JPS63143296A - Electroplating device - Google Patents

Electroplating device

Info

Publication number
JPS63143296A
JPS63143296A JP28987886A JP28987886A JPS63143296A JP S63143296 A JPS63143296 A JP S63143296A JP 28987886 A JP28987886 A JP 28987886A JP 28987886 A JP28987886 A JP 28987886A JP S63143296 A JPS63143296 A JP S63143296A
Authority
JP
Japan
Prior art keywords
current
plated
reference cathode
surface area
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28987886A
Other languages
Japanese (ja)
Inventor
Tatsuya Wada
達也 和田
Hiroshi Hikita
博 曳田
Tetsuo Koriyama
郡山 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28987886A priority Critical patent/JPS63143296A/en
Publication of JPS63143296A publication Critical patent/JPS63143296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To permit automatic regulation of a current density regardless of the surface area of an object to be plated and to automate operations by controlling the current flowing through a reference cathode which exists near the object to be plated, has the same potential as the potential of the object to be plated and has a known surface area to an adequate range. CONSTITUTION:Anodes 3, 3, the reference cathode 4 and the object 5 to be plated are hung into a plating liquid 2 in a plating cell 1. The anodes 3 are connected to the positive electrode of a DC power supply 6 and the reference cathode 4 and the object 5 are respectively electrically connected via a hanging bar 7 to the negative electrode. The reference cathode 4 has the known surface area and the current flowing through the cathode toward the power supply 6 is detected by a detector 8. A computer 10 is inputted with the detected current and outputs a control signal to an output regulator 12 which regulates the output of the power supply 6 to control the current flowing in the reference cathode 4 so that said current is maintained in the adequate range. The current densities of the currents flowing from the power supply 6 to the object 5 and the reference cathode 4 are equal. The adequate current density is, therefore, maintained regardless of the change in the surface area of the object 5.

Description

【発明の詳細な説明】 0)利用分野 この発明は、電気めっき槽内に被めっき物を配置し、該
被めっき物と陽極間に直流電圧を印加することによりめ
っきを行う、電気めっき装置に関する。
Detailed Description of the Invention 0) Field of Application The present invention relates to an electroplating apparatus that performs plating by placing an object to be plated in an electroplating tank and applying a DC voltage between the object to be plated and an anode. .

(0)  従来技術及びこの発明が解決しようとする問
題点 この種の電気めっき装置において、従来、被めっき物の
指定のめっき厚さを確保するため、該被めっき物の表面
積を前もって計算し、単位面積当りの通電量(以下、電
流密度と称する)を加味して被めっき物への全通電量を
決めていた。
(0) Prior art and problems to be solved by the present invention In this type of electroplating apparatus, conventionally, in order to ensure a specified plating thickness of the object to be plated, the surface area of the object to be plated is calculated in advance; The total amount of current applied to the object to be plated was determined by taking into consideration the amount of current applied per unit area (hereinafter referred to as current density).

しかし、前述の電気めっき装置では、被めっき物の表面
積を算出するために手間がかかり、また被めっき物の表
面積がランダムに変化する場合には全通電量及び積算通
電量の設定は人手に顆らざるを得ない問題がある。この
問題は、めっき作業の自動化及び無人化を実現するうえ
で最大の技術的障害となっている。
However, with the above-mentioned electroplating equipment, it takes time and effort to calculate the surface area of the object to be plated, and when the surface area of the object to be plated changes randomly, the total energization amount and the cumulative energization amount must be manually set. There is a problem that cannot be avoided. This problem is the biggest technical obstacle in realizing automation and unmanned plating operations.

この発明は、自動的に被めっき物に必要な全通電量及び
積算通電量を設定できる、電気めっき装置を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electroplating apparatus that can automatically set the total amount of energization and the cumulative amount of energization required for the object to be plated.

Q9  問題点を解決するための手段 この発明は、電気めつき槽内の被めっき物の近傍に配置
された既知の表面積を有する基準陰極、この基準陰極及
び前記波めっき物を同一電位に印加する基準電源、基準
陰極に流れる電流を検出する電流検出器、この電流検出
器が検出しな検出電流を入力信号として積算電流を測定
する手段、前記検出信号を入力信号として前記基準電極
に流れる電流値を制御する電流制御手段を備えて構成さ
れている。
Q9 Means for solving the problem This invention includes a reference cathode having a known surface area placed near the object to be plated in an electroplating tank, and applying the same potential to the reference cathode and the wave-plated object. A reference power source, a current detector that detects the current flowing through the reference cathode, means for measuring an integrated current using the detected current not detected by the current detector as an input signal, and a value of the current flowing through the reference electrode using the detected signal as an input signal. It is configured to include a current control means for controlling the current.

(9作 用 前記直流電源からの被めっき物及び基準陰極へ流れる電
流の電流密度は等しいことに着目し、該基準陰極に流れ
る電流を電流検出器で測定し、この電流が適正電流密度
範囲になるように前記直流電源から流れる電流を制御す
る。このため、被めっき物の表面積の変化にかかわらず
適正な電流密度が保たれ、めっき厚さは基準陰極に流れ
る電流の積算電流を求めることにより測定される。
(9) Focusing on the fact that the current density of the current flowing from the DC power source to the object to be plated and the reference cathode is equal, the current flowing to the reference cathode is measured with a current detector, and this current is within the appropriate current density range. The current flowing from the DC power source is controlled so that the current density is maintained regardless of changes in the surface area of the object to be plated, and the plating thickness is determined by determining the cumulative current flowing through the reference cathode. be measured.

(小)実施例 第1図はこの発明の一実施例を示し、同図において符合
1はめつき槽で、めっき液2で満たされている。めつき
槽1のめっき液2の中には陽極3゜3、基準陰極4及び
被めっき物5が吊下されている。陽極3,3は直流電源
6の正極と電気的に接続され、一方基準陰極4及び竺め
っき物5は吊下棒7を介して夫々直流電源6の負極と電
気的に接続されている。基準陰極4はその表面積が知ら
れており、この基準電極4を通って直流電源6へと向う
電流は電流検出器8により検出される。電流検出器8に
よって検出された検出電流は入力インターフェース9を
介してコンピュータ10に入力される。コンピュータ1
0には演算回路、制御回路、記憶回路等が備えられ、予
め格納されているプログラムを実行する。さらに、コン
ピュータ10は出力インターフェース11を介し、出力
調整器12に制御信号を出力し、直流電源10の出力の
上昇又は下降を行い、基準電!!4を流れる電流が適正
範囲にあるように制御する。
(Small) Embodiment FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a plating tank filled with a plating solution 2. In FIG. In the plating solution 2 of the plating tank 1, an anode 3.3, a reference cathode 4, and an object to be plated 5 are suspended. The anodes 3, 3 are electrically connected to the positive electrode of a DC power source 6, while the reference cathode 4 and the plated material 5 are electrically connected to the negative electrode of the DC power source 6 via a hanging rod 7, respectively. The reference cathode 4 has a known surface area, and the current flowing through the reference electrode 4 to the DC power supply 6 is detected by a current detector 8 . The detected current detected by the current detector 8 is input to the computer 10 via the input interface 9. computer 1
0 is equipped with an arithmetic circuit, a control circuit, a memory circuit, etc., and executes a program stored in advance. Furthermore, the computer 10 outputs a control signal to the output regulator 12 via the output interface 11 to raise or lower the output of the DC power supply 10, and to adjust the reference voltage to the reference voltage. ! The current flowing through 4 is controlled so that it is within an appropriate range.

次に、上述の装置の動作について説明する。直流電源6
の正極から陽極3,3を介して流れる電流工は基準電!
4を流れる電流i。と被めっき物5を流れる11とに分
割され、そして再び吊下棒7を介し合流して負極へと流
れる。表面積が既知の基準電!!4を流れる電流i。を
制御することは被めっき物への電流密度を制御すること
と等価である。
Next, the operation of the above-mentioned device will be explained. DC power supply 6
The electric current flowing from the positive electrode of the anode through the anodes 3 and 3 is the reference voltage!
The current i flowing through 4. and 11 that flow through the object to be plated 5, and then merge again via the hanging rod 7 and flow to the negative electrode. Reference voltage with known surface area! ! The current i flowing through 4. Controlling is equivalent to controlling the current density to the object to be plated.

第2図は前記電流i。の検出電流がコンピュータに入力
されている間に実行されるフローチャートを示している
。第2図において、検出電流が入力するとステップS1
が実行され、この検出電流に基づいて前記電流i。の測
定(演算)が演算回路において行なわれる6次0でステ
ップS2に移り、測定された電流i。の値と測定間隔時
間Tが乗算されて、積算電流値Σ1o−Tが算出される
FIG. 2 shows the current i. 2 shows a flowchart that is executed while the detected current of is being input to the computer. In FIG. 2, when the detected current is input, step S1
is executed, and the current i is determined based on this detected current. The process moves to step S2 at the 6th order 0, where the measurement (calculation) of the current i is performed in the calculation circuit, and the measured current i. is multiplied by the measurement interval time T to calculate the integrated current value Σ1o-T.

次にステップS3に移り、前記i。の積算電流値が設定
積算電流値Sに達したか否かの判断が実行され、Yes
と判断されると被めっきP!IJ5が指定のめつき厚さ
になったと判断され、コンピュータ10から出力インタ
ーフェース11を介し、出力調整器12へ制御信号を出
力し、直流電源6の出力を停止する。
Next, the process moves to step S3, and the step i. A determination is made as to whether or not the cumulative current value has reached the set cumulative current value S, and the result is Yes.
If it is determined that P is plated! It is determined that the IJ 5 has reached the specified plating thickness, and the computer 10 outputs a control signal to the output regulator 12 via the output interface 11 to stop the output of the DC power supply 6.

ステップ3においてNoと判断された場合には被めっき
物5が指定の厚さに達していないからめっき動作が継続
されてステップS4に移る。ステップS において、電
流i。の測定値とi。の設定上限電流値1Mとが比較さ
れ、ioが18以上(i ≦1 )と判断されるとステ
ップS5にO 移る。ステップS5で、コンピューター0からインター
フェース11を介し出力調整器12へ制御信号が出力さ
れ、直流電源6の出力を下降する、電流下降パターンが
実行され、この後ステップS1に戻る。
If it is determined No in step 3, the plating operation is continued and the process moves to step S4 since the object to be plated 5 has not reached the specified thickness. In step S, the current i. The measured value of i. is compared with the set upper limit current value 1M, and if it is determined that io is 18 or more (i≦1), the process moves to step S5. In step S5, a control signal is output from the computer 0 to the output regulator 12 via the interface 11, and a current lowering pattern is executed to lower the output of the DC power supply 6, after which the process returns to step S1.

ステップS においてioがiH以下と判断されな場合
はi。は設定上限電流値の基準を満足しているからステ
ップS に移る。ステップS6において電流i の測定
値と1゜の設定下限電流値1 とが比較され、ILがi
。以上(IL≧io)し と判断されるとステップS7に移る。ステップS7にお
いて、出力調整器12へ制御信号が出力されて直流電源
6の出力を上昇する、電流上昇パターンが実行され、こ
の後ステップ$1に戻る。
If io is not determined to be less than or equal to iH in step S, then i. satisfies the criteria for the set upper limit current value, so the process moves to step S. In step S6, the measured value of current i and the set lower limit current value 1 of 1° are compared, and IL is
. If it is determined that the above (IL≧io) is satisfied, the process moves to step S7. In step S7, a control signal is output to the output regulator 12 to increase the output of the DC power supply 6, so that a current increase pattern is executed, and then the process returns to step $1.

ステップS においてioが11以上と判断されな場合
には現在測定された電流l。は設定適正範囲にあると判
断され、次にステップ$1に戻り次回の測定を行う。
If io is not determined to be 11 or more in step S, the currently measured current l. is determined to be within the appropriate setting range, and then returns to step $1 to perform the next measurement.

しかして、ステップ81〜S7が実行される結果、基準
陰極4を流れる電流は適正範囲に維持され、この結果波
めっき物5の電流密度も適正値に制御されるから、被め
っき物5の表面積の如何にかかわらず指定のめつき厚を
形成できる。
As a result of executing steps 81 to S7, the current flowing through the reference cathode 4 is maintained within an appropriate range, and as a result, the current density of the wave-plated object 5 is also controlled to an appropriate value, so that the surface area of the object 5 to be plated is A specified plating thickness can be formed regardless of the

(へ)効 果 この発明は被めっき物の表面積の変化と無関係にめっき
に必要な電流密度を適正範囲に自動的に調整できるから
、被めっき物の表面積算出の手間を省くことができ、ま
た、被めっき物の全通電量及び積算通電量を人手によっ
て設定する面倒を省け、作業の自動化、無人化を推進す
ることができる。
(F) Effects This invention can automatically adjust the current density required for plating to an appropriate range regardless of changes in the surface area of the object to be plated, so it can save the trouble of calculating the surface area of the object to be plated, and This eliminates the trouble of manually setting the total energization amount and the cumulative energization amount of the object to be plated, and promotes automation and unmanned work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すシステム構成図、第
2図はこの発明の詳細な説明するフローチャートである
。 1・・・めつき槽      4・・・基準陰極5・・
・被めっき物     6・・・直流電源8・・・電流
検出器     10・・・コンピュータ12・・・出
力調整器
FIG. 1 is a system configuration diagram showing an embodiment of the present invention, and FIG. 2 is a flow chart explaining the invention in detail. 1... Plating tank 4... Reference cathode 5...
・Object to be plated 6...DC power supply 8...Current detector 10...Computer 12...Output regulator

Claims (1)

【特許請求の範囲】 電気めっき槽内の被めっき物の近傍に配置された既知の
表面積を有する基準陰極と、 前記基準陰極及び前記被めっき物を同一電位に印加する
直流電源と、 前記基準陰極に流れる電流を検出する電流検出器と、 前記電流検出器が検出した検出電流を入力信号として積
算電流を測定する手段と、 前記検出信号を入力信号として前記基準陰極に流れる電
流値を制御する電流制御手段と、 を備えてなる、電気めっき装置。
[Scope of Claims] A reference cathode having a known surface area and arranged near the object to be plated in an electroplating bath; a DC power source that applies the same potential to the reference cathode and the object to be plated; and the reference cathode. a current detector for detecting a current flowing through the reference cathode; a means for measuring an integrated current using the detected current detected by the current detector as an input signal; and a current controlling the current value flowing through the reference cathode using the detected signal as an input signal. An electroplating device comprising: a control means;
JP28987886A 1986-12-05 1986-12-05 Electroplating device Pending JPS63143296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28987886A JPS63143296A (en) 1986-12-05 1986-12-05 Electroplating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28987886A JPS63143296A (en) 1986-12-05 1986-12-05 Electroplating device

Publications (1)

Publication Number Publication Date
JPS63143296A true JPS63143296A (en) 1988-06-15

Family

ID=17748939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28987886A Pending JPS63143296A (en) 1986-12-05 1986-12-05 Electroplating device

Country Status (1)

Country Link
JP (1) JPS63143296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131398A (en) * 1990-09-20 1992-05-06 Mitsubishi Electric Corp Plating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131398A (en) * 1990-09-20 1992-05-06 Mitsubishi Electric Corp Plating device

Similar Documents

Publication Publication Date Title
CA1166187A (en) Method for determining current efficiency in galvanic baths
US3551318A (en) Automatic control apparatus for silver recovery
JPS63143296A (en) Electroplating device
US5451298A (en) Method and device for the electrolytic recovery of silver in two film processing machines
US4045309A (en) Method for measuring and control of the energy in aluminum reduction cells
Masterson et al. Fluidized bed electrowinning of copper; experiments using 150 ampere and 1,000 ampere cells and some mathematical modeling
US4362608A (en) Silver recovery method
US3121053A (en) Analytical electroplating apparatus
US3380897A (en) Method of determining ore concentration
SU717158A1 (en) Method of electrolyte composition automatic control and device for its implementation
JPS6372899A (en) Electrolytic treatment
Popov et al. Some aspects of current density distribution in electrolytic cells I: Dendritic growth of cadmium at the cathode edge in galvanostatic electrodeposition
JPS61182568A (en) Method for measuring local current in electrolytic cell
SU798199A1 (en) Method of measuring part area in galvanic process
JPS6020762B2 (en) How to adjust cathode current density in electroplating equipment
SU1137117A1 (en) Thyristor current supply source for electrical iron cladding
JPH0544099A (en) Power unit for electroplating
JPS6372898A (en) Electrolytic treatment
JP2018072166A (en) Electrolytic plating solution analyzer and electrolytic plating solution analysis method
JPH04131398A (en) Plating device
JPS631399B2 (en)
Smeltzer et al. Current Distribution in a Parallel‐Plate Reactor: A Comparison of Steady and Sinusoidal Cell‐Voltage Control
SU487956A1 (en) The method of controlling the thermal regime of an aluminum electrolyzer by the electrolyte temperature
JPH05195296A (en) Automatic controlling device for electrolytic solution
SU206676A1 (en) DEVICE FOR AUTOMATIC REGULATION OF CATHODE CURRENT DENSITY IN GALVANIC BATH