JPS63146379A - Positive resistane-temperature coefficient heater - Google Patents

Positive resistane-temperature coefficient heater

Info

Publication number
JPS63146379A
JPS63146379A JP29290986A JP29290986A JPS63146379A JP S63146379 A JPS63146379 A JP S63146379A JP 29290986 A JP29290986 A JP 29290986A JP 29290986 A JP29290986 A JP 29290986A JP S63146379 A JPS63146379 A JP S63146379A
Authority
JP
Japan
Prior art keywords
temperature coefficient
resistor
heating element
positive
resistance temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29290986A
Other languages
Japanese (ja)
Other versions
JPH07107870B2 (en
Inventor
誠之 寺門
和典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61292909A priority Critical patent/JPH07107870B2/en
Publication of JPS63146379A publication Critical patent/JPS63146379A/en
Publication of JPH07107870B2 publication Critical patent/JPH07107870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房器具や一般加熱器具に用いられる正抵抗
温度係数を有する発熱体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heating element having a positive temperature coefficient of resistance for use in heating appliances and general heating appliances.

従来の技術 ポリエチレン、エチレン酢酸ビニル共重合体、アイオノ
マー、ポリプロピレン、ポリフッ化ビニリデン等の結晶
性重合体に、カーボンブラック等の導電性微粉末を分散
した組成物は、その融点近傍において、結晶部分が無定
形化するさいの急激な物性変化によって抵抗値が急激に
増大することが知られている。そして、その特性を応用
して、所定の温度に達すると電力が急激に低下し、温度
の暴走を発熱体自身が防止すると共に、熱負荷の変動に
応じて、温度を一定に保つ方向に電力が自動的に制御さ
れる、いわゆる自己制御発熱体としての検討がなされて
きた。
Prior Art A composition in which conductive fine powder such as carbon black is dispersed in a crystalline polymer such as polyethylene, ethylene vinyl acetate copolymer, ionomer, polypropylene, polyvinylidene fluoride, etc., has a crystalline portion near its melting point. It is known that the resistance value increases rapidly due to rapid changes in physical properties when the material becomes amorphous. By applying this characteristic, the power decreases rapidly when a predetermined temperature is reached, and the heating element itself prevents the temperature from running out of control.In addition, the heating element itself prevents the temperature from running out of control. Studies have been carried out as a so-called self-control heating element in which the heating element is automatically controlled.

第4図は、特公昭66−40161号公報に代表される
、従来技術に基づく正抵抗温度係数発熱体の例を示すも
のであり、図において1は電気絶縁性と熱伝導性に優れ
たセラミック基板であり、2a及び2bは電極である。
Figure 4 shows an example of a positive resistance temperature coefficient heating element based on the prior art, as typified by Japanese Patent Publication No. 66-40161. In the figure, 1 is a ceramic material with excellent electrical insulation and thermal conductivity. It is a substrate, and 2a and 2b are electrodes.

そして、3は結晶性重合体とカーボンブラックを主成分
とする正抵抗温度係数抵抗体である。一般に、セラミッ
ク系の焼結体は電気絶縁体でありながら極めて良好な熱
伝導特性を示すため、正抵抗温度係数抵抗体のほぼ全面
において一様な温度分布を維持する能力が高く、それに
伴って、正常な抵抗値分布と電位分布による安定な発熱
状態を保持する事が可能であり、高出力の正抵抗温度係
数発熱体を構成する場合に非常に有利であった。−例を
示すと、熱伝導率が291caL/mh’cと極めて優
れているアルミナ焼結体を用いた場合には、1W/cd
を越える電力密度も可能であった。しかし、大面積の発
熱体や、長尺の発熱体を構成する場合には、アルミナ焼
結体等のセラミック系の材料は製造技術的にも、強度的
にも実用に供し得るものではなかった。そこで、セラミ
ック系の基板材料に代わるものとして、特公昭57−4
3995号公報あるいは、第5図に示したような電気絶
縁フィルム4と金属均熱板5かも成る複合材料基板が用
いられてきたが、樹脂の熱伝導率はセラミックに比べて
約2桁程低く、複合材料の熱伝導率がセラミックを上回
ることはなかった。したがって、これらの発熱体の電力
密度は0 、3W/c−が上限であった。その結果、多
くの用途において、発熱体の出力が不充分であるか、も
しくは発熱体の装架面積が必要以上に大きくなり、誘導
による漏れ電流が危険な水準に達したり、材料コストが
代替え手段を大幅に上回ったりして、用途が極めて限定
されていた。
3 is a positive resistance temperature coefficient resistor whose main components are a crystalline polymer and carbon black. In general, ceramic sintered bodies are electrical insulators but exhibit extremely good thermal conductivity, so they have a high ability to maintain a uniform temperature distribution over almost the entire surface of a positive resistance temperature coefficient resistor. , it is possible to maintain a stable heat generation state due to normal resistance value distribution and potential distribution, which is very advantageous when constructing a high output positive resistance temperature coefficient heating element. - For example, when using an alumina sintered body with an extremely excellent thermal conductivity of 291caL/mh'c, 1W/cd
Power densities exceeding . However, when constructing a large-area heating element or a long heating element, ceramic materials such as alumina sintered bodies were not practical in terms of manufacturing technology or strength. . Therefore, as an alternative to ceramic substrate materials,
3995, or a composite material substrate consisting of an electrically insulating film 4 and a metal heat-uniforming plate 5 as shown in Fig. 5 has been used, but the thermal conductivity of resin is about two orders of magnitude lower than that of ceramic. , the thermal conductivity of composite materials did not exceed that of ceramics. Therefore, the upper limit of the power density of these heating elements was 0.3 W/c-. As a result, in many applications, the power output of the heating element is insufficient or the mounting area of the heating element is larger than necessary, the induced leakage current reaches dangerous levels, or the material costs are too high to replace alternatives. However, its use was extremely limited.

そこで、正抵抗温度係数発熱体の構造に着目して、特開
昭60−28195号公報や第6図に示すように、一対
の電極2a、2b間の距離を互いに接近させることによ
り、基板の均熱効果に依存しないで、抵抗体3自身の熱
の拡散能力を大幅に高める方法が検討されるようになり
、応用範囲の広い、高出力の正抵抗温度係数発熱体を実
現する道が開かれた。
Therefore, focusing on the structure of the positive resistance temperature coefficient heating element, as shown in Japanese Patent Application Laid-Open No. 60-28195 and FIG. A method to significantly increase the heat dispersion ability of the resistor 3 itself without relying on the heat-uniforming effect has begun to be investigated, paving the way to realizing a high-output positive resistance temperature coefficient heating element with a wide range of applications. It was written.

発明が解決しようとする問題点 第6図に示したような正抵抗温度係数発熱体は、高出力
を発生するだめの構造としては非常に優れていたが、カ
ーボンブラック系正抵抗温度係数抵抗体の耐電圧破壊特
性や、必要とされる体積固有抵抗値の領域を考慮すると
、解決しなければならない課題が山積していた。まず、
電極間隔が非常に接近した正抵抗温度係数発熱体を構成
するためには耐電圧破壊特性に優れたカーボンブラック
を選定するだけでなく、充分な抵抗温度特性を得ること
によって、正抵抗温度特性のピーク抵抗値を越えて暴走
することのないように配慮することが非常に重要な課題
となった。また、体積固有抵抗値も従来の100〜10
2Ωαに対して、105〜105bの半導体領域が必要
となり、抵抗温度特性が結晶性重合体の融点のみによっ
て制御されるだけではなく、より低温域の線膨張係数に
よると思われる不安定な成分をよシ多く含むようになっ
た。その結果、室温における抵抗値とピーク抵抗値との
比が4〜6桁となるような材料組成を選択すると、室温
における抵抗値と安定温度域における抵抗値との比が不
必要に高まり、大電力を要する機器においては突入電力
が許容値を大幅に上まわって、電流ブレーカが誤作動す
る可能性が非常に高まり、この方式による正抵抗温度係
数発熱体の応用範囲が限定されていた。
Problems to be Solved by the Invention The positive resistance temperature coefficient heating element shown in Fig. 6 was extremely excellent as a structure for generating high output, but the carbon black positive resistance temperature coefficient heating element Considering the withstand voltage breakdown characteristics and the required volume resistivity range, there were many issues that needed to be solved. first,
In order to construct a positive resistance temperature coefficient heating element with very close electrode spacing, it is necessary not only to select carbon black with excellent voltage breakdown characteristics, but also to obtain sufficient resistance temperature characteristics. It became a very important issue to take care not to exceed the peak resistance value and go out of control. In addition, the volume resistivity value is 100 to 10
For 2Ωα, a semiconductor region of 105 to 105b is required, and the resistance-temperature characteristics are not only controlled by the melting point of the crystalline polymer, but also the unstable component that is thought to be due to the linear expansion coefficient in the lower temperature range. Now it includes a lot of things. As a result, if we select a material composition that has a ratio of resistance value at room temperature to peak resistance value of 4 to 6 digits, the ratio between resistance value at room temperature and resistance value in the stable temperature range will increase unnecessarily, resulting in a large In devices that require electric power, the inrush power greatly exceeds the allowable value, greatly increasing the possibility that the current breaker will malfunction, limiting the range of applications of this type of positive resistance temperature coefficient heating element.

本発明は上記問題点に鑑み、高出力化を達成するととも
に電流が安定する正抵抗温度係数発熱体を提供するもの
でおる。
In view of the above problems, the present invention provides a positive resistance temperature coefficient heating element that achieves high output and stabilizes the current.

問題点を解決するための手段 本発明は、上記問題点を解決するため、結晶性重合体中
に導電性微粉末を分散してなる正抵抗温度係数を有する
組成物を主成分とする薄肉シート状抵抗体層からなる抵
抗体と、前記抵抗体の対向する面に設けられた一対の電
極体層と、前記抵抗体もしくは前記電極体に対して薄肉
電気絶縁物を介して密着して設けられた固定抵抗体と、
充電部全体を絶縁被覆する外装材とから成り、前記一対
の電極体の間に構成される正抵抗温度係数抵抗体と前記
固定抵抗体との間を電気的に直列に結線してなる構成で
ある。
Means for Solving the Problems In order to solve the above problems, the present invention provides a thin sheet mainly composed of a composition having a positive temperature coefficient of resistance, which is made by dispersing conductive fine powder in a crystalline polymer. A resistor consisting of a shaped resistor layer, a pair of electrode layers provided on opposing surfaces of the resistor, and a pair of electrode layers provided in close contact with the resistor or the electrode through a thin electrical insulator. fixed resistor,
and an exterior material that insulates the entire live part, and has a configuration in which a positive resistance temperature coefficient resistor configured between the pair of electrode bodies and the fixed resistor are electrically connected in series. be.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、常温抵抗値が10’〜1o5Ωαの非常に不
安定な領域にある抵抗体は、結晶性重合体の融点の近傍
において顕著な正抵抗温度係数を示すだけでなく、より
低温域においても正抵抗温度係数を示す傾向にある。こ
のような抵抗体を薄肉シート状に成形して、それぞれの
対抗する面に一対の電極を設けることによって構成され
る発熱体は、常温の抵抗値に比べ、安定温度域の抵抗値
が非常に大きくなる傾向があるが、抵抗体の電極間方向
の熱の移動が非常に容易な構造であるために、常温の抵
抗値を相当低めに設定しても安定に発熱することが可能
である。したがって、この発熱体は突入電力の大きな、
速熱性に優れた正抵抗温度係数発熱体として機能するこ
とができる。この正抵抗温度係数発熱体と電気的に絶縁
されると共に熱的に結合する位置関係に設けられた固定
抵抗体は、正抵抗温度係数発熱体と直列に結線されてい
るために、不必要に大きな突入電力を制限すると共に、
熱を正抵抗温度係数発熱体に伝え、固定抵抗体の温度が
異常に昇温するのを防止する作用がある。
In other words, a resistor whose room-temperature resistance value is in the extremely unstable region of 10' to 1o5Ωα not only exhibits a significant positive temperature coefficient of resistance near the melting point of the crystalline polymer, but also exhibits a positive temperature coefficient even at lower temperatures. It tends to exhibit a temperature coefficient of resistance. A heating element constructed by forming such a resistor into a thin sheet and providing a pair of electrodes on each opposing surface has a resistance value in a stable temperature range that is much higher than that at room temperature. Although it tends to increase in size, since the structure allows heat to move in the direction between the electrodes of the resistor very easily, it is possible to stably generate heat even if the resistance value at room temperature is set to a fairly low value. Therefore, this heating element has a large inrush power.
It can function as a positive resistance temperature coefficient heating element with excellent rapid heating properties. The fixed resistor, which is installed in a position that is electrically insulated and thermally coupled to the positive resistance temperature coefficient heating element, is unnecessary because it is connected in series with the positive resistance temperature coefficient heating element. In addition to limiting large inrush power,
It has the effect of transmitting heat to the positive resistance temperature coefficient heating element and preventing the temperature of the fixed resistor from rising abnormally.

実施例 以下、実施例を添付図面にもとづいて説明する。Example Hereinafter, embodiments will be described based on the accompanying drawings.

第1図において、6は厚さ1WIIIの正抵抗温度係数
抵抗体で、7.8は正抵抗温度係数抵抗体6に接合され
た一対の金属板電極である。9は正抵抗温度係数抵抗体
6の下面を外装絶縁するポリエステルフィルムである。
In FIG. 1, 6 is a positive resistance temperature coefficient resistor having a thickness of 1WIII, and 7.8 is a pair of metal plate electrodes joined to the positive resistance temperature coefficient resistor 6. 9 is a polyester film that externally insulates the lower surface of the positive resistance temperature coefficient resistor 6.

そして10は同じく上面を外装絶縁するポリエステルフ
ィルムである。サラに、ポリエステルフィルム1oには
、粘着剤層11を介して、アルミ箔エツチングヒータ1
2が設けられ、金属板電極8に設けられた端子13aと
アルミ箔エツチングヒータの端子14aとは、リード端
子16を介して接続され、端子13b、14bKは電源
に接続されるためのリード線16.17が結線されてい
る。正抵抗温度係数抵抗体6は、低密度ポリエチレンに
サーマルブラックを混練することにより、ピーク抵抗値
と常温抵抗値の比が、6桁を上回る正抵抗温度特性を得
たものを用いた。
10 is a polyester film that also insulates the upper surface. An aluminum foil etching heater 1 is attached to the polyester film 1o through an adhesive layer 11.
The terminal 13a provided on the metal plate electrode 8 and the terminal 14a of the aluminum foil etching heater are connected via a lead terminal 16, and the terminals 13b and 14bK are connected to a lead wire 16 for connecting to a power source. .17 is wired. The positive resistance temperature coefficient resistor 6 used was one that had a positive resistance temperature characteristic in which the ratio of peak resistance value to room temperature resistance value exceeded 6 digits by kneading thermal black into low density polyethylene.

しかし、固有抵抗値が1000備以上と非常に高い為に
、20°Cと安定温度域である80’Cの抵抗値の変化
倍率は15倍を大きく越え、固有抵抗値が100〜1o
2Ω備の場合からは想像もできない値となった。その結
果、安定tesoowのヒータを組み込んだ機器を想定
した場合においては、突入電力が7.5KWとなってし
まい、電流ブレーカが作動する可能性があった。そこで
、アルミ箔エツチングヒータ12の抵抗値を、正抵抗温
度係数発熱体の単位長さ毎に調整する事によシ、20°
Cと80’Cの抵抗値の比を、固有抵抗値が10°〜1
02Ω1の場合とほぼ同一の、3倍になるように設定し
た。
However, because the specific resistance value is extremely high at over 1000°C, the change rate of the resistance value at 20°C and 80'C, which is a stable temperature range, is much more than 15 times, and the specific resistance value is 100 to 1°C.
This value was unimaginable from the case of 2Ω. As a result, assuming a device incorporating a stable tesow heater, the inrush power would be 7.5 KW, and there was a possibility that the current breaker would operate. Therefore, by adjusting the resistance value of the aluminum foil etching heater 12 for each unit length of the positive resistance temperature coefficient heating element,
The ratio of the resistance values of C and 80'C is set to a specific resistance value of 10° to
It was set to be 3 times the same as in the case of 02Ω1.

その結果、このヒータを組み込んだ安定時■Owの機器
においても、突入電力は1.sKW程度となり、実用上
さしつかえない値になった。また、アルミ箔エツチング
ヒータ12の温度は逐次、正抵抗温度係数抵抗体6に伝
達されるような構成になっているために、アルミ箔エツ
チングヒータ12の温度が所定の温度に達すると、正抵
抗温度係数抵抗体6の温度の増大と共に抵抗値が@、*
に増大し、電気的に直列に接続されているアルミ箔エツ
チングヒータ12の電流を自動的に制限するメカニズム
が働くようになっている。したがって、正抵抗温度係数
発熱体としての自己温度制御機能がいささかも損なわれ
ることはない。
As a result, even in a device that incorporates this heater and is stable at ■Ow, the inrush power is 1. The value was approximately sKW, which is a value that is acceptable for practical use. Furthermore, since the temperature of the aluminum foil etching heater 12 is successively transmitted to the positive resistance temperature coefficient resistor 6, when the temperature of the aluminum foil etching heater 12 reaches a predetermined temperature, the positive resistance changes. As the temperature of the temperature coefficient resistor 6 increases, the resistance value @, *
A mechanism is activated to automatically limit the current of the aluminum foil etching heater 12 electrically connected in series. Therefore, the self-temperature control function as a positive resistance temperature coefficient heating element is not impaired in the slightest.

第2図は本発明に基づく第2の実施例を示すものである
。図において、18は厚さ1mmの正抵抗温度係数抵抗
体で、19.20は正抵抗温度係数抵抗体18に接合さ
れた一対の金属板電極である。
FIG. 2 shows a second embodiment based on the present invention. In the figure, 18 is a positive resistance temperature coefficient resistor with a thickness of 1 mm, and 19.20 is a pair of metal plate electrodes joined to the positive resistance temperature coefficient resistor 18.

21は正抵抗温度係数発熱体18の下面を外装絶縁する
ポリエステルフィルムである。そして、ポリエステル芯
糸22の外周にステンレス線材23をズバイラル状に巻
き付け、絶縁被覆材24を施すことによシ構成した固定
抵抗体26を、金属板電極2oに接するが如く配置し、
ステンレス線材23の一端を金属板電極2oの一端に半
田接続した後に、正抵抗温度係数発熱体18の上面全体
をポリエステルフィルム26で外装絶醸したものである
21 is a polyester film that insulates the lower surface of the positive resistance temperature coefficient heating element 18. Then, a fixed resistor 26 constructed by winding a stainless steel wire 23 in a zigzag pattern around the outer circumference of the polyester core yarn 22 and applying an insulating coating 24 is arranged so as to be in contact with the metal plate electrode 2o.
After one end of the stainless steel wire 23 is soldered to one end of the metal plate electrode 2o, the entire upper surface of the positive resistance temperature coefficient heating element 18 is covered with a polyester film 26.

ステンレス線材23を用いた固定抵抗体25は、線径お
よび巻きピッチの調整による抵抗値の可変範囲が広く、
正抵抗温度係数発熱体18の抵抗値や寸法形状の制約を
受けることなく、用途に応じた最適な定数を設定できる
点に特徴がある。また、正抵抗温度係数発熱体18の内
部に配線するさいに、蛇行させたりすることによって、
同一の仕様の固定抵抗体25であっても、抵抗値を変更
できるなど有利な点が多い。しかしながら、高出力の正
抵抗温度係数発熱体18の突入電力を分担するには、固
定抵抗体26単体では余りにも熱容量が小さ過ぎ、温度
の暴走が避けられなかった。そこで、金属板電極2oの
均熱効果に着目し、固定抵抗体26を直接、金属板電極
20に接するように配置した後に、ポリエステルフィル
ム26で絶縁外装すると共に、密着固定することを試み
た結果、固定抵抗体26の温度の暴走を完全に防止でき
ることを確認したものである。金属板電極2oの材質は
特に限定されるものではなく、通常用いられるなかで最
も薄い材質である36μmの電解銅箔でも充分にその効
果がみられ、実用上何ら支障がない。
The fixed resistor 25 using the stainless steel wire 23 has a wide variable range of resistance value by adjusting the wire diameter and winding pitch.
A feature of the present invention is that the optimum constant can be set according to the application without being restricted by the resistance value or size and shape of the positive resistance temperature coefficient heating element 18. Also, when wiring inside the positive resistance temperature coefficient heating element 18, by making it meander,
Even if the fixed resistor 25 has the same specifications, there are many advantages such as being able to change the resistance value. However, the heat capacity of the fixed resistor 26 alone was too small to share the inrush power of the high-output positive resistance temperature coefficient heating element 18, and runaway temperature was unavoidable. Therefore, we focused on the heat-uniforming effect of the metal plate electrode 2o, and after placing the fixed resistor 26 in direct contact with the metal plate electrode 20, we tried to cover it with an insulating exterior with a polyester film 26 and fix it tightly. It has been confirmed that runaway of the temperature of the fixed resistor 26 can be completely prevented. The material of the metal plate electrode 2o is not particularly limited, and even electrolytic copper foil of 36 μm, which is the thinnest material commonly used, is sufficiently effective and causes no practical problems.

第3図に、この発熱体を用いて、安定特電力5ooW、
安定時温度80’Cの放熱パネルを構成した場合の突入
電力特性と温度特性を示した。図において、破線は固定
抵抗体25を用いない場合、一点鎖線は固定抵抗体26
を金属板電極2oに直接接することなく構成した場合で
ある。そして、実線は本発明に基づく場合である。図か
ら明らかなように、実線においては突入電力が7.6K
Wと非常に大きく、スイッチやサーモスタットの接点容
量が問題となる。また、一点鎖線では固定抵抗体25の
ピーク温度が200°Cを越え、構成材料の耐熱温度が
問題となる。一方、実線は昇温特性が若干低下する他、
総合的に判断して特に問題点は見当らず、正抵抗温度係
数発熱体の特長を最大限に生かすことができる。
Figure 3 shows that using this heating element, a stable special power of 5ooW,
The inrush power characteristics and temperature characteristics of a heat dissipation panel configured with a stable temperature of 80'C are shown. In the figure, the broken line indicates the case where the fixed resistor 25 is not used, and the dashed line indicates the fixed resistor 26.
This is a case in which the metal plate electrode 2o is configured without being in direct contact with the metal plate electrode 2o. The solid line is the case based on the present invention. As is clear from the figure, the inrush power is 7.6K in the solid line.
W, which is very large, and the contact capacity of switches and thermostats becomes a problem. Moreover, in the dashed-dotted line, the peak temperature of the fixed resistor 25 exceeds 200°C, and the heat resistance temperature of the constituent materials becomes a problem. On the other hand, the solid line shows a slight decrease in temperature rise characteristics, and
Overall, no particular problems were found, and the features of the positive resistance temperature coefficient heating element can be utilized to the fullest.

発明の効果 以上に述べてきたように、本発明によれば、半導体領域
に近い固有抵抗値を有する正抵抗温度係数抵抗体材料を
、非常に接近した電極間で発熱させることにより高出力
化を達成しようとする場合に、抵抗温度特性の関連で、
突入時に比較して安定時の電力が非常に大きくなる問題
を解決することができる。その結果、これまで、高出力
化正抵抗温度係数発熱体の用途が、突入電力が問題とな
らない小出力機器に限定されていたものを、パネルヒー
タや床暖房機器等の大出力機器用途にも展開が可能とな
った。また、高出力化正抵抗温度係数発熱体は装架率を
低くすることが可能であるために、大型機器を構成した
場合にも、発熱体からの誘導漏れ電流を低減することが
可能であるという特長がある。これまで、この特長を有
効に生かすことができなかったが、本発明によって、そ
の最大の障害が取り除かれた。
Effects of the Invention As described above, according to the present invention, high output can be achieved by generating heat between very close electrodes of a positive resistance temperature coefficient resistor material having a specific resistance value close to that of a semiconductor region. In relation to resistance temperature characteristics, when trying to achieve
It is possible to solve the problem that the power during stability is much larger than during rush. As a result, the application of high-output positive resistance temperature coefficient heating elements, which had previously been limited to small-output devices where inrush power was not a problem, has now been expanded to high-output devices such as panel heaters and floor heating devices. Expansion is now possible. In addition, since high-output positive resistance temperature coefficient heating elements can be installed at a low installation rate, it is possible to reduce induced leakage current from the heating element even when large equipment is configured. It has this feature. Until now, it has not been possible to make effective use of this feature, but the present invention has removed the biggest obstacle.

これらの有効な特長を合わせ持つ、高出力化正抵抗温度
係数発熱体の用途は極めて広く、本発明は実用上非常に
価値のあるものである。
A high-output positive resistance temperature coefficient heating element having both of these effective features has an extremely wide range of uses, and the present invention is of great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すもので、正抵抗温度係
数発熱体の一部を切り出した状態の斜視図、第2図は本
発明の他の一実施例である正抵抗温度係数発熱体の一部
を切り出した状態の斜視図、第3図は第2図に示した正
抵抗温度係数発熱体の突入電力特性と温度特性を従来技
術と比較する特性図、第4図、第5図、第6図は従来技
術に基づく正抵抗温度係数発熱体の斜視図を示すもので
ある。 6・・・・・・正抵抗温度係数抵抗体、13a、13b
・・・・・・端子、7,8・・・・・・金属板電極、1
.a a 、 1ab・・・・・・i子、9.10・・
・山ポリエステルフィルム、16・・・・・・リード端
子、12・・・山アルミ箔エツチングヒータ、16.1
7・・川・リード線。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第3
図 ′?関(外)
Fig. 1 shows one embodiment of the present invention, and is a perspective view of a partially cut out positive resistance temperature coefficient heating element, and Fig. 2 shows a positive resistance temperature coefficient, which is another embodiment of the present invention. FIG. 3 is a perspective view of a partially cut out heating element; FIG. 3 is a characteristic diagram comparing the inrush power characteristics and temperature characteristics of the positive resistance temperature coefficient heating element shown in FIG. 2 with those of the prior art; FIGS. 5 and 6 are perspective views of a positive resistance temperature coefficient heating element based on the prior art. 6...Positive resistance temperature coefficient resistor, 13a, 13b
...Terminal, 7,8...Metal plate electrode, 1
.. a a, 1ab...i child, 9.10...
・Mountain polyester film, 16...Lead terminal, 12...Mountain aluminum foil etching heater, 16.1
7. River lead line. Name of agent: Patent attorney Toshio Nakao Haga 1 person No. 3
figure'? Seki (outside)

Claims (3)

【特許請求の範囲】[Claims] (1)結晶性重合体中に導電性微粉末を分散してなる正
抵抗温度係数を有する組成物を主成分とする薄肉シート
状抵抗体層からなる抵抗体と、前記抵抗体の対向する面
に設けられた一対の電極体層と、前記抵抗体もしくは前
記電極体に対して薄肉電気絶縁物を介して密着して設け
られた固定抵抗体と、充電部全体を絶縁被覆する外装材
とから成り、前記一対の電極体の間に構成される正抵抗
温度係数抵抗体と前記固定抵抗体との間を電気的に直列
に結線してなる正抵抗温度係数発熱体。
(1) A resistor consisting of a thin sheet-like resistor layer whose main component is a composition having a positive temperature coefficient of resistance made by dispersing conductive fine powder in a crystalline polymer, and opposing surfaces of the resistor. a pair of electrode body layers provided on the resistor body, a fixed resistor body provided in close contact with the resistor body or the electrode body through a thin electrical insulator, and an exterior material that insulates and covers the entire live part. A positive resistance temperature coefficient heating element comprising a positive resistance temperature coefficient resistor configured between the pair of electrode bodies and the fixed resistor electrically connected in series.
(2)薄肉シート状抵抗体層の厚みが1mm以下である
特許請求の範囲第1項記載の正抵抗温度係数発熱体。
(2) The positive resistance temperature coefficient heating element according to claim 1, wherein the thickness of the thin sheet-like resistor layer is 1 mm or less.
(3)固定抵抗体が芯材にスパイラル状に巻かれた金属
細線より成り、電極体が金属箔で構成される特許請求の
範囲第1項または第2項記載の正抵抗温度係数発熱体。
(3) A positive resistance temperature coefficient heating element according to claim 1 or 2, wherein the fixed resistor is made of a thin metal wire spirally wound around a core material, and the electrode body is made of metal foil.
JP61292909A 1986-12-09 1986-12-09 Positive resistance temperature coefficient heating element Expired - Lifetime JPH07107870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292909A JPH07107870B2 (en) 1986-12-09 1986-12-09 Positive resistance temperature coefficient heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292909A JPH07107870B2 (en) 1986-12-09 1986-12-09 Positive resistance temperature coefficient heating element

Publications (2)

Publication Number Publication Date
JPS63146379A true JPS63146379A (en) 1988-06-18
JPH07107870B2 JPH07107870B2 (en) 1995-11-15

Family

ID=17787968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292909A Expired - Lifetime JPH07107870B2 (en) 1986-12-09 1986-12-09 Positive resistance temperature coefficient heating element

Country Status (1)

Country Link
JP (1) JPH07107870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165588A (en) * 1988-12-19 1990-06-26 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element and manufacture thereof
JPH04206492A (en) * 1990-11-30 1992-07-28 Matsushita Electric Ind Co Ltd Heating body with positive resistance temperature coefficient
JP2009301796A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Ceramic heater and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176647A (en) * 1974-09-27 1976-07-02 Raychem Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176647A (en) * 1974-09-27 1976-07-02 Raychem Corp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165588A (en) * 1988-12-19 1990-06-26 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element and manufacture thereof
JPH04206492A (en) * 1990-11-30 1992-07-28 Matsushita Electric Ind Co Ltd Heating body with positive resistance temperature coefficient
JP2009301796A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Ceramic heater and its manufacturing method

Also Published As

Publication number Publication date
JPH07107870B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4543474A (en) Layered self-regulating heating article
US4654511A (en) Layered self-regulating heating article
US4177376A (en) Layered self-regulating heating article
US5414403A (en) Current-limiting component
US4246468A (en) Electrical devices containing PTC elements
JPH0461578B2 (en)
JP2024084854A (en) Polymer Positive Temperature Coefficient Body
JPS63146379A (en) Positive resistane-temperature coefficient heater
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JPH04365303A (en) Heating element of positive resistance-temperature coefficient and manufacture thereof
JP2638862B2 (en) Positive low temperature coefficient heating element
JPS6230793Y2 (en)
CN212115714U (en) Constant temperature heating wire body containing PTC thermal sensitive performance
JP3828238B2 (en) Current limiter
CA2224022A1 (en) Self-limiting heaters
JPS63146378A (en) Positive resistane-temperature coefficient heater
JPH07220860A (en) Planar heating element
JPH0684587A (en) Thermosensitive heater
KR940008886B1 (en) Soft starter
JP4724838B2 (en) Current control resistor element
JPH04151460A (en) Air warmer
JP3018586B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH03145920A (en) Semiconductor temperature sensitive element
JPS63307683A (en) Positive-resistance temperature coefficient heating element