JPH03291356A - Steel having excellent toughness in weld heat affected zone - Google Patents

Steel having excellent toughness in weld heat affected zone

Info

Publication number
JPH03291356A
JPH03291356A JP9187690A JP9187690A JPH03291356A JP H03291356 A JPH03291356 A JP H03291356A JP 9187690 A JP9187690 A JP 9187690A JP 9187690 A JP9187690 A JP 9187690A JP H03291356 A JPH03291356 A JP H03291356A
Authority
JP
Japan
Prior art keywords
steel
ppm
toughness
added
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9187690A
Other languages
Japanese (ja)
Other versions
JPH0742545B2 (en
Inventor
Masamitsu Wakao
昌光 若生
Takashi Sawai
隆 澤井
Shozo Mizoguchi
溝口 庄三
Hironori Goto
後藤 裕規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2091876A priority Critical patent/JPH0742545B2/en
Publication of JPH03291356A publication Critical patent/JPH03291356A/en
Publication of JPH0742545B2 publication Critical patent/JPH0742545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel having excellent toughness in a weld heat affected zone by adding Ti and Zr having specified concn. to a carbon steel contg. specified amounts of Mn, Si and Al. CONSTITUTION:A carbon steel contg., by weight, 0.3 to 2.2% Mn and 0.02 to 0.5% Si and in which the content of Al is reduced to <=0.008% as well as <=0.2% C is preferably regulated, is, it required, furthermore incorporated with one or more kinds among 0,05 to 1.00% Cu, 0.05 to 4.0% Ni, 0.05 to 1.0% Cr, 0.05 to 0.4% Mo, 0.003 to 0.060% Nb, 0.005 to 0.080% V, 0.0003 to 0.0020% B and 0.001 to 0.005% Ca and is moreover mixed with Ti and Zr at the concn. satisfying the inequalities of 0.4X{C1(O)-C2(O)} <=C(Zr)+C(Ti) <=3X{C1(O)-C2(O)} and C(Zr)>=50ppm (where C(Zr) denotes Zr concn.ppm and C1(O) denotes O concn.ppm after the addition of Mn, Si and Al). In this way, by increasing the number of finely despersed oxides in the steel, the toughness in the heat affected zone can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は厚板、鋼管等溶接構造用鋼材であって、溶接熱
影響部にすぐれた靭性を有する鋼材に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a steel material for welded structures such as thick plates and steel pipes, and which has excellent toughness in the weld heat affected zone.

(従来の技術) 大型構造用鋼など溶接接合される鋼材は、溶接熱影響部
において鋼材の製造過程で与えられる特性を維持するこ
とは、−船釣に困難である。すなわち、溶接入熱によっ
て熱影響部(以下HAZという)の結晶粒が粗大になり
組織が脆化する。つまり、HAZの結晶粒サイズは鋼の
低温靭性に大きな影響を与えることが知られており、そ
のためHAZ組織を微細化する多くの技術が開発され実
用化されている。
(Prior Art) For steel materials to be welded, such as large structural steel, it is difficult for boat fishing to maintain the characteristics imparted during the manufacturing process of the steel materials in the weld heat affected zone. That is, due to welding heat input, the crystal grains in the heat affected zone (hereinafter referred to as HAZ) become coarse and the structure becomes brittle. In other words, it is known that the grain size of the HAZ has a large effect on the low-temperature toughness of steel, and therefore many techniques for refining the HAZ structure have been developed and put into practical use.

例えば特開昭61−79745号公報に開示されている
ように、鋼中にTiを添加し、オーステナイト結晶粒内
に微細なTi酸化物を分散させ、これを変態核として粒
内フェライトプレートを発達させることによりHAZ組
織の微細化を図る技術を提案している。また特開昭61
−238940号公報には2次脱酸生成物としてTiを
添加し微細Ti酸化物を均一分散させることによってH
A2靭性が改善できることを開示している。
For example, as disclosed in JP-A-61-79745, Ti is added to steel, fine Ti oxides are dispersed within austenite grains, and intragranular ferrite plates are developed using these as transformation nuclei. We are proposing a technology to refine the HAZ structure by Also, JP-A-61
-238940 discloses that by adding Ti as a secondary deoxidation product and uniformly dispersing fine Ti oxides, H
It is disclosed that A2 toughness can be improved.

(発明が解決しようとする課題) 上述したTi添加鋼はHAZ靭性を改良する効果はある
が、連続鋳造によって製造した鋼材ではその中心部にお
ける酸化物の生成量が比較的少なく、そのために入熱量
の大きい溶接の場合には、低温での高い靭性をHAZに
得ることが難しいという問題点がある。
(Problem to be solved by the invention) Although the above-mentioned Ti-added steel has the effect of improving HAZ toughness, the amount of oxide produced in the center of the steel material manufactured by continuous casting is relatively small, and therefore the heat input is low. In the case of welding where the welding temperature is large, there is a problem in that it is difficult to obtain high toughness in the HAZ at low temperatures.

一方本発明者らは、Tiの他にZr等の脱酸元素を溶鋼
中に添加し、鋼中に微細な酸化物を分散させて鋼組織を
微細化させる方法を提案している。
On the other hand, the present inventors have proposed a method in which a deoxidizing element such as Zr is added to molten steel in addition to Ti, and fine oxides are dispersed in the steel to refine the steel structure.

(特開平1−228643号公報参照)本発明は、上記
問題点を改善すると共に、前記Zr添加による鋼中酸化
物を微細分散させる技術を利用し、Ti添加と共にこれ
らの含有量を調整することにより酸化物の個数を増加さ
せてより一層HAZ靭性を向上する鋼材を提供すること
を目的とするものである。
(Refer to Japanese Unexamined Patent Publication No. 1-228643) The present invention improves the above-mentioned problems and utilizes the technique of finely dispersing oxides in steel due to the addition of Zr, and adjusts the content of these in addition to Ti addition. The object of the present invention is to provide a steel material that further improves HAZ toughness by increasing the number of oxides.

(課題を解決するための手段) 本発明は上記目的を達成するために、以下の構成を要旨
とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention has the following configuration as a gist.

すなわち、 (1)重量%としてMn : 0.3〜2.2%、Si
:0.02〜0.5%を含有し、かつAlを0.008
%以下にした組成を有する炭素鋼材に、TiとZrを添
加し、TiとZrの濃度を下記式の範囲内としたことを
特徴とする溶接熱影響部靭性の優れた鋼材。
That is, (1) Mn: 0.3 to 2.2% as weight%, Si
: Contains 0.02-0.5% and 0.008% Al
A steel material with excellent weld heat-affected zone toughness, characterized in that Ti and Zr are added to a carbon steel material having a composition of % or less, and the concentrations of Ti and Zr are within the range of the following formula.

0.4x (C,(0)−C2(O)) ≦C(Zr)
+C(Ti)≦3X (C,(0)−C,(0))かっ
C(Zr)≧50(pp@) ここでC(Zr);Zr濃度(ppm)C(Ti);T
i濃度(ppm) C+  (0);Mn及びSiを添加する前の溶鋼中酸
素濃度(ppm) C2(O);Mn及びSi1必要に応じてAlを添加し
た後の溶鋼 中酸素濃度(ppm) (2)重量%として、C:≦0,2%、Mn:0.3〜
2,2%、Si:0.02〜0,5%かつAJ:0.0
08%以下を含有する炭素鋼材に Cu : 0.05〜1.00%、 Ni:0.05〜4.0%、 Cr : 0.05〜1.0%、 M o : 0.05−0.4%、 N b : 0.003〜0060%、V  :0.0
05〜0.080%、 B  :0.0003〜0.0020%、Ca : 0
.001〜0.005%、の1種又は2種以上を含有し
、更に、T1とZrとを下記式で示す濃度範囲で添加し
たことを特徴とする溶接熱影響部靭性の優れた鋼材。
0.4x (C, (0)-C2(O)) ≦C(Zr)
+C(Ti)≦3X (C, (0)-C, (0)) C(Zr)≧50(pp@) where C(Zr); Zr concentration (ppm) C(Ti); T
i concentration (ppm) C+ (0); Oxygen concentration in molten steel before adding Mn and Si (ppm) C2 (O); Oxygen concentration in molten steel after adding Mn and Si1 as necessary (ppm) (2) As weight%, C: ≦0.2%, Mn: 0.3~
2.2%, Si: 0.02-0.5% and AJ: 0.0
Carbon steel material containing 0.08% or less Cu: 0.05-1.00%, Ni: 0.05-4.0%, Cr: 0.05-1.0%, Mo: 0.05-0 .4%, Nb: 0.003-0060%, V: 0.0
05-0.080%, B: 0.0003-0.0020%, Ca: 0
.. A steel material having excellent weld heat-affected zone toughness, characterized in that it contains one or more of the following:

0.4X (C,(0)−C2(O)}≦C+C(Ti
);i;3x (C+  (0)−C2(Zr) (0)) かっC(Zr)≧50(ppm) ここでC(Zr);Zr濃度(ppm)C(Ti);T
i濃度(ppm) C+  (0);Mn及びSiを添加する前の溶鋼中酸
素濃度(ppm) C2(O);Mn及びSi、必要に応じてAlを添加し
た後の溶鋼 中酸素濃度(ppm) 以下本発明の詳細な説明する。
0.4X (C, (0)-C2(O)}≦C+C(Ti
);i;3x (C+ (0)-C2(Zr) (0)) C(Zr)≧50(ppm) where C(Zr);Zr concentration (ppm)C(Ti);T
i concentration (ppm) C+ (0); Oxygen concentration in molten steel before adding Mn and Si (ppm) C2(O); Oxygen concentration in molten steel after adding Mn and Si, and if necessary Al (ppm) ) The present invention will be described in detail below.

本発明の対象とする鋼材はC:0.20%以下を含む炭
素鋼であり、この鋼材のHAZ靭性を向上させるために
は、鋼の化学成分の適性化と、これによる結晶粒の微細
化が必要である。
The steel material targeted by the present invention is a carbon steel containing C: 0.20% or less, and in order to improve the HAZ toughness of this steel material, it is necessary to optimize the chemical composition of the steel and thereby refine the crystal grains. is necessary.

本願発明は、Mnが(13〜2.2%、かつSiが0.
02〜0.5%の範囲にあり、かつAlをo、 oos
%以下に低減し、必要に応じてCu、Ni%Cr。
In the present invention, Mn is (13 to 2.2%) and Si is 0.
02~0.5%, and Al is o, oos
% or less, and Cu, Ni%Cr as necessary.

MOlV、BおよびCaの少くとも1種を含む炭素鋼で
あり、更にTiおよびZrをそれぞれ50ppm以上複
合添加するものであって、このような成分を含む鋼材は
厚板並びに鋼管向けの多くの鋼種に適用できる。
It is a carbon steel containing at least one of MOLV, B, and Ca, and further contains 50 ppm or more of each of Ti and Zr, and steel materials containing such components are used in many steel types for thick plates and steel pipes. Applicable to

前記したようにTiを添加して脱酸し、HAZに微細な
フェライトを生成させて靭性を向上することは公知であ
るが、Ti脱酸鋼の場合、HAZに微細フェライトが生
成するのはTi酸化物上に析出したMnSが大きな役割
を果たしていると言われている。すなわち、鋼中に分散
させた介在物を変態核として、オーステナイト粒内から
微細なフェライト(Intragranular Fe
rrite Plate−IFPという)を生成させる
ことが組織を微細化するのであるが、この介在物が、M
n、Siの脱酸複合酸化物(Mn−シリケート)の上に
析出するMnSであり、微細均一に分散したMnSはど
IFP変態核機能に基づく組織の、より微細化に役立つ
。Tiは、上記Mn−シリケー゛トに作用しくMnO,
SiO2、Tio2複合物となり)それを微細にし、結
果的にMnSの析出を細くできるのであるが、鋳片厚み
方向中心部での生成量が少く、これを増加させるために
は、単に酸化物そのものが鋼中に多数分散し易いだけで
なく、その酸化物上にMnSが析出しやすい脱酸条件を
選択する必要がある。
As mentioned above, it is known that Ti is added to deoxidize to generate fine ferrite in the HAZ to improve toughness, but in the case of Ti-deoxidized steel, fine ferrite is generated in the HAZ due to Ti. It is said that MnS deposited on the oxide plays a major role. In other words, fine ferrite (intragranular Fe) is produced from within the austenite grains using inclusions dispersed in the steel as transformation nuclei.
The formation of microstructures (rrite plate-IFP) refines the structure, but these inclusions
This is MnS precipitated on a deoxidized composite oxide (Mn-silicate) of n, Si, and the finely and uniformly dispersed MnS helps to further refine the structure based on the IFP transformation nucleus function. Ti acts on the above Mn-silicate, and MnO,
(SiO2, Tio2 composite) can be made fine, and as a result, the MnS precipitation can be made thinner. However, the amount formed at the center of the thickness of the slab is small, and in order to increase this, it is necessary to simply remove the oxide itself. It is necessary to select deoxidizing conditions that not only make it easy for MnS to be dispersed in large numbers in the steel, but also make it easy for MnS to precipitate on the oxide.

本発明はTiと共にZrを添加するのであるが、Zrに
よる脱酸は多数の微細な酸化物を鋼中に分散させるのに
効果的であることが、本発明者の研究結果から確認され
ている。すなわち、第1表に示す成分の鋼を実際の製造
工程で溶製し、連続鋳造で鋳片を製造して、Zr添加効
果の下限値を知る目的を含めて2水準のZr添加量とし
、従来のTi添加脱酸鋼の場合と比較した。これらのサ
ンプルにおける鋳片厚み方向における酸化物個数の関係
を第2図に示したが、Ti単独添加鋼に比して、Tiと
共にZrを添加した連鋳材はその厚み中心部の酸化物個
数が増加し、特にZrを50ppm以上添加した場合は
その増加が著しいことが明らかである。そして第3図に
みられるように、この酸化物上へ十分な量のMnSが析
出し、溶接後の調査でも溶接熱影響部の組織微細化と低
温靭性の向上が確認できた。
In the present invention, Zr is added together with Ti, and the inventor's research results have confirmed that deoxidation with Zr is effective in dispersing many fine oxides in steel. . That is, steel with the components shown in Table 1 was melted in the actual manufacturing process, slabs were manufactured by continuous casting, and two levels of Zr addition were made, including the purpose of determining the lower limit of the Zr addition effect. A comparison was made with the case of conventional Ti-added deoxidized steel. The relationship between the number of oxides in the thickness direction of the slab in these samples is shown in Figure 2. Compared to the steel with only Ti added, the continuous casting material in which Zr is added together with Ti has a lower number of oxides in the center of the thickness. It is clear that the increase is particularly significant when 50 ppm or more of Zr is added. As shown in FIG. 3, a sufficient amount of MnS was precipitated on this oxide, and post-weld examination also confirmed that the structure of the weld heat-affected zone was refined and the low-temperature toughness was improved.

このようにZr脱酸は多数の微細な酸化物個数を鋼中に
分散させるに顕著な効果があるがMnSはZr酸化物よ
りTi酸化物、そしてそれ以上にMn−シリケートに析
出しやすい。Mn−シリケートは、溶鋼にMnとSiを
添加した時に生成するが、その後TiやZrを添加する
とこれらの元素に還元され、特にTi5Zrを過剰に添
加するとMn−シリケートは消失してしまう。従って、
Ti脱酸鋼にZrを添加する場合には、このMn−シリ
ケートをすべて還元してしまわないように添加量を制限
する必要がある。これはMnとSiの量や脱酸時の溶鋼
酸素濃度に依存するものであり、熱力学計算と第1表に
示すような鋼の成分で行なった実験室での試験結果から
、以下の条件を得た。
As described above, Zr deoxidation has a remarkable effect on dispersing a large number of fine oxides in steel, but MnS is more likely to precipitate in Ti oxide than Zr oxide, and even more so in Mn-silicate. Mn-silicate is generated when Mn and Si are added to molten steel, but when Ti or Zr is subsequently added, it is reduced to these elements, and especially when Ti5Zr is added in excess, Mn-silicate disappears. Therefore,
When adding Zr to Ti-deoxidized steel, it is necessary to limit the amount added so as not to reduce all of this Mn-silicate. This depends on the amount of Mn and Si and the molten steel oxygen concentration during deoxidation. Based on thermodynamic calculations and laboratory test results conducted with the steel composition shown in Table 1, the following conditions are determined. I got it.

0.4X  (C,(0)−C,(0)) ≦C十C(
Ti)≦3x (C,(0)−c2ここでC(Zr):
Zr濃度(ppm)C(Ti);Ti濃度(ppm) C+  (0);Mn及びSiを添加する前の溶鋼中酸
素濃度(ppm) (Zr) (○)) C2(O);Mn及びSi、必要に応じてAnを添加し
た後の溶鋼 中酸素濃度(ppMl) この条件をもとに確認試験を、第2表に示すような鋼の
成分で、実際の製造工程で行なった結果、第2図に示す
ように連鋳片の厚み方向中心部の酸化物個数が増加し、
しかも第3図に示すように、これらの酸化物上に多数の
MnSが析出した。更に溶接後の調査でもHAZ部に微
細なIFPが生成し、低温靭性が向上した。
0.4X (C, (0)-C, (0)) ≦C0C(
Ti)≦3x (C, (0)-c2 where C(Zr):
Zr concentration (ppm) C (Ti); Ti concentration (ppm) C+ (0); Oxygen concentration in molten steel (ppm) before adding Mn and Si (Zr) (○)) C2 (O); Mn and Si , Oxygen concentration in molten steel after adding An as necessary (ppMl) Based on these conditions, a confirmation test was conducted in the actual manufacturing process with the steel components shown in Table 2. As shown in Figure 2, the number of oxides in the center of the continuous slab in the thickness direction increases,
Moreover, as shown in FIG. 3, a large number of MnS were precipitated on these oxides. Furthermore, post-weld inspection also showed that fine IFP was generated in the HAZ, and the low-temperature toughness was improved.

更に本試験により、Zr添加による酸化物個数増加の効
果は、Zr添加量が50ppm以上で現れることが判っ
た。
Furthermore, this test revealed that the effect of increasing the number of oxides by adding Zr appears when the amount of Zr added is 50 ppm or more.

以下に本発明鋼において、その含有成分を限定した理由
を述べる。
The reasons for limiting the contained components in the steel of the present invention will be described below.

本発明は溶接構造用炭素でありCは0.2%まで含有す
る。すなわちCは強度を向上させるために有効な元素で
あり、通常0.2%まで含有する。これ以上の添加は溶
接性、HAZ靭性を劣化する。
The present invention is carbon for welding structures, and contains up to 0.2% of C. That is, C is an effective element for improving strength, and is usually contained up to 0.2%. Addition of more than this will deteriorate weldability and HAZ toughness.

鋼中に通常混入するPは、ミクロ偏析により溶接割れを
起すので、これを防止するために0.015%を越えな
いようできるだけ低減する必要がある。
P, which is normally mixed in steel, causes weld cracking due to microsegregation, so in order to prevent this, it is necessary to reduce it as much as possible so as not to exceed 0.015%.

また、Sは多くなると粗大硫化物系介在物ができ、母材
靭性を低下させ、HAZ靭性を劣化させる。
Moreover, when S increases, coarse sulfide-based inclusions are formed, which lowers the toughness of the base material and deteriorates the HAZ toughness.

そのため、0.010%以下とする。Therefore, it is set to 0.010% or less.

Siは母材強度を確保し、脱酸生成物の形成に必要な元
素である。本発明ではMn0−3iftの複合酸化物を
形成し、組織の微細化に役立つ。
Si is an element that ensures the strength of the base material and is necessary for the formation of deoxidized products. In the present invention, a composite oxide of Mn0-3ift is formed, which is useful for microstructuring.

そのために0.02%以上含有させる。しかし過剰の添
加はHAZ靭性を劣化させるので、0.5%を上限とす
る。
Therefore, it is contained at 0.02% or more. However, since excessive addition deteriorates HAZ toughness, the upper limit is set at 0.5%.

Mnは母材の強度靭性を確保するために0.3%以上の
添加が必要である。またSiと共に脱酸生成物及び硫化
物を生成し、母材及びHAZ組織を微細化し靭性を向上
させる。しかし多量に添加すると溶接性、HAZ靭性を
劣化させるので、2.2%以下とする。
Mn needs to be added in an amount of 0.3% or more to ensure the strength and toughness of the base material. It also generates deoxidation products and sulfides together with Si, refines the base metal and HAZ structure, and improves toughness. However, if added in a large amount, weldability and HAZ toughness will deteriorate, so the content should be 2.2% or less.

Alは、一般に脱酸剤として添加するが、Alは酸素と
の親和力が強く、過剰に添加すると他の酸化物、および
その生成に影響を及ぼす。すなわち、溶鋼中のMnOや
SiO2を還元してしまい、Al2 Ch  を形成す
る。 A12 (h  が多量になるとクラスターを形
成し、サイズが大きくなりTi1Zr添加による微細効
果が期待できない。そのため0.008%以下にA7添
加量を限定する。
Al is generally added as a deoxidizing agent, but Al has a strong affinity with oxygen, and when added in excess, it affects other oxides and their formation. That is, MnO and SiO2 in the molten steel are reduced to form Al2Ch. If A12 (h) is in a large amount, clusters will be formed and the size will become large, making it impossible to expect a fine effect due to the addition of Ti1Zr.Therefore, the amount of A7 added is limited to 0.008% or less.

その他本発明鋼にはCu、Ni、Cr、Nb。Other steels of the present invention include Cu, Ni, Cr, and Nb.

Mo5V、BおよびCaの少くとも1種を添加するが、
通常厚板、鋼管等溶接構造用鋼に含有させる範囲である
。すなわち、Cuは耐食性、耐水素誘起割れ性を付与し
圧延時の割れ発生を防止するために0.05〜1,00
%とする。
At least one of Mo5V, B and Ca is added,
This is the range normally contained in steel for welded structures such as thick plates and steel pipes. That is, Cu has a content of 0.05 to 1,000 to provide corrosion resistance and hydrogen-induced cracking resistance and to prevent cracking during rolling.
%.

N]は、耐食性と共に母材の強度靭性を向上させるが多
量添加は溶接性に好ましくないため0.05〜4.0%
とする。
N] improves the strength and toughness of the base metal as well as corrosion resistance, but adding a large amount is not favorable for weldability, so it is 0.05 to 4.0%.
shall be.

CrもNiと同様の効果を期待でき、更に溶接部強度を
高めるが、接合部靭性を低下させないため10%以下と
し、005%以下では効果がみられない。
Cr can also be expected to have the same effect as Ni and further increase the strength of the welded part, but in order not to reduce the toughness of the joint, it should be kept at 10% or less, and no effect will be seen at 0.005% or less.

MOは母材の強度、靭性を向上させる元素であり多量添
加は溶接部を劣化するので0.05〜0.4%とする。
MO is an element that improves the strength and toughness of the base metal, and adding a large amount deteriorates the welded joint, so it is set at 0.05 to 0.4%.

Nb、Vは母材強度、HAZ靭性の改善に有効であるが
、多量添加はこれらの特性に反って有害となる。そのた
めにそれぞれ0.003〜0.060%、0、005〜
0.080%とする。
Although Nb and V are effective in improving base material strength and HAZ toughness, adding large amounts will adversely affect these properties and be harmful. Therefore, 0.003~0.060% and 0,005~
It shall be 0.080%.

Bは、鋼の焼入れ性を向上させ、母材強度を上昇させる
。接合部に固溶したBは、粒界フェライトの生成を抑制
し、HAZ靭性を向上する。過剰添加はかえってHAZ
を硬化するため3〜20ppmとする。
B improves the hardenability of steel and increases the strength of the base material. B dissolved in the joint suppresses the formation of grain boundary ferrite and improves HAZ toughness. Excessive addition may actually cause HAZ
3 to 20 ppm for curing.

Caは粗大な硫化物の形態を制御し、低温靭性を向上さ
せると共に耐水素誘起割れ性を改善する。
Ca controls the morphology of coarse sulfides, improves low-temperature toughness, and improves hydrogen-induced cracking resistance.

多量添加するとCabSCaSが多くなり大型介在物と
なり、又、MnSの生成が阻害されるので反って溶接性
に悪影響を及ぼす。そのため0.001〜0.005%
の範囲とする。
When added in a large amount, CabSCaS increases to form large inclusions, and since the generation of MnS is inhibited, it warps and adversely affects weldability. Therefore 0.001~0.005%
The range shall be .

(実施例1) 高周波誘導溶解法により、第1表に示す組成の鋼を溶製
した。すなわち、酸素を含む電解鉄にC5Mn、Siを
添加し、その後Ti5Zrを添加した。それぞれの場合
のC(Ti)+C(Zr)とC,(0)−C2(O)の
比を、第1表に併記した。このようにして得た鋼につい
て、酸化物個数とその上に析出したMnSの個数を調査
し、その結果を第1表に示した。
(Example 1) Steel having the composition shown in Table 1 was produced by high frequency induction melting. That is, C5Mn and Si were added to electrolytic iron containing oxygen, and then Ti5Zr was added. The ratios of C(Ti)+C(Zr) and C,(0)-C2(O) in each case are also listed in Table 1. Regarding the steel thus obtained, the number of oxides and the number of MnS precipitated thereon were investigated, and the results are shown in Table 1.

これにより、C(T i) +C(Z r)が本発明範
囲である0、4X (C,(0)−C,(0)) 〜3
x (C+  (0)  C2(O)) に入っていれ
ば、酸化物個数の増加と共に、十分なMnS析出が得(
実施例2) 実際の製造工程において、第2表に示す組成の鋼を溶製
し、連鋳法にて凝固させた。成分は本発明範囲である0
、4x (C,(0)−C2(O))〜3X (C,(
0)−c2 (0))の条件を満たすもの2水準と、比
較としてTi単独添加のものとした。上記2水準はZr
添加量の下限値を知る目的で、Zr添加量を40ppm
と60ppmとした。各試料中における生成した酸化物
の個数を測定した結果を第2図に示すが、本発明範囲を
満たすTlZr添加により、鋳片厚み方向中心部での酸
化物個数が大幅に増加した。また、Z r 40ppm
添加では、その効果は大きくないことから、Zr添加量
の下限値を50ppmとする必要があることが判った。
As a result, C(T i) +C(Z r) is within the range of the present invention, 0,4X (C,(0)-C,(0)) ~3
x (C+ (0) C2(O)), sufficient MnS precipitation is obtained as the number of oxides increases (
Example 2) In an actual manufacturing process, steel having the composition shown in Table 2 was melted and solidified by a continuous casting method. The ingredients are within the scope of the present invention.
, 4x (C, (0)-C2(O)) ~ 3X (C, (
0)-c2 (0)) Two levels were used, and for comparison, one in which Ti was added alone. The above two levels are Zr
For the purpose of knowing the lower limit of the amount added, the amount of Zr added was set to 40 ppm.
and 60 ppm. The results of measuring the number of oxides generated in each sample are shown in FIG. 2, and the addition of TlZr that satisfies the range of the present invention significantly increased the number of oxides at the center in the thickness direction of the slab. Also, Z r 40ppm
Since the effect of addition is not large, it was found that the lower limit of the amount of Zr added needs to be set at 50 ppm.

また、第3図に示すように、本発明鋼(第2表A鋼)に
は、Ti脱酸鋼に比し、多数のMnSが酸(発明の効果
) 以上説明したように、本発明のTiおよびZr脱酸を行
った鋼は、鋳片厚み方向中心部の酸化物が著しく増加し
、溶接熱影響部靭性の優れた鋼材を得ることができる。
Furthermore, as shown in FIG. 3, the steel of the present invention (Steel A in Table 2) has a larger amount of MnS in acid than the Ti-deoxidized steel (effects of the invention). Steel that has undergone Ti and Zr deoxidation has a marked increase in oxides at the center in the thickness direction of the slab, making it possible to obtain a steel material with excellent weld heat-affected zone toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々のC(T i) 十C(Z r)の値で
の酸化物個数とMnS析出個数との関係を示した図、第
2図は、Zrを添加した場合の酸化物の鋳片厚み方向の
分布を示した図、第3図は、酸化物上に析出したMnS
の個数を示した図である。
Figure 1 shows the relationship between the number of oxides and the number of MnS precipitates at various values of C(T i) C(Z r), and Figure 2 shows the relationship between the number of oxides and the number of MnS precipitates when Zr is added. Figure 3 shows the distribution of MnS in the slab thickness direction.
It is a figure showing the number of objects.

Claims (1)

【特許請求の範囲】 (1)重量%としてMn:0.3〜2.2%、Si:0
.02〜0.5%を含有し、かつAlを0.008%以
下にした組成を有する炭素鋼材に、TiとZrを添加し
、TiとZrの濃度を下記式の範囲内としたことを特徴
とする溶接熱影響部靭性の優れた鋼材。 0.4×{C_1(O)−C_2(O)}≦C(Zr)
+C(Ti)≦3×{C_1(O)−C_2(O)}か
つC(Zr)≧50(ppm) ここでC(Zr);Zr濃度(ppm) C(Ti);Ti濃度(ppm) C_1(O);Mn及びSiを添加する前の溶鋼中酸素
濃度(ppm) C_2(O);Mn及びSi、必要に応じてAlを添加
した後の溶鋼溶鋼中酸素濃度(ppm) (2)重量%として、C:≦0.2%、Mn:0.3〜
2.2%、Si:0.02〜0.5%かつAl:0.0
08%以下を含有する炭素鋼材に Cu:0.05〜1.00%、 Ni:0.05〜4.0%、 Cr:0.05〜1.0%、 Mo:0.05〜0.4%、 Nb:0.003〜0.060%、 V:0.005〜0.080%、 B:0.0003〜0.0020%、 Ca:0.001〜0.005%、 の1種又は2種以上を含有し、更に、TiとZrとを下
記式で示す濃度範囲で添加したことを特徴とする溶接熱
影響部靭性の優れた鋼材。 0.4×{C_1(O)−C_2(O)}≦C(Zr)
+C(Ti)≦3×{C_1(O)−C_2(O)}か
つC(Zr)≧50(ppm) ここでC(Zr);Zr濃度(ppm) C(Ti);Ti濃度(ppm) C_1(O):Mn及びSiを添加する前の溶鋼中酸素
濃度(ppm) C_2(O);Mn及びSi必要に応じてAlを添加し
た後の溶鋼中酸素濃度(ppm)
[Claims] (1) Mn: 0.3 to 2.2% by weight, Si: 0
.. A carbon steel material having a composition containing 02 to 0.5% Al and 0.008% or less Al, Ti and Zr are added, and the concentration of Ti and Zr is within the range of the following formula. A steel material with excellent weld heat affected zone toughness. 0.4×{C_1(O)-C_2(O)}≦C(Zr)
+C(Ti)≦3×{C_1(O)-C_2(O)} and C(Zr)≧50(ppm) where C(Zr); Zr concentration (ppm) C(Ti); Ti concentration (ppm) C_1(O); Oxygen concentration in molten steel before adding Mn and Si (ppm) C_2(O); Oxygen concentration in molten steel after adding Mn and Si, and if necessary Al (ppm) (2) As weight%, C: ≦0.2%, Mn: 0.3~
2.2%, Si: 0.02-0.5% and Al: 0.0
Cu: 0.05-1.00%, Ni: 0.05-4.0%, Cr: 0.05-1.0%, Mo: 0.05-0.08% or less. 4%, Nb: 0.003-0.060%, V: 0.005-0.080%, B: 0.0003-0.0020%, Ca: 0.001-0.005%, one type of A steel material having excellent weld heat-affected zone toughness, characterized by containing Ti and Zr in a concentration range shown by the following formula. 0.4×{C_1(O)-C_2(O)}≦C(Zr)
+C(Ti)≦3×{C_1(O)-C_2(O)} and C(Zr)≧50(ppm) where C(Zr); Zr concentration (ppm) C(Ti); Ti concentration (ppm) C_1(O): Oxygen concentration in molten steel (ppm) before adding Mn and Si C_2(O): Oxygen concentration in molten steel after adding Mn and Si (aluminum if necessary) (ppm)
JP2091876A 1990-04-06 1990-04-06 Weld heat-affected zone steel with excellent toughness Expired - Fee Related JPH0742545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091876A JPH0742545B2 (en) 1990-04-06 1990-04-06 Weld heat-affected zone steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091876A JPH0742545B2 (en) 1990-04-06 1990-04-06 Weld heat-affected zone steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH03291356A true JPH03291356A (en) 1991-12-20
JPH0742545B2 JPH0742545B2 (en) 1995-05-10

Family

ID=14038763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091876A Expired - Fee Related JPH0742545B2 (en) 1990-04-06 1990-04-06 Weld heat-affected zone steel with excellent toughness

Country Status (1)

Country Link
JP (1) JPH0742545B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52715A (en) * 1975-06-24 1977-01-06 Nippon Steel Corp Steel plates with excellent weldability
JPS52123918A (en) * 1976-04-12 1977-10-18 Kobe Steel Ltd Weather resistant steel with excellent weldability for large heat input welding
JPS63149354A (en) * 1986-12-12 1988-06-22 Sumitomo Metal Ind Ltd High tension steel sheet for high heat input welding and manufacture thereof
JPH01159356A (en) * 1987-12-16 1989-06-22 Nippon Steel Corp High tension steel having superior tougeness at weld heat-affected zone
JPH01228643A (en) * 1988-03-09 1989-09-12 Nippon Steel Corp Method for uniformly and finely dispersing-precipitating mns in steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52715A (en) * 1975-06-24 1977-01-06 Nippon Steel Corp Steel plates with excellent weldability
JPS52123918A (en) * 1976-04-12 1977-10-18 Kobe Steel Ltd Weather resistant steel with excellent weldability for large heat input welding
JPS63149354A (en) * 1986-12-12 1988-06-22 Sumitomo Metal Ind Ltd High tension steel sheet for high heat input welding and manufacture thereof
JPH01159356A (en) * 1987-12-16 1989-06-22 Nippon Steel Corp High tension steel having superior tougeness at weld heat-affected zone
JPH01228643A (en) * 1988-03-09 1989-09-12 Nippon Steel Corp Method for uniformly and finely dispersing-precipitating mns in steel

Also Published As

Publication number Publication date
JPH0742545B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
EP0177851B1 (en) Steel materials for welded structures
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JPH0577740B2 (en)
JPH093597A (en) Steel for low temperature use excellent in toughness of weld heat affected zone and its production
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPH093600A (en) Steel for welding structure excellent in toughness weld heat affected zone
JPH03291356A (en) Steel having excellent toughness in weld heat affected zone
JPH08144008A (en) High tensile strength steel and its production
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JP4355866B2 (en) Steel material excellent in welding heat-affected zone characteristics and method for producing the same
JP3238271B2 (en) Method for producing low temperature steel with excellent heat-affected zone toughness in large heat input welding
JP3539120B2 (en) Austenitic stainless steel with excellent hot workability
JPH05271864A (en) Steel having dispersed fine grain including mn oxide and al oxide
JP3224677B2 (en) Low temperature steel for welding
JPH07266005A (en) Production of steel having excellent toughness to welded heat affected part by synchronized belt type continuous casting method
JPH093598A (en) Steel for low temperature use excellent in toughness of weld heat affected zone
CN116171334A (en) Precipitation hardening martensitic stainless steel having excellent fatigue resistance
TW202417162A (en) Ferritic stainless steel welding wire and welded part

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees