JP2580067B2 - Manufacturing method of rare earth permanent magnet - Google Patents

Manufacturing method of rare earth permanent magnet

Info

Publication number
JP2580067B2
JP2580067B2 JP2215923A JP21592390A JP2580067B2 JP 2580067 B2 JP2580067 B2 JP 2580067B2 JP 2215923 A JP2215923 A JP 2215923A JP 21592390 A JP21592390 A JP 21592390A JP 2580067 B2 JP2580067 B2 JP 2580067B2
Authority
JP
Japan
Prior art keywords
heat treatment
stage
rare earth
permanent magnet
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2215923A
Other languages
Japanese (ja)
Other versions
JPH0499816A (en
Inventor
一雄 松井
治洋 幸村
照夫 清宮
保敏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2215923A priority Critical patent/JP2580067B2/en
Publication of JPH0499816A publication Critical patent/JPH0499816A/en
Application granted granted Critical
Publication of JP2580067B2 publication Critical patent/JP2580067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、R−Fe(Co)−B系永久磁石の製造方法に
関し、詳しくは、Rが12%未満と少ない組成から16%と
多い組成に至るまで高保磁力、高エネルギー積を呈する
希土類永久磁石を液体急冷法により製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION << Industrial Application Field >> The present invention relates to a method for producing an R—Fe (Co) —B-based permanent magnet, and more specifically, a composition in which R is as small as less than 12% to as large as 16%. The present invention relates to a method for producing a rare earth permanent magnet having a high coercive force and a high energy product up to a composition by a liquid quenching method.

《従来の技術》 従来、希土類磁石として、R−Fe(Co)−B系の永久
磁石が開発されている。
<< Conventional Technology >> Conventionally, R-Fe (Co) -B permanent magnets have been developed as rare earth magnets.

このR−Fe(Co)−B系磁石には、焼結法によるもの
と急冷法によるものとがある。
The R-Fe (Co) -B-based magnets include those obtained by a sintering method and those obtained by a quenching method.

焼結法による永久磁石は、原料の溶解→鋳造→インゴ
ットの粗粉砕→微粉砕→プレス→焼結→磁石という煩雑
な工程を経て得られるため、製造コストが高額となって
いる。
The permanent magnet produced by the sintering method is obtained through a complicated process of melting a raw material, casting, coarsely pulverizing an ingot, finely pulverizing, pressing, sintering, and a magnet, so that the manufacturing cost is high.

この焼結磁石は、結晶粒径が10μm程度のR2(FeCo)
14Bの結晶が主相をなし、逆磁区の核発生が保持力を決
める言わゆるニュークリエーション型磁石である。
This sintered magnet is made of R 2 (FeCo) with a crystal grain size of about 10 μm.
It is a so-called nucleation-type magnet in which the crystal of 14 B forms the main phase and the nucleation of the reverse domain determines the coercive force.

一方、急冷法による永久磁石は、原料の溶解→高速急
冷→粗粉砕→冷間プレス(温間プレス)→磁石という簡
素な工程を経て得られるもので、焼結磁石に比して製造
コストが低額である。
On the other hand, permanent magnets obtained by the quenching method are obtained through a simple process of melting raw materials, high-speed quenching, coarse grinding, cold pressing (warm pressing), and magnets. It is low.

この急冷磁石は、基本的には上記の焼結磁石と同様の
R2(FeCo)14B化合物を主相とし、0.01〜1μm程度のR
2(FeCo)14B微細粒子をアモルファス相が取り囲んだ微
細な組織により磁壁のピン止めが保磁力を決定する言わ
ゆるピンニング型磁石である。
This quenched magnet is basically the same as the sintered magnet described above.
R 2 (FeCo) 14 B compound as main phase, R of about 0.01 to 1 μm
This is a so-called pinning type magnet in which the pinning of the domain wall determines the coercive force by the fine structure in which the amorphous phase surrounds the 2 (FeCo) 14 B fine particles.

このように、急冷磁石の保磁力発生機構は、上記の焼
結磁石はもとより、鋳造磁石の保磁力発生機構とも異な
るものの、実用化されている急冷磁石の希土類元素Rは
13%(原子%、なお本明細書の「%」は全て「原子%」
を意味する)であり、主相のそれよりも若干多くなって
いる。
As described above, the coercive force generating mechanism of the quenched magnet is different from the coercive force generating mechanism of the cast magnet as well as the sintered magnet described above.
13% (atomic%, all “%” in this specification are “atomic%”
And slightly more than that of the main phase.

[発明が解決しようとする課題] ところで、前述の焼結法、鋳造法、急冷法を問わず、
いずれの方法においても、従来のR−Fe−B系永久磁石
合金では、希土類元素の含有量が12%未満では保磁力iH
cが急激に低下する現象がみられる。
[Problems to be solved by the invention] By the way, regardless of the sintering method, the casting method, and the quenching method described above,
In any of the methods, in the conventional R-Fe-B permanent magnet alloy, the coercive force iH is less than 12% when the content of the rare earth element is less than 12%.
There is a phenomenon that c decreases rapidly.

このような保磁力の向上を含め、R−Fe(Co)−B系
の急冷磁石合金の磁力特性を改善するために、様々な研
究が進められており、例えば特開昭64−703号公報にはH
f,Ta,W等、特定の元素を添加することにより、希土類含
有量が少ない組成でも高保磁力を生じることが報告され
ている。
Various studies have been made to improve the magnetic force characteristics of the R-Fe (Co) -B-based quenched magnet alloy, including the improvement of the coercive force, for example, Japanese Patent Application Laid-Open No. 64-703. H
It has been reported that the addition of specific elements such as f, Ta, W, etc. produces a high coercive force even with a composition having a low rare earth content.

しかし、現状の製造方法では必ずしも満足な磁気特性
を得ることができなかった。
However, satisfactory magnetic properties could not always be obtained by the current manufacturing method.

加えて、前述の溶融金属を高速急冷する際の冷却速度
が、冷却時の諸条件(例えば、後述するロールの周速度
や、不活性ガスの噴射圧力等)により変化し易いため、
再現性が悪く、一定の高品質のものを安定して提供する
ことが極めて困難であった。
In addition, the cooling rate at the time of high-speed quenching of the molten metal is easily changed by various conditions at the time of cooling (for example, a peripheral velocity of a roll described later, an injection pressure of an inert gas, and the like),
The reproducibility was poor, and it was extremely difficult to stably provide products of a constant high quality.

本発明は、以上の諸点に鑑みてなされたものであっ
て、その目的とするところは、希土類元素含有量が12%
未満と少ない組成のものから16%程度の多い組成のもの
までのR−Fe(Co)−R系急冷永久磁石を、高保磁力、
高エネルギー積で、製造する方法を提案するにある。
The present invention has been made in view of the above-described points, and has as its object the rare earth element content of 12%
R-Fe (Co) -R-based quenched permanent magnets with compositions as low as less than and as high as about 16% have high coercivity,
The idea is to propose a manufacturing method with a high energy product.

《課題を解決するための手段》 上記目的を達成するために、本発明に係る希土類永久
磁石の製造方法は、 Rx(Fe1-wCow100-x-y-zBYWZ(但し、RはYを包含す
る希土類元素の1種以上で、6≦x≦16、2≦y≦25、
0<z≦12、0≦w≦1)なる液体急冷合金を、第1段
熱処理として300〜800℃の等温で行い、次いで第2段熱
処理として600〜1000℃でかつ第1段熱処理より高温の
等温で行うことを特徴とする希土類永久磁石の製造方法
を特徴とする。
<< Means for Solving the Problems >> In order to achieve the above object, a method for producing a rare-earth permanent magnet according to the present invention is as follows: R x (Fe 1-w Co w ) 100-xyz B Y W Z (where R Is one or more rare earth elements including Y, 6 ≦ x ≦ 16, 2 ≦ y ≦ 25,
A liquid quenched alloy of 0 <z ≦ 12, 0 ≦ w ≦ 1) is subjected to a first-stage heat treatment at an isothermal temperature of 300 to 800 ° C., and then to a second-stage heat treatment at 600 to 1000 ° C. and higher than the first-stage heat treatment. The method for producing a rare earth permanent magnet is characterized in that the method is performed at a constant temperature.

本発明における液体急冷合金は、種々の形式の液体急
冷法のうち、その特徴を利用して任意の手法を採用して
よい。特に、遠心法、単ロール法、双ロール法は薄帯を
連続的に大量に作製でき、工業生産に適している。
The liquid quenching alloy of the present invention may employ any of various types of liquid quenching methods by utilizing its characteristics. In particular, the centrifugal method, the single-roll method, and the twin-roll method can continuously produce a large amount of ribbons and are suitable for industrial production.

上記の方法は、いずれも電気炉あるいは高周波炉によ
り合金を溶解し、その溶融合金を不活性ガス圧によりル
ツボ先端のノズルから噴出させ、回転する冷却用回転体
の表面上で接触凝固させるものである。
In each of the above methods, the alloy is melted by an electric furnace or a high-frequency furnace, and the molten alloy is ejected from a nozzle at a crucible tip by an inert gas pressure, and is contact-solidified on the surface of a rotating cooling rotary body. is there.

量産性の面から、本発明の場合には単ロール法、即ち
1個の回転するロールの周面上に溶解合金を噴出する方
法が最も適当である。勿論、その他の方法でもよい。
From the viewpoint of mass productivity, the single roll method, that is, the method in which the molten alloy is jetted onto the peripheral surface of one rotating roll is most suitable in the present invention. Of course, other methods may be used.

本発明における液体急冷合金の各成分の限定理由は、
以下の通りである。なお、これらは実施例に記載したよ
うな多くの事件結果から求められた。
Reasons for limiting each component of the liquid quenched alloy in the present invention are:
It is as follows. These were determined from the results of many cases as described in the examples.

Rの量xは、6%未満ではiHcが5kOe未満となり、16
%を超えると最大エネルギー積(BH)maxが5MGOeとな
り、いずれも実用上好ましくない。
When the amount x of R is less than 6%, iHc is less than 5 kOe,
%, The maximum energy product (BH) max becomes 5MGOe, which is not practically preferable.

Bの量yは,2%未満ではiHcが5kOe未満と小さく、25
%を超えると(BH)maxが低下する。
When the amount y of B is less than 2%, iHc is less than 5 kOe,
%, The (BH) max decreases.

iHc増加のためにWを添加することが必要で、その量
zは0.1%以上、特に1%以上で効果が顕著となる。し
かしzが12%を超えると、Brが低下する。
It is necessary to add W to increase iHc, and the effect becomes remarkable when the amount z is 0.1% or more, particularly 1% or more. However, when z exceeds 12%, Br decreases.

また、FeをCoで置換することでキュリー温度が改良さ
れ温度特性が向上する。その置換量wは、w=1、即ち
Feを全てCoで置換しても8kOe以上の保磁力を有する磁石
が得られる。
Further, by replacing Fe with Co, the Curie temperature is improved and the temperature characteristics are improved. The replacement amount w is w = 1, that is,
Even if all of Fe is replaced with Co, a magnet having a coercive force of 8 kOe or more can be obtained.

更に、Bの一部をC,P,Si等により置換することも可能
であり、製造性の改善、低価格化が可能となる。
Furthermore, part of B can be replaced by C, P, Si, etc., which can improve manufacturability and reduce cost.

《作 用》 溶融合金を直接急冷凝固すると、急冷後の組織は、合
金組成や急冷条件により異なるが、一般的にアモルファ
スあるいは微結晶又はその混合組織となる。これを熱処
理することにより、その微結晶又はアモルファスと微結
晶からなる組織およびサイズを更にコントロールでき、
0.01〜1μm程度のR2Fe14B微細粒子をアモルファス相
が取り囲んだ永久磁石にとって非常に好ましい組織が得
られる。
<< Operation >> When a molten alloy is directly quenched and solidified, the structure after quenching generally becomes amorphous, microcrystal, or a mixed structure thereof, although it differs depending on the alloy composition and quenching conditions. By heat-treating this, the structure and size of the microcrystal or amorphous and microcrystal can be further controlled,
A very favorable structure is obtained for a permanent magnet in which an amorphous phase surrounds R 2 Fe 14 B fine particles of about 0.01 to 1 μm.

このような急冷法で得られるR−Fe(Co)−B系材料
について種々の添加元素の影響を検討すると、特にWを
添加した場合、R含有量が少ない組成(12%未満)でも
高保磁力を示し、実用に適した高性能磁石となる。
Considering the effects of various additional elements on the R-Fe (Co) -B-based material obtained by such a quenching method, especially when W is added, a high coercive force is obtained even in a composition having a small R content (less than 12%). It shows that it is a high performance magnet suitable for practical use.

また、R含有量が12%以上の場合でもWの添加により
保磁力が向上する。
Further, even when the R content is 12% or more, the coercive force is improved by the addition of W.

但し、Wの添加は、保磁力の向上に寄与するものの、
ヒステリシスループの角型性が悪いため最大エネルギー
積(BH)maxが低い。
However, although the addition of W contributes to the improvement of the coercive force,
The maximum energy product (BH) max is low due to the poor squareness of the hysteresis loop.

そこで本発明では、液体急冷法によって急冷凝固した
材料について、不活性雰囲気又は真空中において2段階
の熱処理を行う。
Therefore, in the present invention, a two-stage heat treatment is performed on a material rapidly solidified by a liquid quenching method in an inert atmosphere or in a vacuum.

第1段目は300〜800℃での等温処理、第2段目は600
〜1000℃で且つ第1段目よりも高い温度での等温処理で
ある。この2段階の熱処理によって(BH)maxは向上す
る。すなわち第1段目の熱処理では主相を核発生させる
(核の数をコントロールする)。また第2段目の熱処理
では主相を成長させる(サイズをコントロールする)。
このように2段熱処理を行うことにより、主相の数とサ
イズとが磁気特性上、最適なものになる。
The first stage is isothermal treatment at 300-800 ° C, the second stage is 600
This is an isothermal treatment at a temperature of up to 1000 ° C. and higher than the first stage. (BH) max is improved by the two-step heat treatment. That is, in the first heat treatment, the main phase is nucleated (the number of nuclei is controlled). In the second heat treatment, a main phase is grown (size is controlled).
By performing the two-stage heat treatment in this manner, the number and size of the main phases become optimal in terms of magnetic properties.

この熱処理効果は、R含有量の少ない(12%未満)組
成で特に有効であり、R含有量が16%まで有効である。
そして、R含有量が多い(16%を超える)組成では効果
は見られない。
This heat treatment effect is particularly effective in a composition having a low R content (less than 12%), and is effective up to an R content of 16%.
No effect is seen with compositions having a high R content (more than 16%).

《実施例》 実施例1 NdxFe86-xB8W6(6≦x≦20)なる組成を有する合金を
アーク溶解した。
<< Example >> Example 1 An alloy having a composition of Nd x Fe 86-x B 8 W 6 (6 ≦ x ≦ 20) was arc-melted.

この溶融合金を、20m/秒で回転するロール表面に、内
径1.0mmの石英ノズルを通して、アルゴンガス圧1kg/cm2
で射出して高速冷却し、アモルファスあるいは微結晶質
からなる薄帯を得た。
This molten alloy was passed through a quartz nozzle having an inner diameter of 1.0 mm through the surface of a roll rotating at 20 m / sec, and an argon gas pressure of 1 kg / cm 2
And cooled at a high speed to obtain a ribbon made of amorphous or microcrystalline material.

この薄帯を、真空中725℃で第1段の熱処理を施し
た。
This ribbon was subjected to a first-stage heat treatment at 725 ° C. in a vacuum.

第1図に各条件で得られた最高の保磁力iHc及び残留
磁束密度Brを示す。
FIG. 1 shows the maximum coercive force iHc and residual magnetic flux density Br obtained under each condition.

また、比較例としてWを添加していない組成(NdxFe
92-xB8;6≦x≦20)について、熱処理温度を600℃とす
る以外は上記と同様の処理を行い、各条件で得られた最
高の保磁力も、第1図にあわせて示す。
In addition, as a comparative example, a composition (Nd x Fe
92-x B 8 ; 6 ≦ x ≦ 20), except that the heat treatment temperature was set at 600 ° C., and the same coercive force obtained under each condition was also shown in FIG. .

なお、磁気特性は全て磁石粉体をカプセルに充填し、
VSMで測定した。
The magnetic properties are all filled in capsules with magnet powder,
Measured by VSM.

第1図から、Wの添加によりNd含有量の少ない(12%
未満)組成でも5kOe以上の高保磁力が得られ、またNd含
有量の多い(12%以上)組成でも保磁力が向上すること
が判る。
From FIG. 1, it can be seen that the addition of W reduces the Nd content (12%
It can be seen that a high coercive force of 5 kOe or more can be obtained with the composition (less than), and that the coercive force can be improved with a composition having a high Nd content (12% or more).

次に上記の液体急冷法で得た薄帯について、真空中
で、下記条件の通常の1段熱処理を施した場合と、下記
条件の本発明の2段熱処理を施した場合の(BH)max
比較結果を第2図に示す。
Next, the ribbons obtained by the above-mentioned liquid quenching method were subjected to the usual one-step heat treatment under the following conditions in vacuum and to the two-step heat treatment of the present invention under the following conditions (BH) max. FIG. 2 shows the result of the comparison.

熱処理条件: 通常の1段熱処理…700℃×1時間 本発明の2段熱処理 第1段目…500℃×1時間 第2段目…700℃×1時間 第2図から、本発明の2段熱処理の効果は、Nd量xが
12%未満の場合に特に有効であり、16%を超えると効果
はなくなることが判る。
Heat treatment conditions: Normal one-step heat treatment: 700 ° C. × 1 hour Two-step heat treatment of the present invention First step: 500 ° C. × 1 hour Second step: 700 ° C. × 1 hour From FIG. The effect of heat treatment is that the amount of Nd x
It is found that the effect is particularly effective when the amount is less than 12%, and the effect is lost when the amount exceeds 16%.

実施例2 Nd10Fe84-yByW6(2≦y≦25)なる組成を有する液体
急冷合金を実施例1と同様の手順で製作し、真空中725
℃で1段の熱処理を施した。
Example 2 Nd 10 Fe 84-y B y W 6 (2 ≦ y ≦ 25) comprising a liquid quenching alloy having a composition manufactured by the same procedure as in Example 1, vacuum 725
A one-stage heat treatment was performed at ℃.

得られた材料のBr,iHc特性を第3図に示す。 FIG. 3 shows the Br and iHc characteristics of the obtained material.

同図から、2≦y≦25において高磁気特性が得られる
ことが判る。
From the figure, it can be seen that high magnetic characteristics can be obtained when 2 ≦ y ≦ 25.

次に、液体急冷法で得た上記組成の薄帯について、真
空中で、下記条件の通常の1段熱処理を施した場合と、
下記条件の本発明の2段熱処理を施した場合の(BH)
maxの比較結果を第4図に示す。
Next, the ribbon having the above composition obtained by the liquid quenching method is subjected to ordinary one-step heat treatment under the following conditions in a vacuum,
(BH) when the two-step heat treatment of the present invention under the following conditions is performed
Fig. 4 shows the comparison results of max .

熱処理条件: 通常の1段熱処理…650℃×1時間 本発明の2段熱処理 第1段目…400℃×1時間 第2段目…650℃×1時間 第4図から、本発明の2段熱処理によって角型性が改
善され、(BH)maxが向上することが判る。
Heat treatment conditions: Normal one-stage heat treatment: 650 ° C. × 1 hour Two-stage heat treatment of the present invention First stage: 400 ° C. × 1 hour Second stage: 650 ° C. × 1 hour From FIG. It can be seen that the squareness is improved by the heat treatment, and (BH) max is improved.

実施例3 Nd10Fe82-zB8Wz(0≦z≦12)なる組成を有する液体
急冷合金を実施例1と同様の手順で作製し、真空中600
〜750℃(但し、z=0のものは600℃、z=1のものは
650℃、z=3のものは675℃、z=6のものは725℃、
z=9,12のものは750℃)で1段の熱処理を施した。
Example 3 A liquid quenched alloy having a composition of Nd 10 Fe 82-z B 8 W z (0 ≦ z ≦ 12) was prepared in the same procedure as in Example 1, and was immersed in a vacuum at 600
Up to 750 ° C (however, 600 ° C for z = 0 and z = 1 for
650 ° C, 675 ° C for z = 3, 725 ° C for z = 6,
The sample having z = 9,12 was subjected to one-stage heat treatment at 750 ° C.).

得られた材料のBr,iHc特性を第5図に示す。 FIG. 5 shows the Br and iHc characteristics of the obtained material.

同図より、0≦z≦12において高磁気特性が得られる
ことが判る。
From the figure, it can be seen that high magnetic characteristics are obtained when 0 ≦ z ≦ 12.

次に、液体急冷法で得た上記組成の薄帯について、真
空中で、下記条件の通常の1段熱処理を施した場合と、
下記条件の本発明の2段熱処理を施した場合の(BH)ma
xの比較結果を第6図に示す。
Next, the ribbon having the above composition obtained by the liquid quenching method is subjected to ordinary one-step heat treatment under the following conditions in a vacuum,
(BH) ma when the two-step heat treatment of the present invention is performed under the following conditions:
FIG. 6 shows the comparison results of x.

熱処理条件: 通常の1段熱処理…750℃×1時間 本発明の2段熱処理 第1段目…600℃×1時間 第2段目…750℃×1時間 第6図より、本発明の2段熱処理により(BH)max
向上することが判る。
Heat treatment conditions: Normal one-stage heat treatment: 750 ° C. × 1 hour Two-stage heat treatment of the present invention First stage: 600 ° C. × 1 hour Second stage: 750 ° C. × 1 hour From FIG. It can be seen that the heat treatment improves (BH) max .

実施例4 Nd10(Fe1-wCow76B8W6(0≦w≦1)なる組成を有
する液体急冷合金を実施例1と同様の手順で作製し、真
空中725℃で1段の熱処理を施した。
Example 4 A liquid quenched alloy having a composition of Nd 10 (Fe 1-w Co w ) 76 B 8 W 6 (0 ≦ w ≦ 1) was produced in the same procedure as in Example 1, and was cooled at 725 ° C. in a vacuum. Step heat treatment was performed.

得られた材料のBr,iHc特性を第7図に示す。 FIG. 7 shows the Br and iHc characteristics of the obtained material.

同図より、0≦w≦1の全域にわたって高磁気特性が
得られることが判る。
From the figure, it can be seen that high magnetic characteristics can be obtained over the entire range of 0 ≦ w ≦ 1.

次に、液体急冷法で得た上記組成の薄帯について、真
空中で、下記条件の通常の1段熱処理を施した場合と、
下記条件の本発明の2段熱処理を施した場合の(BH)
maxの比較結果を第8図に示す。
Next, the ribbon having the above composition obtained by the liquid quenching method is subjected to ordinary one-step heat treatment under the following conditions in a vacuum,
(BH) when the two-step heat treatment of the present invention under the following conditions is performed
FIG. 8 shows the comparison results of max .

熱処理条件: 通常の1段熱処理…800℃×1時間 本発明の2段熱処理 第1段目…550℃×1時間 第2段目…800℃×1時間 第8図から、本発明の2段熱処理を施すことによりヒ
ステリシスループの角型性が改善され(BH)maxが向上
することが判る。
Heat treatment conditions: Normal one-stage heat treatment: 800 ° C. × 1 hour Two-stage heat treatment of the present invention First stage: 550 ° C. × 1 hour Second stage: 800 ° C. × 1 hour From FIG. It can be seen that the heat treatment improves the squareness of the hysteresis loop and improves (BH) max .

実施例5 Nd10Fe79B6W5なる組成を有する液体急冷合金をロール
周速度を変化させるほかは実施例1と同様の手順で作製
した。
Example 5 A liquid quenched alloy having a composition of Nd 10 Fe 79 B 6 W 5 was produced in the same procedure as in Example 1 except that the roll peripheral speed was changed.

この方法で得た薄帯について、真空中で、下記条件の
通常の1段熱処理を施した場合と、下記条件の本発明の
2段熱処理を施した場合の(BH)maxの比較結果を、熱
処理なしの結果とあわせて第9図に示す。
The results of the comparison of (BH) max between the case where the ribbon obtained by this method was subjected to the normal one-step heat treatment under vacuum and the case where the two-step heat treatment of the present invention was performed under the following conditions in vacuum were: FIG. 9 shows the results without heat treatment.

熱処理条件: 通常の1段熱処理…750℃×1時間 本発明の2段熱処理 第1段目…500℃×1時間 第2段目…750℃×1時間 第9図から、本発明の2段熱処理を施すことにより、
ロール周速度にほとんど依存せず、高い(BH)maxを示
すことが判る。
Heat treatment conditions: Normal one-stage heat treatment: 750 ° C. × 1 hour Two-stage heat treatment of the present invention First stage: 500 ° C. × 1 hour Second stage: 750 ° C. × 1 hour From FIG. By performing heat treatment,
It can be seen that it shows a high (BH) max almost independent of the roll peripheral speed.

急冷速度は、ロール周速度、アルゴンガス等の不活性
ガス圧等の諸条件で変化しやすく、再現性に難があった
のが、本発明によりこのような不都合を解消でき、安定
した高特性の品質を得ることが可能となった。
The quenching speed is easily changed by various conditions such as the roll peripheral speed and the pressure of an inert gas such as an argon gas, and the reproducibility is difficult. Quality can be obtained.

実施例6 Nd10Fe75B10W5なる組成を有する液体急冷合金を実施
例1と同様の手順で作製し、真空中で、第1表に示す種
々の条件にて熱処理を施した。
Example 6 A liquid quenched alloy having a composition of Nd 10 Fe 75 B 10 W 5 was prepared in the same procedure as in Example 1, and heat-treated in vacuum under various conditions shown in Table 1.

第1表に、通常の1段熱処理を施した場合と、各種条
件の2段熱処理を施した場合の(BH)maxの比較結果を
示す。
Table 1 shows a comparison result of (BH) max between the case where the normal one-step heat treatment was performed and the case where the two-step heat treatment under various conditions was performed.

第1表より、第1段目が300〜800℃、第2段目が600
〜1000℃、さらに第2段目が第1段目より高いもの(N
o.1,3,5,7,9)でなければ効果がないことが明らかとな
り、本発明がこの範囲に限定されることがわかる。
From Table 1, the first stage is 300-800 ℃, the second stage is 600
~ 1000 ℃, and the second stage is higher than the first stage (N
o.1, 3, 5, 7, 9), it is clear that there is no effect, and it can be seen that the present invention is limited to this range.

《発明の効果》 以上詳述したように、本発明に係る希土類永久磁石の
製造方法によれば、R−Fe(Co)−B系組成にW元素を
適量添加することにより、希土類元素Rの含有量が少な
い(12%未満の)領域でも、希土類元素の多い場合と遜
色ない高い保磁力iHcが得られ、低コスト化を図ること
ができる。
<< Effects of the Invention >> As described in detail above, according to the method for manufacturing a rare earth permanent magnet according to the present invention, by adding an appropriate amount of the W element to the R-Fe (Co) -B-based composition, Even in a region where the content is small (less than 12%), a high coercive force iHc comparable to the case where the content of rare earth elements is large can be obtained, and cost reduction can be achieved.

そして、本発明に係る希土類永久磁石の製造方法で
は、このような材料について特定条件の2段熱処理を施
すことにより、最大エネルギー積(BH)maxが向上し、
実用上優れた永久磁石を得ることができる。
In the method for manufacturing a rare earth permanent magnet according to the present invention, the maximum energy product (BH) max is improved by subjecting such a material to a two-stage heat treatment under specific conditions.
A practically excellent permanent magnet can be obtained.

さらに、本発明に係る希土類永久磁石の製造方法によ
り、磁気特性が急冷速度にほとんど依存しなくなる為、
再現性が良く、安定した高磁気特性の永久磁石を得るこ
とが可能である。
Furthermore, by the method for manufacturing a rare earth permanent magnet according to the present invention, since the magnetic properties hardly depend on the quenching rate,
It is possible to obtain a permanent magnet with good reproducibility and stable high magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第9図は本発明の実施例の結果を示すグラフで
ある。
1 to 9 are graphs showing the results of the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 保敏 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 昭64−703(JP,A) 特開 昭64−7502(JP,A) 特開 昭60−165702(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasutoshi Mizuno 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-64-703 (JP, A) Japanese Patent Laid-Open No. 64-7502 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Rx(Fe1-wCow100-x-y-zBYWZ(但し、R
はYを包含する希土類元素の1種以上で、6≦x≦16、
2≦y≦25、0<z≦12、0≦w≦1)なる液体急冷合
金を、第1段熱処理として300〜800℃の等温で行い、次
いで第2段熱処理として600〜1000℃でかつ第1段熱処
理より高温の等温で行うことを特徴とする希土類永久磁
石の製造方法。
[Claim 1] R x (Fe 1-w Co w ) 100-xyz B Y W Z (where R
Is one or more rare earth elements including Y, 6 ≦ x ≦ 16,
A liquid quenched alloy of 2 ≦ y ≦ 25, 0 <z ≦ 12, 0 ≦ w ≦ 1) is performed at 300-800 ° C. as a first-stage heat treatment, and then at 600-1000 ° C. as a second-stage heat treatment. A method for producing a rare earth permanent magnet, which is performed at an isothermal temperature higher than the first stage heat treatment.
JP2215923A 1990-08-17 1990-08-17 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP2580067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215923A JP2580067B2 (en) 1990-08-17 1990-08-17 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215923A JP2580067B2 (en) 1990-08-17 1990-08-17 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH0499816A JPH0499816A (en) 1992-03-31
JP2580067B2 true JP2580067B2 (en) 1997-02-12

Family

ID=16680501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215923A Expired - Lifetime JP2580067B2 (en) 1990-08-17 1990-08-17 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2580067B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201102A (en) * 2006-01-25 2007-08-09 Neomax Co Ltd Iron group rare-earth permanent magnet and manufacturing method therefor
JP2019186331A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Method for manufacturing neodymium-iron-boron based magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165702A (en) * 1984-02-08 1985-08-28 Hitachi Metals Ltd Manufacture of permanent magnet
JP2727506B2 (en) * 1986-04-15 1998-03-11 ティーディーケイ株式会社 Permanent magnet and manufacturing method thereof
JP2727505B2 (en) * 1986-04-15 1998-03-11 ティーディーケイ株式会社 Permanent magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0499816A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JPH0216368B2 (en)
EP1105889A1 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2001323343A (en) Alloy for high performance rare earth parmanent magnet and its production method
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JPH10163056A (en) Manufacture of magnet
US5135584A (en) Permanent magnet powders
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JP3801456B2 (en) Iron-based rare earth permanent magnet alloy and method for producing the same
JP2753432B2 (en) Sintered permanent magnet
JPH0831385B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH1171646A (en) Speaker
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JP3720489B2 (en) Method for producing iron-based alloy for fine crystal permanent magnet
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JP3777225B2 (en) Isotropic permanent magnet powder having high magnetic flux density and method for producing the same
JP4670179B2 (en) Permanent magnet having a plurality of ferromagnetic phases and method for producing the same
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JP2580066B2 (en) Anisotropic permanent magnet