JPS63146413A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS63146413A
JPS63146413A JP62077457A JP7745787A JPS63146413A JP S63146413 A JPS63146413 A JP S63146413A JP 62077457 A JP62077457 A JP 62077457A JP 7745787 A JP7745787 A JP 7745787A JP S63146413 A JPS63146413 A JP S63146413A
Authority
JP
Japan
Prior art keywords
atomic
magnet
coercive force
heat treatment
treatment time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077457A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Susumu Hashimoto
進 橋本
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS63146413A publication Critical patent/JPS63146413A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys

Abstract

PURPOSE:To remarkably shorten a heat treating time and to improve the coercive force of a permanent magnet by adding B to an Fe-Pt magnet. CONSTITUTION:A permanent magnet contains 30-60 atomic % Pt, 2-30 atomic % B and the residue of Fe. If the Pt content of the magnet is less than 30 atomic % or more than 60 atomic %, high coercive force cannot be obtained, and high performance magnet cannot be attained either. If the magnet contains less than 2 atomic % B, the heat treating time shortening effect cannot be obtained, and if the magnet contains more than 30 atomic % B, the saturated magnetization is remarkably reduced, and excellent magnet characteristics cannot be obtained. Thus, the heat treating time can be shortened, and the coercive force can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は永久磁石に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to permanent magnets.

(従来の技術) 近年、新しい永久磁石材料が種々開発されつつある。そ
の中の1つに、Fe−Pt系磁石が知られている@(T
rans、of Japan In5t、of Met
als度10.l1kG、最大エネルギー積20MGO
eの磁石特性を持ち、貴金属元素を含む磁石材料しては
最高に優れたものである。
(Prior Art) In recent years, various new permanent magnet materials are being developed. One of them is the Fe-Pt magnet.
rans, of Japan In5t, of Met
als degree 10. l1kG, maximum energy product 20MGO
It has the magnetic properties of E, and is the best among magnetic materials containing noble metal elements.

しかし、上記磁石特性を得るためには1000℃近傍で
溶体化後、500℃近傍で熱処理を必要とするが、その
熱処理時間が100時間と非常に長時間を必要とする欠
点があった。
However, in order to obtain the above-mentioned magnetic properties, it is necessary to heat the magnet at around 500° C. after solution treatment at around 1000° C., which has the drawback of requiring a very long heat treatment time of 100 hours.

(発明が解決しようとする問題点) 本発明は、上記欠点を解決し、熱処理時間を大巾に短縮
し、併せて磁石特性を向上させることを目的とする。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned drawbacks, significantly shorten the heat treatment time, and improve the magnetic properties.

C発明の構成] (問題点を解決するための手段) 本発明者らはFe−Pt磁石の500℃近傍での熱処理
時間の短縮をはかるべく種々の実験を行った結果、B(
ボロン)の添加が極めて有効であることを見出した。す
なわち、Bの添加により、上記熱処理時間を約1/10
に短縮できることを見出した。また、B添加で、その添
加量によっては保磁力が向上するなど、磁石特性の改善
もはかられることを見出した。
C Configuration of the Invention] (Means for Solving the Problems) The present inventors conducted various experiments in an attempt to shorten the heat treatment time of Fe-Pt magnets at around 500°C, and as a result, B(
It has been found that the addition of boron) is extremely effective. That is, by adding B, the above heat treatment time is reduced by about 1/10.
We found that it can be shortened to It has also been found that the addition of B can improve magnetic properties, such as increasing coercive force, depending on the amount added.

本発明の磁石合金は次の組成から成る。すなわち、原子
%表示で、Pt−30〜60%、B−2〜30%、残部
がFeと不可避的に混入する不純物より成る。またNi
あるいはCOの添加によって保磁力が向上するなど、磁
石特性の改善もはかられることを見出した。一般式で表
わすと(Fe    Pt  M  ) L−a−b   a  b  100−c BeM−N
i、Coより選ばれる少なくとも1種 0.30≦a≦0.BO Q<b≦0.30 2 ≦ C≦ 30      (at  %)で表わ
される。
The magnetic alloy of the present invention has the following composition. That is, in terms of atomic percent, Pt-30 to 60%, B-2 to 30%, and the balance consists of Fe and impurities that are inevitably mixed. Also Ni
It has also been found that the addition of CO can improve magnetic properties, such as increasing coercive force. Represented by the general formula: (Fe Pt M ) L-a-b a b 100-c BeM-N
at least one selected from i, Co, 0.30≦a≦0. BO Q<b≦0.30 2≦C≦30 (at %).

(作  用) 以下、上記組成の限定した理由について述べる。ptは
30原子%未満および60原子%を越える場合には、高
保磁力が得られず、高性能磁石とならない。Bは2原子
%未満では、熱処理時間短縮効果が得られず、また30
原子%をこえると飽和磁化が著しく低下し、優れた磁石
特性が得られない。
(Function) The reason for the above composition limitation will be described below. If pt is less than 30 atomic % or more than 60 atomic %, a high coercive force cannot be obtained and a high-performance magnet cannot be obtained. If B is less than 2 at%, the effect of shortening the heat treatment time cannot be obtained;
If it exceeds atomic %, the saturation magnetization will drop significantly and excellent magnetic properties will not be obtained.

またM成分を含むときの限定理由を述べる。In addition, the reason for the limitation when the M component is included will be described.

ptはaで表わすと0.3未満および0.6を越える場
合には、高保磁力が得られず、高性能磁石とはならない
。Mは特に磁石特性を改善する効果をもたらすが、bの
値で0.3を越えると、N【の場合は飽和磁化が著しく
低下しまたCOの場合高保磁力が得られなくなる。
If pt, expressed as a, is less than 0.3 or more than 0.6, a high coercive force cannot be obtained and a high-performance magnet cannot be obtained. M particularly has the effect of improving magnetic properties, but if the value of b exceeds 0.3, the saturation magnetization will drop significantly in the case of N, and high coercive force will not be obtained in the case of CO.

Bは2原子%未満では、熱処理時間短縮効果が得られず
、また30原子%を越えると飽和磁化が著しく低下し、
優れた磁石特性が得られない。
If B is less than 2 atomic %, the effect of shortening the heat treatment time cannot be obtained, and if it exceeds 30 atomic %, the saturation magnetization will be significantly reduced.
Excellent magnetic properties cannot be obtained.

(実施例) 以下、実施例にて本発明を詳細に述べる。(Example) Hereinafter, the present invention will be described in detail with reference to Examples.

実施例l Pt−33原子%、B−17原子%、残部Feより成る
合金を高周波誘導加熱炉を用いて溶解し、作製した。本
合金を非晶質合金作製用に用いられる単ロール法第1図
を用いて急冷リボンを作製した。用いたロールは直径3
0 G +amの銅製で、ロール回転数は1000 r
pmであった。また、急冷リボン作製時の合金溶融温度
は1200℃、ガス圧0.7kg/cdであった。得ら
れたリボンを長さ約5關に切り、500℃で各種時間熱
処理した。
Example 1 An alloy consisting of 33 at. % of Pt, 17 at. % of B, and the balance of Fe was melted using a high frequency induction heating furnace to produce an alloy. A quenched ribbon of this alloy was prepared using the single roll method shown in FIG. 1, which is used for preparing amorphous alloys. The roll used had a diameter of 3
Made of copper with 0 G + am, roll rotation speed is 1000 r
It was pm. Moreover, the alloy melting temperature at the time of producing the quenched ribbon was 1200° C. and the gas pressure was 0.7 kg/cd. The obtained ribbon was cut into approximately 5 lengths and heat treated at 500° C. for various times.

その後、三れら試料の磁気特性を試料振動型磁力計(V
SM)を用いて測定した。その結果得られた保磁力の熱
処理時間依存性を第2図に示す。この(図2)から保磁
力の最大は、熱処理時間10・ 時間で得られ、最大値
は4.8k Oeであることがわかる。これはBを添加
しない場合に最大保磁力が得られる熱処理時間100時
間の1710であり、そかもその場合の最大保磁力4.
3k Oeよりも大きく、B添加効果の著しいことがわ
かる。また、同組成につき双ロール法によって得られた
急冷リボンにおいても同様の効果が確められた。
After that, the magnetic properties of the three samples were measured using a sample vibrating magnetometer (V
SM). The dependence of the coercive force on the heat treatment time obtained as a result is shown in FIG. From this (FIG. 2), it can be seen that the maximum coercive force was obtained at a heat treatment time of 10 hours, and the maximum value was 4.8 kOe. This is 1710, which is the heat treatment time of 100 hours at which the maximum coercive force can be obtained when B is not added, and the maximum coercive force in that case is 4.
It is clear that the effect of B addition is significant. Furthermore, similar effects were confirmed in a rapidly cooled ribbon of the same composition obtained by the twin roll method.

実施例2 実施例1と同様の方法を用いて、 (FeO,6P tO,4) I Q 0−xBx (
原子%表示)合金を作製、500℃の熱処理を行い、最
大保磁力(いずれも4.5k Oe以上であった)の得
られた時の熱処理時間と飽和磁化のBffiとの関係を
第3図に示した。これより、本発明の合金はいずれも従
来のBを含まない熱処理時間100時間よりも大巾に短
縮されていることがわかる。一方、飽和磁化は30原子
%を越えると6kG以下と小さくなる。
Example 2 Using a method similar to Example 1, (FeO,6P tO,4) I Q 0-xBx (
Fig. 3 shows the relationship between the heat treatment time and the saturation magnetization Bffi when the maximum coercive force (all of them were 4.5 k Oe or more) was obtained. It was shown to. From this, it can be seen that the heat treatment time for all of the alloys of the present invention is significantly shorter than the conventional heat treatment time of 100 hours that does not contain B. On the other hand, when the saturation magnetization exceeds 30 atomic %, the saturation magnetization decreases to 6 kG or less.

(FeO,5P to、4 N iO,l ) 83B
17で表わされる合金を高周波誘導加熱炉を用いて溶解
し、作製した。本合金を非晶質合金作製用に用いられる
単ロール法第1図を用いて急冷リボンを作製した。
(FeO,5P to,4N iO,l ) 83B
An alloy represented by No. 17 was melted using a high frequency induction heating furnace to produce the alloy. A quenched ribbon of this alloy was prepared using the single roll method shown in FIG. 1, which is used for preparing amorphous alloys.

用いたロールは直径300 mmの銅製で、ロール回転
数は1000 rpmであった。また、急冷リボン作製
時の合金溶融温度は1200℃、ガス圧0.7)cg 
/ c−あった。得られたリボンを長さ約5 mmに切
り、500℃で各種時間熱処理した。その後、これら試
料の磁気特性を5料振動型磁力計(V S M)を用い
て測定した。その結果得られた保磁力の熱処理時間依存
性を第4図に示す。この(図2)から保磁力の最大は、
熱処理時間1時間で得られ、最大値は5.8k Oeで
あることがわかる。これは、Bを添加しない場合に最大
保磁力が得られる熱処理時間100時間の1/100で
あり、しかもその場合の最大保磁力4.3k Oeより
も大きく、BとNi添加効果の著しいことがわかる。ま
た、同組成につき双ロール法によって得られた急冷リボ
ンにおいても同様の効果が確められた。
The roll used was made of copper and had a diameter of 300 mm, and the roll rotation speed was 1000 rpm. In addition, the alloy melting temperature during rapid cooling ribbon production was 1200°C, and the gas pressure was 0.7)cg.
/c-There was. The resulting ribbons were cut into lengths of about 5 mm and heat treated at 500°C for various times. Thereafter, the magnetic properties of these samples were measured using a five-material vibrating magnetometer (VSM). The dependence of the coercive force on the heat treatment time obtained as a result is shown in FIG. From this (Figure 2), the maximum coercive force is
It can be seen that the maximum value was 5.8 k Oe, which was obtained with a heat treatment time of 1 hour. This is 1/100 of the heat treatment time of 100 hours to obtain the maximum coercive force when B is not added, and is also greater than the maximum coercive force of 4.3 k Oe in that case, indicating that the effect of B and Ni addition is significant. Recognize. Furthermore, similar effects were confirmed in a rapidly cooled ribbon of the same composition obtained by the twin roll method.

実施例4 (F eo、8−x P t O,4Mx)84B17
 [M−Co、Nil  (原子%表示)の各合金を実
施例1と同様にして作製し、500℃熱処理を行なった
。いずれも1〜5時間の熱処理時間で最大保磁力が得ら
れたが、(o、Niff1に対して飽和磁化とともに第
5図にプロットする。これより、本発明の合金は保磁力
Ni、Co添加することにより、改善されCOではX≦
0.3で有効であり、Niではxffiによらずほぼ一
定値をとる。一方、飽和磁化は、Ni添加の場合x>0
.3では、6KG以下と小さくなってしまう。
Example 4 (F eo, 8-x P t O, 4Mx) 84B17
[Alloys of M-Co and Nil (expressed in atomic %) were prepared in the same manner as in Example 1, and heat treated at 500°C. In all cases, the maximum coercive force was obtained with a heat treatment time of 1 to 5 hours. By doing so, it is improved and in CO, X≦
It is effective at 0.3, and takes a nearly constant value for Ni regardless of xffi. On the other hand, the saturation magnetization is x>0 in the case of Ni addition.
.. 3, it will be smaller than 6KG.

なお、Ni、Coの添加量の増加とともに最大保磁力が
得られる時間は長くなり、たとえばX−0,1では1時
間x−0,3のとき5時間である。
Note that as the amount of Ni and Co added increases, the time required to obtain the maximum coercive force becomes longer; for example, for X-0,1, it is 1 hour, and for x-0,3, it is 5 hours.

以上の実施例は全て急冷リボンを熱処理した場合につい
て示したが、通常の溶解合金のバルク材を熱処理した場
合にも、同様のB添加効果が認められた。
Although all of the above examples have been shown in the case where the rapidly cooled ribbon was heat treated, the same effect of B addition was also observed when the bulk material of the ordinary molten alloy was heat treated.

[発明の効果] 以上示したように、B添加により優れた磁石特性を得る
ための熱処理時間の著しい短縮と保磁力の向上が得られ
る。
[Effects of the Invention] As shown above, the addition of B can significantly shorten the heat treatment time and improve the coercive force in order to obtain excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の合金作製の1例を示す概念図。 第2図乃至第5図は本発明の効果を示す特性図である。 FIG. 1 is a conceptual diagram showing one example of alloy production according to the present invention. 2 to 5 are characteristic diagrams showing the effects of the present invention.

Claims (1)

【特許請求の範囲】 (1)原子%でPt30〜60%、B2〜30%、残部
Feより成ることを特徴とする永久磁石。 (2)Ni、Coの少なくとも一種をさらに含有するこ
とを特徴とする特許請求の範囲第1項記載の永久磁石。 (3)一般式 (Fe_1_−_a_−_bPt_aM_b)_1_0
_0_−_cB_cM=Ni、Coより選ばれる少なく
とも 1種 0.30≦a≦0.60 0<b≦0.30 2≦c≦30(at%) で表わされることを特徴とする特許請求の範囲第2項記
載の永久磁石。
[Scope of Claims] (1) A permanent magnet characterized in that it consists of 30 to 60% Pt, 2 to 30% B, and the balance Fe in atomic %. (2) The permanent magnet according to claim 1, further containing at least one of Ni and Co. (3) General formula (Fe_1_-_a_-_bPt_aM_b)_1_0
Claims characterized in that _0_-_cB_cM=at least one selected from Ni and Co0.30≦a≦0.60 0<b≦0.30 2≦c≦30 (at%) Permanent magnet according to item 2.
JP62077457A 1986-07-01 1987-04-01 Permanent magnet Pending JPS63146413A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15271286 1986-07-01
JP61-152712 1986-07-01

Publications (1)

Publication Number Publication Date
JPS63146413A true JPS63146413A (en) 1988-06-18

Family

ID=15546503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077457A Pending JPS63146413A (en) 1986-07-01 1987-04-01 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS63146413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239494A3 (en) * 2001-03-02 2002-10-30 Aichi Steel Corporation Fept magnet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239494A3 (en) * 2001-03-02 2002-10-30 Aichi Steel Corporation Fept magnet and manufacturing method thereof
US6666930B2 (en) 2001-03-02 2003-12-23 Aichi Steel Corporation FePt magnet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPS6133900B2 (en)
US3794530A (en) High-permeability ni-fe-ta alloy for magnetic recording-reproducing heads
JPH04129203A (en) Permanent magnet powder
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPH0339451A (en) Permanent magnet material
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPH0328502B2 (en)
JPS63146413A (en) Permanent magnet
US3836406A (en) PERMANENT MAGNETIC Fe-Mn-Cr ALLOY CONTAINING NITROGEN
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
Adams Recent developments in soft magnetic alloys
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
JPS6115944A (en) Rare earth magnet thin strip
US3144325A (en) Magnetic compositions containing iron, rhodium, and at least one member of the lanthanide series
JPS6115943A (en) Rare earth permanent magnet thin strip
JPS61119005A (en) Manufacture of iron-rareearth-boron permanent magnet
JPH01168844A (en) Permanent magnet material
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JPH02294447A (en) Permanent magnet material and its production
JPS6274049A (en) High permeability amorphous alloy
JPH03179622A (en) Lead switch
JPS62158852A (en) Permanent magnet material
JPS6115936A (en) Rare earth element-base permanent magnet