JPH01168844A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH01168844A
JPH01168844A JP62327821A JP32782187A JPH01168844A JP H01168844 A JPH01168844 A JP H01168844A JP 62327821 A JP62327821 A JP 62327821A JP 32782187 A JP32782187 A JP 32782187A JP H01168844 A JPH01168844 A JP H01168844A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
rare earth
earth elements
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327821A
Other languages
Japanese (ja)
Inventor
Noriyuki Inoue
宣幸 井上
Katsumi Takahashi
勝美 高橋
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP62327821A priority Critical patent/JPH01168844A/en
Publication of JPH01168844A publication Critical patent/JPH01168844A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet material having a Br value higher than conventional one by substituting C for B in an Nd-Fe-B-type magnet which is constituted of relatively rich in amount, mainly composed of rare earth elements and containing Fe and Co as principal components and also is composed mainly of B. CONSTITUTION:A molten alloy having a composition represented by a general formula R(Fe1-X-YCoXMY)Z (where R means rare earth elements, M means C or one or >=2 elements selected from Al, Ga, Ge, Bi, P, and B composed principally of C, and the symbols X, Y, and Z stand for 0-0.6, 0.04-0.15, and 6-10, respectively) is sprayed onto a rotating roll and cooled rapidly so as to be formed into an amorphous ribbon state and then heated and recrystallized, by which the permanent magnet material excellent in magnetic properties can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はNd−Fe系永久磁石材料の合金組成に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy composition of a Nd-Fe permanent magnet material.

[従来の技術] Hd−Fe−B系材料を基本成分とする永久磁石が近年
工業化され、従来の5s−Co系材料を中心とする永久
磁石材料とともに今後の発展が予想されている。
[Prior Art] Permanent magnets whose basic components are Hd-Fe-B-based materials have been industrialized in recent years, and future development is expected along with permanent magnet materials centered on conventional 5s-Co-based materials.

これまでに公開された技術背景は、製法的には5s−C
o系永久磁石の製造方法をそのまま利用する焼結法と、
ロール急冷等による非晶質物質を再結晶化し、それを原
料粉とする樹脂結合永久磁石またはその原料粉を再びホ
ットプレス。
The technical background disclosed so far is that the manufacturing method is 5s-C.
A sintering method that uses the manufacturing method of o-based permanent magnets as is;
The amorphous material is recrystallized by quenching with rolls, etc., and then the resin-bonded permanent magnet or its raw material powder is hot-pressed again.

熱間圧延もしくはダイアップセット法により緻密化、磁
気異方性化する方法等があり、磁気特性的にも最大エネ
ルギー積で5〜458GOeまでカバーできる実用材料
となってきた。
There are methods of densification and magnetic anisotropy by hot rolling or die-up setting, and it has become a practical material that can cover a maximum energy product of 5 to 458 GOe in terms of magnetic properties.

[発明が解決しようとする問題点] 従来の上記永久磁石材料は希土類−鉄以外の第三元素と
してBを添加することにより、正方晶R2F814B化
合物を中心とする強磁性相を構成したもので、実際には
R2Fe14B相よりR−リッチ側に組成を調合し、上
記R2Fe14B相を希土類もしくはBF2度の高い境
界相で分離させることによって、高保磁力を誘起した機
構からなっている。したがってさらに高い飽和磁束密度
材料を得るには、Rおよび811度の高い境界相を少な
くしなければならないが、これは保磁力の劣化を伴うた
め、結果として強磁性相を希釈することになり、さらに
高いBr@−得るには限界があった。
[Problems to be Solved by the Invention] The above-mentioned conventional permanent magnet material constitutes a ferromagnetic phase centered on a tetragonal R2F814B compound by adding B as a third element other than rare earth-iron. In reality, the composition is more R-rich than the R2Fe14B phase, and the R2Fe14B phase is separated by a rare earth or boundary phase with a high BF2 degree, thereby inducing a high coercive force. Therefore, in order to obtain an even higher saturation magnetic flux density material, the boundary phase with high R and 811 degrees must be reduced, but this is accompanied by a deterioration of the coercive force, resulting in dilution of the ferromagnetic phase. There was a limit to obtaining even higher Br@-.

[問題点を解決するための手段] 本発明は、従来組成よりも高いBrを保有する永久磁石
材料を提供せんとするものである。すなわち一般式R(
Fe1−x−y CoxMy) 2において、Rは希土
類元素9MはCもしくはCを主体とするA#、Ga、G
e、Bi、p、Si、3から選択された1種もしくは2
種以上の元素との混合物からなり、0≦X≦0.6,0
.04≦y≦0.15.6≦Z≦10の組成範囲で規定
されるとき具現化できる。これまでの公知技術ではCを
包合する材料はなく、遷移金属と希土類元素の比が従来
のNd−Fe−B系ではz −5〜6.5の領域に入っ
ていたのに対し、Bに置き換えてCを使用するとき、l
値が6≦Z≦10の遷移金属の濃度が高い側において実
用に供する保磁力を維持することを見い出した。
[Means for Solving the Problems] The present invention aims to provide a permanent magnet material having a higher Br content than conventional compositions. That is, the general formula R (
Fe1-x-y CoxMy) 2, R is a rare earth element 9M is C or C-based A#, Ga, G
One or two selected from e, Bi, p, Si, 3
Consisting of a mixture of more than one species, 0≦X≦0.6,0
.. This can be realized when the composition range is defined as 04≦y≦0.15.6≦Z≦10. Until now, there is no material that encapsulates C in the known technology, and while the ratio of transition metal to rare earth element was in the range of z -5 to 6.5 in the conventional Nd-Fe-B system, B When using C instead of l
It has been found that a practically usable coercive force is maintained on the side where the concentration of transition metal is high, where the value is 6≦Z≦10.

すなわちCを主体としたR−Fe−Co−C合金におい
ては、非磁性である境界相が相対的に減少しても強磁性
相の磁気モーメントを安定化でき、その結果強磁性相が
増加したために飽和磁化の増加が確認され、その磁気特
性を生かした磁石動作点の高い(B/H>1)応用分野
、たとえば円筒型マイクロモーター、ステッピングモー
ターなどにおいて、新規な工業材料として有望である。
In other words, in the R-Fe-Co-C alloy mainly composed of C, the magnetic moment of the ferromagnetic phase can be stabilized even if the non-magnetic boundary phase is relatively reduced, and as a result, the ferromagnetic phase increases. An increase in saturation magnetization has been confirmed, and it is promising as a new industrial material in application fields where the magnet operating point is high (B/H > 1), such as cylindrical micromotors and stepping motors, making use of its magnetic properties.

本発明の成分限定理由はそれぞれ磁気特性および工業生
産性から制限される。COのFe置換量は広範囲な成分
が可能であるが、永久磁石材料のキュリー温度を高め強
磁性相を室温で安定化させる意味においてCo1J換は
効果的であるが、合金の飽和磁化を低下させる作用およ
び保磁力劣化作用を示すので、Feに対する置換量は0
≦X≦0.6の範囲に規定される。C量はy<0.04
では安定な強磁性相が維持できなくなり、実用上要求さ
れる保磁力が発生せず、y> 0.15では飽和磁化の
減少を伴う。次に希土類と遷移金属類との比率2はz<
6においても保磁力は得られるが飽和磁化の劣化を引き
起こし、z〉10においては保磁性が期待できなくなる
ことにより、6≦2≦10の組成に限定される。
The components of the present invention are limited due to magnetic properties and industrial productivity. Although a wide range of Fe substitution amounts are possible for CO, Co1J substitution is effective in increasing the Curie temperature of the permanent magnet material and stabilizing the ferromagnetic phase at room temperature, but it lowers the saturation magnetization of the alloy. The amount of substitution for Fe is 0 because it shows the effect of coercive force deterioration.
It is defined in the range of ≦X≦0.6. The amount of C is y<0.04
If y>0.15, a stable ferromagnetic phase cannot be maintained and the coercive force required for practical use is not generated, and saturation magnetization decreases when y>0.15. Next, the ratio 2 of rare earths and transition metals is z<
Although a coercive force can be obtained even with Z6, the saturation magnetization deteriorates, and coercivity cannot be expected at Z>10, so the composition is limited to 6≦2≦10.

[実施例]     〜 第1表は本発明の実施例を示す永久磁石材料の組成式で
あり、試料l1cL1〜11の各組成に秤吊第1表 し、Ar中でアーク溶解しインゴットを得た。次にイン
ゴットを小片(30o)とり、第2図に示すように、底
部に1φのキャピラリのある石英坩堝中に入れ、真空に
排気後Ar気流を送り、高周波溶解用の励起コイル内に
石英坩堝を挿入し十分高温に溶融した後、坩堝上部から
i、sat+iの圧力でA「を導入し、溶融体を底部キ
ャピラリから噴射させて、石英坩堝下部の回転ロールに
て急冷することにより、11種類の非晶質リボンを作成
した。次にそれぞれのリボンを第2表の熱処理条件によ
り再結晶化させ、その磁気特性を振動磁力計によって計
測した。
[Example] - Table 1 shows the composition formulas of permanent magnet materials showing examples of the present invention. Each composition of samples 11cL1 to 11 was weighed and arc melted in Ar to obtain ingots. Next, take a small piece (30o) of the ingot and place it in a quartz crucible with a 1φ capillary at the bottom as shown in Figure 2. After evacuation to a vacuum, Ar airflow is sent to the quartz crucible in an excitation coil for high frequency melting. was inserted and melted at a sufficiently high temperature, A' was introduced from the top of the crucible at a pressure of i, sat + i, the molten material was injected from the bottom capillary, and quenched by the rotating rolls at the bottom of the quartz crucible, 11 types were produced. Next, each ribbon was recrystallized under the heat treatment conditions shown in Table 2, and its magnetic properties were measured using a vibrating magnetometer.

第2表に磁気特性データも示す。第2表に示されるよう
に、本発明による組成合金が高い飽和磁化(20にOe
の磁場における磁化の強さ)を保有すること、および実
用永久磁石材料として必要なだけの固有保磁力を有して
いることが確認できる。
Table 2 also shows magnetic property data. As shown in Table 2, the composition alloy according to the present invention has a high saturation magnetization (20 Oe
It can be confirmed that the material has a strong magnetization strength in a magnetic field of

本発明の組成永久磁石材料の製造方法は、ロール急冷等
の急冷、凝固、再結晶方法だけではな(多様な方法が可
能であり、最適な条件に調整することにより、^性能永
久磁石材料を製造することは容易にできる。たとえば第
3図に示すように”0.80V0.2 [F2O,56
C00,38C0105M0.02B  ]  組成合
金を高周波溶融後、底面側0.01 6.5 から凝固するように水冷銅鋳型中にA# 203製リン
グ(10φX20φ、高さ15履)を置き、その内側空
間に溶湯を流し込み鋳造すると、底面から上部へ成長す
る一方向性柱状晶凝固体が得られる。この凝固体を80
0℃、72時間熱処理を施すと、柱状晶の成長方向に対
して直角面内に放射状の異方性を有し、第1図に示すよ
うに固有保磁力3〜5にOeの鋳造磁石が得られた。
The method for producing the composition permanent magnet material of the present invention is not limited to quenching, solidification, and recrystallization methods such as roll quenching (various methods are possible, and by adjusting the optimum conditions, the performance permanent magnet material can be obtained. It is easy to manufacture. For example, as shown in Figure 3, "0.80V0.2 [F2O,56
C00,38C0105M0.02B] After high-frequency melting of the composition alloy, a ring made of A# 203 (10 φ x 20 φ, height 15 shoes) was placed in a water-cooled copper mold so that it solidified from the bottom side, and the inner space was When a molten metal is poured into and cast, a unidirectional columnar solidified body that grows from the bottom to the top is obtained. 80% of this coagulation
When heat treated at 0°C for 72 hours, the cast magnet has radial anisotropy in a plane perpendicular to the growth direction of the columnar crystals, and has an intrinsic coercive force of 3 to 5 Oe, as shown in Figure 1. Obtained.

さらにこうして得られた鋳造体を砕いて樹脂結合型永久
磁石材料とすることも容易である。
Furthermore, it is easy to crush the cast body thus obtained to obtain a resin-bonded permanent magnet material.

また鋳造体を従来の5l−Co系永久磁石と同様な方法
によって粗粉砕、微粉砕、磁場配向、圧縮成長、焼結1
時効工程を経て永久磁石を製造することも可能である。
In addition, the cast body was subjected to coarse pulverization, fine pulverization, magnetic field orientation, compression growth, and sintering in the same manner as conventional 5L-Co permanent magnets.
It is also possible to manufacture permanent magnets through an aging process.

[発明の効果] 以上本発明の組成合金は軽希土類を中心とし、Fe、 
Coを主成分とする比較的豊富な元素から構成され、か
つ最近の8を中心とするNd−Fe−B系磁石に対して
、BをCに置換した新規な組成合金からなる永久磁石材
料を提供するものであり、電子部品、産業機器分野にお
いて多様な応用分野に利用できる。
[Effects of the Invention] As described above, the composition alloy of the present invention mainly contains light rare earth elements, Fe,
In contrast to the recent Nd-Fe-B magnets, which are composed of relatively abundant elements with Co as the main component, and which mainly consist of 8, we have developed a permanent magnet material made of a new compositional alloy in which B is replaced with C. It can be used in a variety of application fields in the fields of electronic components and industrial equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の永久磁石材料の減磁曲線。 A:柱状晶の成長方向に対して直角方向B:柱状晶の成
長方向に対して平行方向第2図は本発明の材料を作るた
めの製造装置の概略図。 第3図は本発明の材料を作るための製造装置の概略図。 特許出願人 並木精密宝石株式会社 第  1  図
FIG. 1 shows a demagnetization curve of the permanent magnet material of the present invention. A: Direction perpendicular to the growth direction of columnar crystals B: Parallel to the growth direction of columnar crystals FIG. 2 is a schematic diagram of a manufacturing apparatus for producing the material of the present invention. FIG. 3 is a schematic diagram of a manufacturing apparatus for manufacturing the material of the present invention. Patent applicant Namiki Precision Jewel Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】  一般式R(Fe_1_−_x_−_yCo_xM_y
)_zにおいて、Rは希土類元素、MはCもしくはCを
主体とするAl,Ga,Ge,Bi,P,Si,Bから
選択された1種もしくは2種以上の元素との混合物から
なり、0≦x≦0.6 0.04≦y≦0.15 6≦z≦10 なる組成範囲に限定される永久磁石材料。
[Claims] General formula R(Fe_1_-_x_-_yCo_xM_y
)_z, R is a rare earth element, M is C or a mixture of C with one or more elements selected from Al, Ga, Ge, Bi, P, Si, and B, and 0 A permanent magnet material whose composition is limited to the following composition ranges: ≦x≦0.6, 0.04≦y≦0.15, 6≦z≦10.
JP62327821A 1987-12-24 1987-12-24 Permanent magnet material Pending JPH01168844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327821A JPH01168844A (en) 1987-12-24 1987-12-24 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327821A JPH01168844A (en) 1987-12-24 1987-12-24 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPH01168844A true JPH01168844A (en) 1989-07-04

Family

ID=18203354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327821A Pending JPH01168844A (en) 1987-12-24 1987-12-24 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH01168844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339222A (en) * 1989-07-06 1991-02-20 Ricoh Co Ltd Injection molding device
JPH0382744A (en) * 1989-08-25 1991-04-08 Dowa Mining Co Ltd Permanent magnet alloy excellent in oxidation resistance
JPH04268052A (en) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339222A (en) * 1989-07-06 1991-02-20 Ricoh Co Ltd Injection molding device
JPH0382744A (en) * 1989-08-25 1991-04-08 Dowa Mining Co Ltd Permanent magnet alloy excellent in oxidation resistance
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP0414645B2 (en) 1989-08-25 2003-01-02 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP0571002B2 (en) 1989-08-25 2003-01-02 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JPH04268052A (en) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability

Similar Documents

Publication Publication Date Title
JPH01175205A (en) Rare earth permanent magnet
EP0029071B1 (en) Process for producing permanent magnet alloy
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JPH01168844A (en) Permanent magnet material
JPS61195954A (en) Permanent magnet alloy
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
KR20210076311A (en) MAGNETIC SUBSTANCES BASED ON Mn-Bi-Sb AND FABRICATION METHOD THEREOF
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPH0521216A (en) Permanent magnet alloy and its production
JPH02259038A (en) Rare earth magnetic alloy
KR970008708B1 (en) Ferrite - rare earth compounds magnet and production thereof
KR890004866B1 (en) Amorphous alloy for audio head
JPS61245505A (en) Manufacture of rare-earth iron magnet
KR970009409B1 (en) Permanent magnet material processing method
JP2746111B2 (en) Alloy for permanent magnet
JPH0533095A (en) Permanent magnet alloy and its production
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS62158852A (en) Permanent magnet material
KR970005750B1 (en) Permanent magnet material &amp; producing method
JPS55154706A (en) Manufacture of rare earth element and cobalt material for permanent magnet
JPH023205A (en) Manufacture of permanent magnet
JPH01298703A (en) Rare earth permanent magnet
JPH04137501A (en) Rare earth-iron-boron sintered magnet