JPS63147121A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS63147121A
JPS63147121A JP61295359A JP29535986A JPS63147121A JP S63147121 A JPS63147121 A JP S63147121A JP 61295359 A JP61295359 A JP 61295359A JP 29535986 A JP29535986 A JP 29535986A JP S63147121 A JPS63147121 A JP S63147121A
Authority
JP
Japan
Prior art keywords
light
photography system
layers
photoreceptor
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61295359A
Other languages
Japanese (ja)
Inventor
Kunio Imai
邦雄 今井
Kazuo Ishikawa
和男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61295359A priority Critical patent/JPS63147121A/en
Publication of JPS63147121A publication Critical patent/JPS63147121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To perform invariably high-accuracy focus detection even when the contrast of an objected is low by arranging a photodetecting means which has its photodetector layer nearly at right angles to the optical axis of a photography system, and utilizing its output signal regarding the focus state of the photography system. CONSTITUTION:The photodetecting means 100 is constituted by laminating three 1st-3rd photodetector layers 101-103 consisting of semiconductors, etc., which vary in various electric characteristics such as resistance values and electromotive forces with the quantity of incident light while they are separated by transparent insulating layers 104 and 105. Then, the photodetecting means 100 is arranged nearby the expected image formation plane of the photography system 200 so that the photodetector layers are nearly at right angles to the optical axis S of the photography system 200. Then resistance values of those respective photodetector layers vary according to the convergence state of luminous flux by the photography system 200, which is utilized to detect the focusing state of the photography system 200. Consequently, the simplification of the whole device is facilitated and invariably high-accuracy focus detection is possible even if the contrast the object is low.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやどデオカメラ等に好適な焦点装
置に関し、特に撮影系を通過した被写体からの光束の収
斂状態を受光手段により求め、該受光手段からの出力信
号を利用して撮影系の焦点状態を検出する受光型の焦点
検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a focusing device suitable for photographic cameras, video cameras, etc., and in particular, it uses a light receiving means to determine the convergence state of a luminous flux from an object that has passed through a photographing system. The present invention relates to a light-receiving type focus detection device that detects the focus state of a photographing system using an output signal from a light-receiving means.

(従来の技術) 従来よりJ[系を通過した光束を利用して焦点検出を行
う受光型の焦点検出方式の1つに所謂TCL位相検出方
式がある。
(Prior Art) A so-called TCL phase detection method is one of the light-receiving focus detection methods that perform focus detection using the light flux that has passed through the J system.

この方式は例えば特開昭54−159259号公報で提
案されているように撮影系による被写体像の形成される
予定結像面近傍に複数の微少な集光レンズを一次元方向
に並べた複眼レンズを配置し、更にその後方に各集光レ
ンズ毎に1対の受光素子を同方向の1次元方向に並べ、
これら複数の1対の受光素子より第1と第2の2つの受
光素子列を形成した受光手段を配置している。そして複
眼レンズにより被写体像に関する2つの光量分布を受光
手段を構成する第1の受光素子列と第2の受光素子列面
上に形成している。
This method is proposed, for example, in Japanese Patent Application Laid-Open No. 54-159259, which uses a compound eye lens in which a plurality of minute condensing lenses are arranged one-dimensionally in the vicinity of the intended image formation plane where the subject image is formed by the photographing system. , and behind it a pair of light receiving elements for each condenser lens are arranged in the same one-dimensional direction,
A light receiving means is arranged in which two light receiving element rows, a first and a second light receiving element array, are formed from the plurality of pairs of light receiving elements. Two light intensity distributions regarding the subject image are formed by the compound eye lens on the surfaces of the first light receiving element array and the second light receiving element array constituting the light receiving means.

このときの第1の受光素子列と第2の受光素子刈面上に
形成される2つの被写体像に関する光量分布の相対的な
位置関係は&影系の合焦状態によって異なってくる。
At this time, the relative positional relationship of the light amount distributions regarding the two subject images formed on the first light receiving element row and the second light receiving element cutting surface differs depending on the focusing state of the &shadow system.

例えば各受光素子列の素子の並び方向に撮影系の予定結
像面からの焦点外れ量に応じた横ずれ量となって現われ
てくる。
For example, the amount of lateral shift appears in the direction in which the elements of each light-receiving element row are arranged in accordance with the amount of defocus from the intended imaging plane of the photographing system.

同公報ではこのときの光学性質を利用して撮影系の合焦
状態、即ち焦点外れ量を2つの被写体像に関する光量分
布の相対的な位置関係を検出することにより行っている
In this publication, the optical properties at this time are utilized to determine the in-focus state of the photographing system, that is, the amount of out-of-focus by detecting the relative positional relationship of the light quantity distributions regarding the two subject images.

しかしながら、このTCL位相検出方式は2つの被写体
像に関する光量分布の相対的な位置関係を検出するのに
マイクロコンピュータ−等の比較的複雑な電気信号処理
手段を必要としでいる。又複数の集光レンズと各集光レ
ンズ毎に1対の受光素子を精度良く配置しなければなら
ない受光手段を必要とし装置全体が複雑化し、更に受光
型の検出方式を利用している為に被写体のコントラスト
が低い、所謂フラットな映像の場合には撮影系によって
得られる被写体像の光量分布の相関値の変化か小さくな
り、高精度な焦点検出か困難となる傾向かあった。
However, this TCL phase detection method requires relatively complicated electrical signal processing means such as a microcomputer to detect the relative positional relationship of the light quantity distributions regarding the two subject images. In addition, the entire device becomes complicated because it requires a light receiving means that requires multiple condensing lenses and a pair of light receiving elements arranged with precision for each condensing lens, and furthermore, because a light receiving type detection method is used. In the case of a so-called flat image in which the contrast of the object is low, the change in the correlation value of the light intensity distribution of the object image obtained by the imaging system becomes small, which tends to make it difficult to detect a focus with high accuracy.

(発明が解決しようとする問題点) 本発明は撮影系を通過した光束を利用する受光型の焦点
検出装置において、光束の収斂状態を検出することによ
り被写体のコントラストが低くても、又どのような被写
体であっても常に高精度な焦点検出が可能な簡易な構成
の焦点検出装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention is a light-receiving type focus detection device that uses the light flux that has passed through the imaging system, and by detecting the convergence state of the light flux, even if the contrast of the subject is low, It is an object of the present invention to provide a focus detection device with a simple configuration that can always perform highly accurate focus detection even for a subject.

(問題点を解決するための手段) 複数の光感光性の受光体層を光透過性の絶縁層で分離し
て複数層重ね合わした受光手段を、該受光体層が撮影系
の光軸に対して略垂直となるように配置し、面記受光手
段からの撮影系の焦点状態に関する出力信号を利用して
、ii「記撮影系の焦点状態を検出したことである。
(Means for solving the problem) A light-receiving means is constructed by stacking a plurality of photoreceptor layers separated by a light-transmitting insulating layer, and the photoreceptor layers are aligned with the optical axis of the imaging system. The focal state of the photographing system is detected using the output signal from the surface light receiving means regarding the focal state of the photographing system.

(実施例) 第1図は本発明の焦点検出装置において焦点状態を検出
するときの原理の説明図である。同図(A)は撮影系の
焦点状態が面ビン状態のとき、同図(B)は合焦状態の
とき、同図(C)は後ピン状態のときを示す。
(Example) FIG. 1 is an explanatory diagram of the principle of detecting a focus state in a focus detection device of the present invention. 5A shows a state in which the photographing system is in focus, FIG. 2B shows a state in focus, and FIG. 1C shows a state in rear focus.

図中300は被写体、200は撮影系で便宜上1枚のレ
ンズで示している。100は受光手段である。本実施例
では受光手段100を入射光量によって抵抗値や起電力
等の電気的諸特性が変化する半導体等から成る第1、第
2、第3受光体層101.102.103の3つの受光
体層を光透過性の例えば二酸化シリコン(Si02)等
の絶縁層104、+05で分離し、積層して構成してい
る。
In the figure, 300 is a subject, and 200 is a photographing system, which is shown as a single lens for convenience. 100 is a light receiving means. In this embodiment, the light receiving means 100 consists of three photoreceptors, first, second, and third photoreceptor layers 101, 102, and 103 made of a semiconductor or the like whose electrical characteristics such as resistance and electromotive force change depending on the amount of incident light. The layers are separated by light-transmissive insulating layers 104 and +05 made of silicon dioxide (Si02), for example, and are laminated.

そして受光手段100を各受光体層が撮影系200の光
軸Sに対して略垂直になるようにして撮影系200の予
定結像面近傍に配置している。特に本実施例では複数の
受光体層のうち略中間位置に相当する第2受光体層+0
2が撮影系200の予定結像面と一致するように配置し
ている。
The light-receiving means 100 is arranged near the intended imaging plane of the imaging system 200 so that each photoreceptor layer is substantially perpendicular to the optical axis S of the imaging system 200. In particular, in this embodiment, the second photoreceptor layer corresponding to approximately the middle position among the plurality of photoreceptor layers +0
2 is arranged so that it coincides with the planned imaging plane of the imaging system 200.

尚本実施例において受光手段+00を構成する受光体層
の数は2つ以上複数個設ければいくつ設けても良い。
In this embodiment, the number of photoreceptor layers constituting the light receiving means +00 may be any number as long as it is two or more.

次に焦点状態の検出方法について説明する。Next, a method of detecting the focus state will be explained.

同図(A)の撮影系200の焦点状態が前ピン状態のと
きは撮影光束は第2受光体層+02よりも物体(l))
に収束する。この為第1受光体層+01には他の受光体
層+02.103に比べて大きなエネルギーが集中する
。この結果各受光体層の電気的諸特性、例えば抵抗値は
第1、第2、第3受光体層の101.102.103の
順で小さくなってくる。
When the focal state of the photographing system 200 in FIG.
converges to. For this reason, a larger amount of energy is concentrated on the first photoreceptor layer +01 than on the other photoreceptor layers +02, 103. As a result, the electrical characteristics of each photoreceptor layer, such as resistance value, become smaller in the order of 101, 102, and 103 of the first, second, and third photoreceptor layers.

又同図(B)の撮影系200の焦点状態が合焦状態のと
きは、中間位置にある第2受光体層+02に大きな光エ
ネルギーが集中する。この為3つの受光体層101.1
02.103の抵抗値のうち第2受光体層102の抵抗
値が最も小さくなってくる。
Furthermore, when the photographing system 200 in FIG. 2B is in focus, a large amount of light energy is concentrated on the second photoreceptor layer +02 located at the intermediate position. For this purpose three photoreceptor layers 101.1
Among the resistance values of 02.103, the resistance value of the second photoreceptor layer 102 is the smallest.

更に同図(C)の[19系200の焦点状態が後ピン状
態のときは第3受光体層+03に光エネルギーが集中す
る。この為3つの受光体層の抵抗値は第3、第2、第1
受光体層103,102.1旧の順で小さくなってくる
Furthermore, when the focus state of the [19 system 200 in FIG. Therefore, the resistance values of the three photoreceptor layers are 3rd, 2nd, and 1st.
The photoreceptor layers 103 and 102.1 become smaller in order.

本実施例ではこのように各受光体層の抵抗値か撮影系2
00による光束の収斂状、態により変化する性質を利用
することにより撮影系200の合焦状態を検出すること
を特徴としている。
In this embodiment, the resistance value of each photoreceptor layer is determined by the imaging system 2.
It is characterized in that the focusing state of the photographing system 200 is detected by utilizing the convergence state of the light beam due to 00, a property that changes depending on the state.

尚本実施例に右いて受光体層としてSi、Ge等の半導
体層を用いた場合には入射光束の光量は受光手段に入射
し、受光体層を進行するにつれて序々に減衰してくる。
In this embodiment, when a semiconductor layer such as Si or Ge is used as the photoreceptor layer, the amount of the incident light beam enters the light receiving means and gradually attenuates as it travels through the photoreceptor layer.

特に入射光束のうち短波長成分程多く受光体層で吸収さ
れ長波長成公租、受光体層を良く通過してくる。
In particular, the shorter the wavelength component of the incident light beam, the more it is absorbed by the photoreceptor layer, and the longer the wavelength component, the more easily it passes through the photoreceptor layer.

この為本実施例では、例えば第2、第3受光体層より出
力信号を得る際青色成分や緑色成分の光束吸収率を考慮
して、電気的手段や光学手段により補正している。これ
により合焦状態の検出精度の低下を防止している。
For this reason, in this embodiment, when obtaining output signals from the second and third photoreceptor layers, for example, the luminous flux absorption rate of the blue component and the green component is taken into account and corrected by electrical means or optical means. This prevents deterioration in the detection accuracy of the in-focus state.

第3図(A)は光の入射側からみた受光手段+00の平
面構造、第3図(B)は第3図(A)に示すAAの線に
沿った断面構造を示している。第3図(A)、(B)に
おいて101が第1の受光体層、102が第2の受光体
層、!03が第3の受光体層である。受光体層としては
半導体層等であり例えばCdS、CdSeまたはそれら
の固溶体、Siおよび非晶質Siなどを用いることがで
きる。同図における斜線部は光な通過する絶縁膜(例え
ば5iO2)をあられしており、第1の受光体層101
と第2の受光体層102の間に絶縁層104、第2の受
光体層102と第3の受光体層103の間には絶縁層1
05が挟まれている。第1の受光体層lotの一端は低
抵抗層401を介して電極63I(例えばAI)に接続
されている。この電極と低抵抗の半導体層614との間
に絶縁層618があり、第1のコンデンサを形成してい
る。
FIG. 3(A) shows a planar structure of the light receiving means +00 viewed from the light incident side, and FIG. 3(B) shows a cross-sectional structure along line AA shown in FIG. 3(A). In FIGS. 3(A) and 3(B), 101 is the first photoreceptor layer, 102 is the second photoreceptor layer,! 03 is the third photoreceptor layer. The photoreceptor layer is a semiconductor layer or the like, and for example, CdS, CdSe or a solid solution thereof, Si, amorphous Si, etc. can be used. The shaded area in the figure is an insulating film (for example, 5iO2) through which light passes, and the first photoreceptor layer 101
An insulating layer 104 is provided between the second photoreceptor layer 102 and the second photoreceptor layer 102, and an insulating layer 1 is provided between the second photoreceptor layer 102 and the third photoreceptor layer 103.
05 is sandwiched. One end of the first photoreceptor layer lot is connected to an electrode 63I (for example, AI) via a low resistance layer 401. There is an insulating layer 618 between this electrode and the low resistance semiconductor layer 614, forming a first capacitor.

第2の受光体層102の一端は低抵抗層402を介して
電極632に接続されており、この電極は半導体層61
4との間で第2のコンデンサを形成している。第3の受
光体層+03の一端は低抵抗層403を介して電極63
3に接続され、低抵抗の半導体層614との間に第3の
コンデンサを形成する。低抵抗の半導体層614は第1
、第2および第3の半導体層の他端に接続されている。
One end of the second photoreceptor layer 102 is connected to an electrode 632 via the low resistance layer 402, and this electrode is connected to the semiconductor layer 61.
4 forms a second capacitor. One end of the third photoreceptor layer +03 is connected to the electrode 63 via the low resistance layer 403.
3 to form a third capacitor between the low-resistance semiconductor layer 614 and the low-resistance semiconductor layer 614. The low resistance semiconductor layer 614 is the first
, are connected to the other ends of the second and third semiconductor layers.

したがって、各半導体層とコンデンサは並列に接続され
ていることになる。
Therefore, each semiconductor layer and the capacitor are connected in parallel.

半導体層614は共通電位(例えばアース)に接続され
ている。
Semiconductor layer 614 is connected to a common potential (eg, ground).

第2図は本発明をビデオカメラに適用したときの一実施
例の概略図である。同図において200はwL影系、+
00は受光手段であり、第1図で示した受光手段と同様
の構成より成っている。
FIG. 2 is a schematic diagram of an embodiment in which the present invention is applied to a video camera. In the figure, 200 is the wL shadow system, +
00 is a light receiving means, which has the same structure as the light receiving means shown in FIG.

461はレンズ鏡筒でありJ[系200を保持している
。201はリレーレンズ411はハーフミラ−1412
はミラーであり、両ミラー411.412により撮影系
200を通過した光束の一部を受光手段100に導光し
ている。450は撮像素子、451は撮像素子450の
焦点面である。202は焦点面450と光学的に等価な
位置の予定結像面401.402.403は各々、抵抗
体、421.422は各々比較器、430はモーター駆
動回路、460はモーターであり撮影系200の合焦部
を駆動している。470は直流電源である。予定結像面
202はリレーレンズ201により受光手段100の第
2受光体層!02に結像するように配置されている。
461 is a lens barrel that holds the J system 200. 201 is a relay lens 411 is a half mirror 1412
are mirrors, and both mirrors 411 and 412 guide a part of the light flux that has passed through the photographing system 200 to the light receiving means 100. 450 is an image sensor, and 451 is a focal plane of the image sensor 450. 202 is a predetermined image forming plane at a position optically equivalent to the focal plane 450, and 401, 402, and 403 are each a resistor, 421, 422 are each a comparator, 430 is a motor drive circuit, and 460 is a motor, which is the photographing system 200. It drives the focusing section. 470 is a DC power supply. The planned image forming surface 202 is the second photoreceptor layer of the light receiving means 100 by the relay lens 201! 02.

本実施例ではVii影系200を通過した被写体からの
光束400をハーフミラ−411で2つの光束に分割し
ている。このうちハーフミラ−411を通過した光束は
撮像素子450の焦点面451上に結像し、ハーフミラ
−411を反射した光束は予定結像面202近傍に結像
し、その後リレーレンズ201によりミラー412を介
して受光手段100に入射するようにしている。
In this embodiment, a light beam 400 from the subject that has passed through the Vii shadow system 200 is divided into two light beams by a half mirror 411. Of these, the light flux that has passed through the half mirror 411 forms an image on the focal plane 451 of the image sensor 450, and the light flux that has been reflected from the half mirror 411 forms an image near the intended image formation plane 202, and then the mirror 412 is focused by the relay lens 201. The light is made to enter the light receiving means 100 through the light receiving means 100.

そして受光手段100の3つの受光体層+01、+02
.103の一端からは直流電圧470から電圧Eを印加
し、他端からは抵抗値R,を有する抵抗体401、40
2.403を介して共通電圧に接続している。
and three photoreceptor layers +01, +02 of the light receiving means 100.
.. A voltage E from a DC voltage 470 is applied from one end of the 103, and resistors 401 and 40 having a resistance value R are applied from the other end.
2.403 to the common voltage.

このとき第1受光体層101と抵抗体4旧の結合点41
1i、第2受光体層102と抵抗体402の結合点41
7、あるいは第3受光体層103と抵抗体403の結合
点418からは3つの受光体層+01.102.103
の抵抗値を各々R,Jとすると次式で示される電圧Vn
が得られる。
At this time, the connection point 41 between the first photoreceptor layer 101 and the resistor 4
1i, connection point 41 between the second photoreceptor layer 102 and the resistor 402
7, or from the connection point 418 of the third photoreceptor layer 103 and the resistor 403, three photoreceptor layers +01.102.103
Letting the resistance values of R and J be respectively, the voltage Vn shown by the following formula
is obtained.

第1式より受光体層の抵抗値R5が小さい程各節点41
6.417.418から得られる電圧は高くなる。
From the first equation, the smaller the resistance value R5 of the photoreceptor layer, the more each node 41
The voltage obtained from 6.417.418 will be higher.

本実施例では第1、第2、第3受光体層+01、102
.103の抵抗値を光束が入射しない状態で等しくなる
ように設定しておき、又抵抗体401.402.403
の各抵抗値を全て等しくしている。そして光束のエネル
ギーが最も集中したとき、その抵抗値が最も小さくなる
ような受光体を用いている。これにより入射光束により
抵抗値が最も小さくなる受光体層と接続される抵抗体と
の結合点では他の2つの結合点よりも高い電圧が得られ
るようにしている。
In this embodiment, the first, second and third photoreceptor layers +01, 102
.. The resistance values of resistors 401, 402, and 403 are set to be equal when no light beam is incident.
All resistance values are made equal. A photoreceptor is used whose resistance value is the smallest when the energy of the luminous flux is most concentrated. This allows a higher voltage to be obtained at the connection point between the photoreceptor layer and the connected resistor, where the resistance value is the smallest due to the incident light flux, than at the other two connection points.

従って撮像素子450の焦点面451に焦点を結ぶ状態
、即ち合焦状態のときは前記の設定条件より受光手段1
00の第2受光体層102に光束のエネルギーが最も強
く集中する。この結果節点417からは節点416、や
418の・電圧よりも高い電圧が得られる。同様に前ビ
ン状態のときは節点416で得られる電圧が最大となり
、又後ビン状態のときは節点418で得られる電圧が最
大となる。
Therefore, when the image sensor 450 is focused on the focal plane 451, that is, when it is in focus, the light receiving means 1
The energy of the luminous flux is most strongly concentrated in the second photoreceptor layer 102 of 00. As a result, a voltage higher than that of nodes 416 and 418 is obtained from node 417. Similarly, in the front bin state, the voltage obtained at node 416 is the maximum, and in the back bin state, the voltage obtained at node 418 is the maximum.

本実施例では比較器421の非反転入力端子に節点41
7の電圧を印加し反転入力端子に節点416の電圧を印
加する。またもうひとつの比較器422の非反転入力端
子に節点417の電圧を印加し、反転入力端子に節点4
18の電圧を印加する。これにより比較器421の出力
端子431と比較器422の出力端子432の出力には
次の値が得られる。即ち工)合ピン状態のときは端子4
31.432からは共に高レベルの信号 ■)@ピン状態のときは端子431には低レベル432
には高レベルの信号 ■)後ビンの状態のときは端子[1には高レベル432
には低レベルの信号 となる。そこで2つの比較器421.422の端子43
1.432からの信号をモーター駆動回路430に人力
している。
In this embodiment, the node 41 is connected to the non-inverting input terminal of the comparator 421.
7 is applied, and the voltage at node 416 is applied to the inverting input terminal. In addition, the voltage at node 417 is applied to the non-inverting input terminal of another comparator 422, and the voltage at node 417 is applied to the inverting input terminal.
18 voltages are applied. As a result, the following values are obtained at the output terminal 431 of the comparator 421 and the output terminal 432 of the comparator 422. In other words, when the pin is in the mating state, terminal 4
Both high level signals from 31 and 432 ■) When in @ pin state, low level 432 is sent to terminal 431
High level signal ■) When in the rear bin state, high level signal 432
This results in a low level signal. Therefore, the terminals 43 of the two comparators 421 and 422
The signal from 1.432 is manually input to the motor drive circuit 430.

そしてこのときのモーター駆動回路430に人力される
信号に応じてモーター460を駆動させ、撮影系200
の合焦状態を調節している。
At this time, the motor 460 is driven in accordance with the signal manually input to the motor drive circuit 430, and the photographing system 200 is driven.
The focus state of the camera is being adjusted.

即ち2つの端子431,432からの出力信号が工)の
場合には合焦状態であるのでモーター駆動回路430の
出力はモーター停止モードとなりモーター460を動作
させない。又■)の前ビン状態の場合はモーター駆動回
路430によりモーター460を順方向に回転させ、撮
影系200の合焦部を駆動させてピント位置が撮像素子
450の焦点面451に近づけるようにしている。逆に
■)の後ビン状態のときは■)の前ビン状態のときと逆
方向にモーターを回転させ撮影系200の合焦部を駆動
させてピント位置を逆方向に移動させるようにしている
That is, when the output signals from the two terminals 431 and 432 are 1), it means that the camera is in focus, so the output of the motor drive circuit 430 becomes a motor stop mode, and the motor 460 is not operated. In addition, in the case of the front bin state (2), the motor drive circuit 430 rotates the motor 460 in the forward direction, and drives the focusing section of the photographing system 200 so that the focus position approaches the focal plane 451 of the image pickup element 450. There is. Conversely, in the rear bin state (■), the motor is rotated in the opposite direction to the front bin state (■) to drive the focusing section of the photographing system 200 and move the focus position in the opposite direction. .

このように本実施例では2つの比較器421,422か
らの出力信号を用いてモーター駆動回路430によりモ
ーター 460を所定方向に回動させることにより撮影
系200の合焦部を駆動させピント位置を調節して合焦
を行っている。
In this way, in this embodiment, the motor drive circuit 430 rotates the motor 460 in a predetermined direction using the output signals from the two comparators 421 and 422, thereby driving the focusing section of the photographing system 200 and adjusting the focus position. Adjusting and focusing.

尚本実施例において比較器への人力方法は前述以外の方
法であっても各受光体層からの出力信号の大小関係が求
められる方法であれば、どのような方法であっても良い
In this embodiment, the comparator may be manually operated by any method other than the above-mentioned method as long as it can determine the magnitude relationship between the output signals from each photoreceptor layer.

本実施例では3つの受光体層を用いた場合を示したが、
例えば2つの受光体層を用いてその間の絶縁層が撮影系
の予定結像面に位置するように配置し、双方の受光体層
からの出力信号が等しくなったとき合焦状態であると判
別するようにしても良い。
This example shows the case where three photoreceptor layers are used, but
For example, two photoreceptor layers are used so that the insulating layer between them is located at the intended imaging plane of the imaging system, and when the output signals from both photoreceptor layers become equal, it is determined that the state is in focus. You may also do this.

又3つ以上複数の受光体層を用いて例えば5つの奇数個
用いた場合には中間の受光体層がwL影系の予定結像面
(撮像素子の焦点面)に位置するように配置し、又4つ
の比較器と更に4つの比較器からの出力信号を比較する
為の2つの比較器の合計6つの比較器を組み合わせれば
第2図の実施例より更に高精度に焦点検出をすることが
できる。
In addition, when three or more photoreceptor layers are used, for example, an odd number of five photoreceptor layers are used, the intermediate photoreceptor layer is arranged so as to be located at the expected imaging plane of the wL shadow system (focal plane of the image sensor). , and if a total of six comparators, including four comparators and two comparators for comparing the output signals from four more comparators, are combined, focus detection can be performed with even higher precision than the embodiment shown in FIG. be able to.

(発明の効果) 本発明によれば焦点検出に撮影系を通過した光束の収束
状態、即ち光エネルギーが最も強く集中する位置を検出
する方法をとっている為に、従来のように2つの被写体
像に関する光量分布の相対的な位置関係を求める為のマ
イクロコンピュータ−等を用いる必要はなく装置全体の
m素化か容易となり、又被写体のコントラストが低い場
合であっても常に高精度な焦点検出が可能な焦点検出装
置を達成することができる。
(Effects of the Invention) According to the present invention, since the focus is detected by detecting the convergence state of the light flux passing through the imaging system, that is, the position where the light energy is most strongly concentrated, it is possible to There is no need to use a microcomputer to determine the relative positional relationship of the light intensity distribution with respect to the image, making it easy to configure the entire device with m elements, and even when the contrast of the subject is low, the focus can always be detected with high precision. A focus detection device capable of this can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焦点検出装置の焦点検出をするときの
原理の説明図、第28は本発明をビデオカメラに適用し
たときの一実施例の概略図、第3図(A)、(B)は本
発明に係る受光手段の説明図である。図中300は被写
体、200は撮影系、100は受光手段、lot、10
2、+03は受光体層、104.105は絶縁層、42
1.422は比較器、430はモーター駆動回路、46
0はモーター、411はハーフミラ−1412はミラー
、450は撮像素子、451は焦点面、400は光束、
Sは光軸である。 特許出願人  キャノン株式会社 第1図
FIG. 1 is an explanatory diagram of the principle of focus detection by the focus detection device of the present invention, FIG. 28 is a schematic diagram of an embodiment when the present invention is applied to a video camera, and FIGS. B) is an explanatory diagram of the light receiving means according to the present invention. In the figure, 300 is the subject, 200 is the photographing system, 100 is the light receiving means, lot, 10
2, +03 is the photoreceptor layer, 104.105 is the insulating layer, 42
1.422 is a comparator, 430 is a motor drive circuit, 46
0 is a motor, 411 is a half mirror, 1412 is a mirror, 450 is an image sensor, 451 is a focal plane, 400 is a luminous flux,
S is the optical axis. Patent applicant Canon Co., Ltd. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)複数の光感光性の受光体層を光透過性の絶縁層で
分離して複数層重ね合わした受光手段を、該受光体層が
対物系の光軸に対して略垂直となるように配置し、前記
受光手段からの撮影系の焦点状態に関する出力信号を利
用して、前記撮影系の焦点状態を検出したことを特徴と
する焦点検出装置。
(1) A light-receiving means in which a plurality of photosensitive photoreceptor layers are separated by a light-transmissive insulating layer and stacked on top of each other is arranged such that the photoreceptor layers are approximately perpendicular to the optical axis of the objective system. A focus detection device, characterized in that the focus state of the photographing system is detected by using an output signal from the light receiving means regarding the focus state of the photographing system.
(2)前記受光手段は2以上の受光体層から成り、隣接
する受光体層からの出力信号を比較器で比較し、該比較
器からの出力信号に基づいて前記撮影系の焦点状態を検
出したことを特徴とする特許請求の範囲第1項記載の焦
点検出装置。
(2) The light receiving means is composed of two or more photoreceptor layers, and a comparator compares output signals from adjacent photoreceptor layers, and detects the focus state of the imaging system based on the output signal from the comparator. A focus detection device according to claim 1, characterized in that:
JP61295359A 1986-12-11 1986-12-11 Focus detector Pending JPS63147121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61295359A JPS63147121A (en) 1986-12-11 1986-12-11 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61295359A JPS63147121A (en) 1986-12-11 1986-12-11 Focus detector

Publications (1)

Publication Number Publication Date
JPS63147121A true JPS63147121A (en) 1988-06-20

Family

ID=17819597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61295359A Pending JPS63147121A (en) 1986-12-11 1986-12-11 Focus detector

Country Status (1)

Country Link
JP (1) JPS63147121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000496A (en) * 2007-05-21 2009-01-08 Zojirushi Corp Heater mounting structure of heating apparatus
JP2016220019A (en) * 2015-05-20 2016-12-22 日本放送協会 Imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000496A (en) * 2007-05-21 2009-01-08 Zojirushi Corp Heater mounting structure of heating apparatus
JP2016220019A (en) * 2015-05-20 2016-12-22 日本放送協会 Imaging apparatus

Similar Documents

Publication Publication Date Title
JPH0411844B2 (en)
JP4612869B2 (en) Focus detection device, imaging device, and focusing method
JPS5891410A (en) Focusing method of image pickup device
JPS6044649B2 (en) Focus detection device for single-lens reflex camera
JPS6355043B2 (en)
JPS6044643B2 (en) focus detection device
JPS6233564B2 (en)
JPH0145883B2 (en)
JPS63147121A (en) Focus detector
US4549802A (en) Focus detection apparatus
JPS58218631A (en) F-number detecting method
US4494849A (en) Focus detecting device for a camera
JPH0145882B2 (en)
JPS59121011A (en) Focusing position detector
JPH03293610A (en) Focusing position detecting device
JPS6255641B2 (en)
CN114285991A (en) Focusing method of image detector
JPS5916245B2 (en) How to detect the focus position based on lens chromatic aberration
JPS6111696Y2 (en)
JPS5916246B2 (en) Focus position detection method using lens chromatic aberration
JPS5811601B2 (en) Jidoushyoutenchiyousetsuki
JPS58221817A (en) Focusing detector
JPH06138382A (en) Focus detector
JPH01123110A (en) Distance measuring equipment
JPS58120213A (en) Focus display method