。
Tempering treatment: A steel plate as water-cooled has a lot of distortion, so its yield point and toughness are low. By tempering at a temperature of 200° C. or higher, the yield point and toughness are improved. However, when tempering is performed at a temperature exceeding 450°C, the tensile strength is significantly reduced. Preferably, the tempering treatment is performed at 300 to 400°C.

かくして、本発明によれば、大人熱溶接に際して溶接部
の凝固過程においてTiN、ZrNの均一分散析出が行
われ、溶接部の組織は微細に分割され靭性の改善効果が
見られ、溶接入熱量100〜500kJ/cmの溶接部
の靭性(vE −to)が3.5kgf−m以上および
降伏点36kgf/+mm”以上を満足する。一方、溶
接部以外の母材部分には、その好適G様によれば、予め
鋼板製造段階でTiN、ZrNの均一分散析出が行われ
ており、同様の所要靭性、強度は確保されている。
Thus, according to the present invention, TiN and ZrN are uniformly dispersed and precipitated during the solidification process of the weld during adult heat welding, the structure of the weld is finely divided, the effect of improving toughness is observed, and the welding heat input is 100. The toughness (vE -to) of the welded part of ~500kJ/cm satisfies 3.5kgf-m or more and the yield point of 36kgf/+mm'' or more.On the other hand, the base metal part other than the welded part is According to the above, TiN and ZrN are uniformly dispersed and precipitated in advance at the steel sheet manufacturing stage, and the same required toughness and strength are ensured.

次に、本発明の効果を実施例により例示する。Next, the effects of the present invention will be illustrated by examples.

なお、本明細書において、実施例を含めて「%」は特に
指定のない限り、「重量%」である。
In addition, in this specification, including the examples, "%" means "% by weight" unless otherwise specified.

実施例 第1表に示した化学組成を有する鋼塊(A−T)を、熱
間鍛造によって、板厚150s+mのスラブとした後、
第2表に示した条件で板厚35II1)の鋼板を製造し
た。
Example After forming a steel ingot (A-T) having the chemical composition shown in Table 1 into a slab with a thickness of 150 s+m by hot forging,
A steel plate having a thickness of 35II1) was manufactured under the conditions shown in Table 2.

母材の機械的性質は、鋼板の板厚中心部、圧延直角方向
よりJIS A号丸棒引張試験片(平行部の直径14翔
糟、平行部長さ50s+m) 、およびJISA号シ中
ルビー衝撃試験片(2mmVノツチ)を採取して調査し
た。
The mechanical properties of the base material were determined by JIS No. A round bar tensile test piece (parallel part diameter 14 mm, parallel part length 50 s + m) from the center of the thickness of the steel plate, in the direction perpendicular to rolling, and the JISA No. A round bar tensile test piece (parallel part diameter 14 mm, parallel part length 50 s + m), and JISA No. 2 medium ruby impact test. A piece (2 mm V notch) was taken and examined.

溶接継手部のシャルピー衝撃特性は、第3表の溶接条件
を用いて溶接を行った溶接継手部の表面から6m−の部
分よりJIS 4号シャルピー衝撃試験片(2麿−■ノ
ツチ)を採取して調査した。
The Charpy impact properties of the welded joint were determined by taking a JIS No. 4 Charpy impact test piece (2mm-■ notch) from a section 6 m from the surface of the welded joint that was welded using the welding conditions shown in Table 3. We investigated.

このようにして得られた母材および溶接継手部の機械的
特性は第2表にまとめて示した。
The mechanical properties of the base metal and welded joint thus obtained are summarized in Table 2.

本発明にかかる組成範囲内の1g (f!4A−鋼L)
を本発明の条件を用いて製造した鋼板(試験陽1〜12
)は、母材の強度および靭性、ならびに溶接継手部の靭
性がいずれも優れている。
1g within the composition range according to the present invention (f!4A-Steel L)
steel sheets manufactured using the conditions of the present invention (test positives 1 to 12)
) is excellent in both the strength and toughness of the base metal and the toughness of the welded joint.

これに対し、比較鋼(鋼M〜鋼T)は本発明の条件下で
製造した鋼板(試験磁13〜20)において母材の強度
と靭性は良好であるが、溶接継手部の靭性が劣る。
On the other hand, in comparison steels (steel M to steel T), the strength and toughness of the base metal are good in the steel plates manufactured under the conditions of the present invention (test magnets 13 to 20), but the toughness of the welded joint is poor. .

比較例の中で鋼0はTi量が少ない(Ti:0.003
%)ため、HAZ 1mmおよびHAZ 3mmの靭性
が低い。
Among the comparative examples, Steel 0 has a small amount of Ti (Ti: 0.003
%), the toughness of HAZ 1mm and HAZ 3mm is low.

また、tlilQはZr1lが少ない(Zr:0.00
2%)ため、溶接ボンド部の靭性が低い。
In addition, tlilQ has less Zr1l (Zr: 0.00
2%), the toughness of the weld bond is low.

これらの比較例を対比することにより、Zrの添加効果
、特にTiおよびZrの共存による相乗効果が明らかで
ある。
By comparing these comparative examples, the effect of adding Zr, especially the synergistic effect of the coexistence of Ti and Zr, becomes clear.

他の比較例ではいずれの溶接法においても靭性が著しく
低い。
In other comparative examples, the toughness was extremely low in all welding methods.

なお、同じく比較例である試験1)h2L〜24では、
化学組成は本発明で規定する範囲内であるが、製造条件
が本発明の条件とは異なるため、母材の機械的特性が劣
る。具体的には、試験m21は圧延加熱温度が高いため
靭性が低い、試験磁22は仕上温度が低いため強度が低
い、試験嵐23は焼戻しを行っていないため、降伏点お
よび靭性が低い、試験−24は焼戻し温度が高いため引
張強さが低い、これらについては、このように機械的特
性が充分でなかったため溶接試験は行なわなかった。
In addition, in Test 1) h2L-24, which is also a comparative example,
Although the chemical composition is within the range specified by the present invention, the mechanical properties of the base material are inferior because the manufacturing conditions are different from the conditions of the present invention. Specifically, test m21 has low toughness due to high rolling heating temperature, test magnetic 22 has low strength due to low finishing temperature, and test arashi 23 has low yield point and toughness because it is not tempered. -24 had a low tensile strength due to the high tempering temperature, and no welding tests were conducted on these because their mechanical properties were insufficient.

(発明の効果) 以上詳述したように、本発明によれば、溶接入熱量10
0〜500kJ/cmという大入熱溶接用であって、そ
の溶接部の靭性(vE−7゜)が3.5kgf−m以上
を満足するとともに、降伏点も36kgf/mn+”以
上という大熱溶接用高張力鋼板が得られるのであって、
特にこれは本発明に規定する製法によれば母材について
も同様の機械的特性が得られるのであって、今日要求さ
れている一70℃という寒冷地での大型構造物の溶接施
工を可能とし、その斯界に及ぼす利益には大きいものが
ある。
(Effects of the Invention) As detailed above, according to the present invention, the welding heat input is 10
High heat welding for high heat input welding of 0 to 500 kJ/cm, the toughness of the welded part (vE-7°) satisfies 3.5 kgf-m or more, and the yield point is 36 kgf/mn+" or more. A high tensile strength steel plate for use can be obtained,
In particular, this is because the manufacturing method specified in the present invention allows similar mechanical properties to be obtained for the base material, making it possible to weld large structures in today's cold regions of -70°C. , the benefits it brings to this industry are significant.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.03〜0.12%、Si:0.05〜0.4%
、Mn:0.70〜1.6%、P:0.015%以下、
S:0.010%以下、sol.Al:0.001〜0
.05%、Ti:0.005〜0.02%、Zr:0.
005〜0.015%、N:0.003〜0.008%
、 Feおよび付随不純物:残部 かつ (Ti/47.9+Zr/91.2)/(N/14.0
):0.4〜1.0、Ceq=0.36%以下 である組成を有することを特徴とする、溶接入熱量10
0〜500kJ/cmの溶接部の靭性(vE_−_7_
0)が3.5kgf・m以上、降伏点36kgf/mm
^2以上の大入熱溶接用高張力鋼板。
(1) In weight%, C: 0.03-0.12%, Si: 0.05-0.4%
, Mn: 0.70 to 1.6%, P: 0.015% or less,
S: 0.010% or less, sol. Al: 0.001~0
.. 05%, Ti: 0.005-0.02%, Zr: 0.05%, Ti: 0.005-0.02%, Zr: 0.
005-0.015%, N: 0.003-0.008%
, Fe and accompanying impurities: balance and (Ti/47.9+Zr/91.2)/(N/14.0
): 0.4 to 1.0, Ceq = 0.36% or less, welding heat input 10
Toughness of weld zone from 0 to 500 kJ/cm (vE_-_7_
0) is 3.5 kgf/m or more, yield point 36 kgf/mm
High tensile strength steel plate for large heat input welding of ^2 or more.
(2)重量%で、 C:0.03〜0.12%、Si:0.05〜0.4%
、Mn:0.70〜1.60%、P:0.015%以下
、S:0.01%以下、sol.Al:0.001〜0
.05%、Ti:0.005〜0.02%、Zr:0.
005〜0.015%、N:0.003〜0.008%
、 さらに、Cu:0.5%以下、Ni:1.0%以下、V
:0.04%以下、Nb:0.03%以下、およびCa
:0.004%以下の少なくとも1種、 Feおよび付随不純物:残部 かつ (Ti/47.9+Zr/91.2)/(N/14.0
):0.4〜1.0、Ceq=0.36%以下 である組成を有することを特徴とする、溶接入熱量10
0〜500kJ/cmの溶接部の靭性(vE_−_7_
0)が3.5kgf・m以上、降伏点36kgf/mm
^2以上の大入熱溶接用高張力鋼板。
(2) In weight%, C: 0.03-0.12%, Si: 0.05-0.4%
, Mn: 0.70-1.60%, P: 0.015% or less, S: 0.01% or less, sol. Al: 0.001~0
.. 05%, Ti: 0.005-0.02%, Zr: 0.05%, Ti: 0.005-0.02%, Zr: 0.
005-0.015%, N: 0.003-0.008%
, Furthermore, Cu: 0.5% or less, Ni: 1.0% or less, V
: 0.04% or less, Nb: 0.03% or less, and Ca
: 0.004% or less of at least one kind, Fe and accompanying impurities: the balance and (Ti/47.9+Zr/91.2)/(N/14.0
): 0.4 to 1.0, Ceq = 0.36% or less, welding heat input 10
Toughness of weld zone from 0 to 500 kJ/cm (vE_-_7_
0) is 3.5 kgf/m or more, yield point 36 kgf/mm
High tensile strength steel plate for large heat input welding of ^2 or more.
(3)重量%で、 C:0.03〜0.12%、Si:0.05〜0.4%
、Mn:0.7〜1.6%、P:0.015%以下、S
:0.01%以下、sol.Al:0.001〜0.0
5%、Ti:0.005〜0.02%、Zr:0.00
5〜0.015%、N:0.003〜0.008%、 さらに、所望によりCu:0.5%以下、Ni:1.0
%以下、V:0.04%以下、Nb:0.03%以下、
およびCa:0.004%以下の少なくとも1種、 Feおよび付随不純物:残部 (Ti/47.9+Zr/91.2)/(N/14.0
):0.4〜1.0、Ceq=0.36%以下 である組成を有する鋼を900℃〜1200℃の温度域
に加熱した後、熱間圧延によって800℃以上の温度で
所定の板厚とし、次いで、直ちに水冷によって室温にま
で急冷し、その後200〜450℃の温度域で焼戻しを
行うことから成る、溶接入熱量100〜500kJ/c
mの溶接部の靭性(vE_−_7_0)が3.5kgf
・m以上を満足することを特徴とする、降伏点36kg
f/mm^2以上の大入熱溶接用高張力鋼板の製法。
(3) In weight%, C: 0.03-0.12%, Si: 0.05-0.4%
, Mn: 0.7 to 1.6%, P: 0.015% or less, S
: 0.01% or less, sol. Al: 0.001-0.0
5%, Ti: 0.005-0.02%, Zr: 0.00
5 to 0.015%, N: 0.003 to 0.008%, further optionally Cu: 0.5% or less, Ni: 1.0
% or less, V: 0.04% or less, Nb: 0.03% or less,
and Ca: 0.004% or less of at least one kind, Fe and accompanying impurities: balance (Ti/47.9+Zr/91.2)/(N/14.0
): 0.4-1.0, Ceq = 0.36% or less is heated to a temperature range of 900°C to 1200°C, and then hot-rolled into a predetermined plate at a temperature of 800°C or higher. Welding heat input is 100 to 500 kJ/c.
The toughness (vE_-_7_0) of the welded part of m is 3.5 kgf
・Yield point 36kg, characterized by satisfying m or more
A method for manufacturing high tensile strength steel plates for large heat input welding of f/mm^2 or more.
JP29630486A 1986-12-12 1986-12-12 High tension steel sheet for high heat input welding and manufacture thereof Pending JPS63149354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29630486A JPS63149354A (en) 1986-12-12 1986-12-12 High tension steel sheet for high heat input welding and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29630486A JPS63149354A (en) 1986-12-12 1986-12-12 High tension steel sheet for high heat input welding and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63149354A true JPS63149354A (en) 1988-06-22

Family

ID=17831817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29630486A Pending JPS63149354A (en) 1986-12-12 1986-12-12 High tension steel sheet for high heat input welding and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63149354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291356A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Steel having excellent toughness in weld heat affected zone
EP1254275A1 (en) * 2000-12-14 2002-11-06 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291356A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Steel having excellent toughness in weld heat affected zone
EP1254275A1 (en) * 2000-12-14 2002-11-06 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
EP1254275A4 (en) * 2000-12-14 2004-11-10 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US5900075A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
JP2000178645A (en) Production of steel excellent in strength and toughness
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH09279233A (en) Production of high tension steel excellent in toughness
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH05186848A (en) Steel for large heat input welding excellent in toughness in weld heat-affected zone
JPS62170459A (en) High tension steel plate for high heat input welding
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH083635A (en) Production of steel plate excellent in toughness
JPH0472886B2 (en)
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPS63149354A (en) High tension steel sheet for high heat input welding and manufacture thereof
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JP3298718B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet
JPH03223420A (en) Production of high strength steel
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JPS62158817A (en) Manufacture of thick steel plate having high strength and high toughness
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH02190423A (en) Manufacture of steel plate having excellent ctod properties in weld zone