JP2018072166A - Electrolytic plating solution analyzer and electrolytic plating solution analysis method - Google Patents

Electrolytic plating solution analyzer and electrolytic plating solution analysis method Download PDF

Info

Publication number
JP2018072166A
JP2018072166A JP2016212404A JP2016212404A JP2018072166A JP 2018072166 A JP2018072166 A JP 2018072166A JP 2016212404 A JP2016212404 A JP 2016212404A JP 2016212404 A JP2016212404 A JP 2016212404A JP 2018072166 A JP2018072166 A JP 2018072166A
Authority
JP
Japan
Prior art keywords
electrode
potential
plating solution
electrolytic plating
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016212404A
Other languages
Japanese (ja)
Inventor
直人 中山
Naoto Nakayama
直人 中山
義章 中川
Yoshiaki Nakagawa
義章 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2016212404A priority Critical patent/JP2018072166A/en
Publication of JP2018072166A publication Critical patent/JP2018072166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To exclude the effect of unevenness in the oxidation state of a working electrode and precisely analyze the state of an electrolytic plating solution.SOLUTION: Provided is an electrolytic plating solution analyzer constituted so as to be capable of executing a measurement process for measuring the current value of a current flowing between a counter electrode and a working electrode brought into contact with an electrolytic plating solution to be analyzed while controlling the potential of the working electrode relative to a reference electrode brought into contact with the electrolytic plating solution, and including a processing unit for executing an electrode surface adjustment process to adjust the electrode surface of the working electrode to a state suitable for the measurement process, a measured value acquisition process to execute the measurement process and acquire a measured value, and an analysis process to analyze the state of the electrolytic plating solution on the basis of the acquired measured value. In the electrode surface adjustment process, the processing unit executes a film formation process for controlling the potential of the working electrode relative to the reference electrode at a first potential (a potential within a range R1: a potential V1 as an example) with which an oxide film is formed on the electrode surface of the working electrode and forming the oxide film on the electrode surface.SELECTED DRAWING: Figure 2

Description

本発明は、電解メッキ液の状態を分析する電解メッキ液分析装置および電解メッキ液分析方法に関するものである。   The present invention relates to an electrolytic plating solution analyzer and an electrolytic plating solution analysis method for analyzing the state of an electrolytic plating solution.

例えば、下記の特許文献には、電解メッキ液に対する有機浴添加剤(光沢剤やレベラー等)の添加量を決定するための電解メッキ液の分析方法、およびそのような分析を実施するための装置が開示されている。この分析方法では、分析用の測定値を得るための測定処理に先立ち、作用電極を洗浄する洗浄工程、および作用電極の電極面を整えるコンディショニング工程をこの順で実行する。   For example, the following patent document describes an electrolytic plating solution analysis method for determining the amount of an organic bath additive (brightener, leveler, etc.) added to an electrolytic plating solution, and an apparatus for performing such an analysis. Is disclosed. In this analysis method, prior to a measurement process for obtaining a measurement value for analysis, a cleaning process for cleaning the working electrode and a conditioning process for preparing the electrode surface of the working electrode are executed in this order.

具体的には、洗浄工程では、一例として、参照電極、作用電極および対向電極を洗浄用液(硝酸等の酸性溶液)に浸す。次いで、参照電極に対する作用電極の電位(以下、単に「電極電位」ともいう)を陽極電位(電解メッキ液中の金属イオンが作用電極の電極面に析出しない電位)に制御する(「電気化学的洗浄プロセス」の実行)。これにより、作用電極の電極面に付着している異物が洗浄用液と反応して電極面から異物が除去される。   Specifically, in the cleaning step, as an example, the reference electrode, the working electrode, and the counter electrode are immersed in a cleaning solution (an acidic solution such as nitric acid). Next, the potential of the working electrode with respect to the reference electrode (hereinafter, also simply referred to as “electrode potential”) is controlled to the anode potential (potential at which metal ions in the electrolytic plating solution do not precipitate on the electrode surface of the working electrode) (“electrochemical Execution of "cleaning process"). Thereby, the foreign material adhering to the electrode surface of the working electrode reacts with the cleaning liquid to remove the foreign material from the electrode surface.

また、コンディショニング工程では、一例として、各電極をコンディショニング用液(有機添加剤を含まず、かつ分析対象の電解メッキ液の無機成分と同じ成分を含む液)に浸す。次いで、電極電位を一定時間に亘って陽極電位に制御する第1工程、電極電位を陰極電位(電解メッキ液中の金属イオンが作用電極の電極面に析出する電位)において掃引する第2工程(陰極掃引)、および電極電位を陽極電位において掃引する第3工程(陽極掃引)をこの順で実行する。これにより、作用電極の電極面にコンディショニング用液中の金属イオンが析出して電極面に金属膜が形成された後に除去されて、作用電極での電気化学反応(電解メッキ液中の金属の析出、および析出した金属の電解メッキ液への溶出)の再現性が良好な状態となる。   In the conditioning step, as an example, each electrode is immersed in a conditioning solution (a solution that does not include an organic additive and includes the same component as the inorganic component of the electrolytic plating solution to be analyzed). Next, a first step of controlling the electrode potential to the anode potential over a predetermined time, and a second step of sweeping the electrode potential at the cathode potential (potential at which metal ions in the electrolytic plating solution are deposited on the electrode surface of the working electrode) ( (Cathode sweep) and a third step (anode sweep) of sweeping the electrode potential at the anode potential are performed in this order. As a result, the metal ions in the conditioning liquid are deposited on the electrode surface of the working electrode and are removed after the metal film is formed on the electrode surface, so that the electrochemical reaction at the working electrode (deposition of the metal in the electrolytic plating solution). , And elution of the deposited metal into the electroplating solution).

この後、予め規定された手順に従い、上記の各電極を使用した測定処理が実行される。   Thereafter, the measurement process using each of the electrodes is performed according to a predetermined procedure.

特開2004−323971号公報(第7−14頁、第1−3図)JP 2004-323971 A (Pages 7-14, Fig. 1-3)

上記したように、上記の特許文献に開示の分析方法・分析装置では、作用電極の電極面に測定処理を妨げる異物が存在せず、かつ測定処理時における作用電極での電気化学反応の再現性が良好な状態となるように、洗浄工程およびコンディショニング工程を測定処理に先立ってこの順で実行している。この場合、上記特許文献にも記載されているように、コンディショニング工程に先立って実行する洗浄工程において作用電極を洗浄用液(酸性溶液)に浸したときには、作用電極の電極面に金属酸化物等が生じた状態となる。また、不使用時における各電極の保管状態が良好ではなかったときには、洗浄工程の開始以前に、作用電極の電極面が酸化した状態となっていることもある。   As described above, in the analysis method / analyzer disclosed in the above patent document, there is no foreign matter that interferes with the measurement process on the electrode surface of the working electrode, and the reproducibility of the electrochemical reaction at the working electrode during the measurement process. The cleaning process and the conditioning process are performed in this order prior to the measurement process so that the condition is good. In this case, as described in the above-mentioned patent document, when the working electrode is immersed in a cleaning solution (acidic solution) in the cleaning step performed prior to the conditioning step, a metal oxide or the like is formed on the electrode surface of the working electrode. Will occur. Further, when the storage state of each electrode when not in use is not good, the electrode surface of the working electrode may be in an oxidized state before the start of the cleaning process.

このため、上記特許文献に開示の分析方法・分析装置では、電極面に金属酸化物が生じたり、電極面自体が酸化したりした状態でコンディショニング工程が実行されることにより、金属酸化物や酸化した電極面を覆うようにしてコンディショニング用液中の金属イオンが析出させられることとなる。この場合、洗浄工程において生じる金属酸化物の量およびその範囲(電極面上における位置)や、保管状態に起因して電極面が酸化する度合いおよびその範囲(電極面上における位置)など(以下、「酸化状態」ともいう)は、分析作業を行う都度相違する。   For this reason, in the analysis method / analyzer disclosed in the above-mentioned patent document, the metal oxide or oxidation is performed by performing the conditioning process in a state where a metal oxide is generated on the electrode surface or the electrode surface itself is oxidized. The metal ions in the conditioning solution are deposited so as to cover the electrode surface. In this case, the amount of metal oxide generated in the cleaning process and its range (position on the electrode surface), the degree of oxidation of the electrode surface due to the storage state and its range (position on the electrode surface), etc. (hereinafter, The “oxidation state”) is different each time an analysis operation is performed.

したがって、上記特許文献に開示の分析方法・分析装置では、コンディショニング工程の開始時点における作用電極(電極面)の酸化状態が分析作業の都度相違することに起因して、コンディショニング工程時の金属イオンの析出の状態、およびその除去の状態が相違する状態となる。このため、作用電極が良好にコンディショニングされていない状態で測定処理が開始されることがあり、これに起因して電解メッキ液の状態を的確に分析するのが困難となるおそれがある。また、仮に作用電極のコンディショニングを良好に実施することができたとしても、コンディショニングの完了時点における作用電極の酸化状態が分析作業の都度相違する状態となり、これに起因して電解メッキ液の状態を的確に分析するのが困難となるおそれもある。   Therefore, in the analysis method / analyzer disclosed in the above-mentioned patent document, the oxidation state of the working electrode (electrode surface) at the start of the conditioning process is different every time the analysis work is performed. The precipitation state and the removal state are different. For this reason, the measurement process may be started in a state where the working electrode is not well conditioned, which may make it difficult to accurately analyze the state of the electrolytic plating solution. Even if the working electrode can be well conditioned, the oxidation state of the working electrode at the completion of the conditioning will be different every time the analysis work is performed. It may be difficult to analyze accurately.

本発明は、かかる問題点に鑑みてなされたものであり、作用電極の酸化状態のばらつきの影響を排除して電解メッキ液の状態を的確に分析し得る電解メッキ液分析装置および電解メッキ液分析方法を提供することを主目的とする。   The present invention has been made in view of such problems, and an electrolytic plating solution analysis apparatus and an electrolytic plating solution analysis that can accurately analyze the state of an electrolytic plating solution by eliminating the influence of variations in the oxidation state of the working electrode. The main purpose is to provide a method.

上記目的を達成すべく請求項1記載の電解メッキ液分析装置は、分析対象の電解メッキ液に接触させられた参照電極に対する作用電極の電位を制御しつつ当該電解メッキ液に接触させられた対向電極および当該作用電極の間を流れる電流の電流値を測定する測定処理を実行可能に構成されると共に、前記作用電極の電極面を前記測定処理に適した状態に調整する電極面調整処理、前記測定処理を実行して測定値を取得する測定値取得処理、および取得した当該測定値に基づいて前記電解メッキ液の状態を分析する分析処理を実行する処理部を備えた電解メッキ液分析装置であって、前記処理部は、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に酸化被膜が形成される第1の電位に制御して当該電極面に当該酸化被膜を形成する被膜形成処理を実行する。   In order to achieve the above object, the electrolytic plating solution analyzer according to claim 1 is a counter electrode which is brought into contact with the electrolytic plating solution while controlling the potential of the working electrode with respect to the reference electrode brought into contact with the electrolytic plating solution to be analyzed. An electrode surface adjustment process configured to execute a measurement process for measuring a current value of a current flowing between the electrode and the working electrode, and adjusting an electrode surface of the working electrode to a state suitable for the measurement process, A measurement value acquisition process for executing a measurement process to acquire a measurement value, and an electrolytic plating solution analyzer including a processing unit for executing an analysis process for analyzing the state of the electrolytic plating solution based on the acquired measurement value In the electrode surface adjustment process, the processing unit controls the potential of the working electrode with respect to the reference electrode to a first potential at which an oxide film is formed on the electrode surface of the working electrode. Te executes a film formation process for forming the oxide film on the electrode surface.

また、請求項2記載の電解メッキ液分析装置は、請求項1記載の電解メッキ液分析装置において、前記処理部は、前記電極面調整処理に先立ち、前記作用電極の前記電極面に前記電解メッキ液中の金属が析出せず、かつ当該電解メッキ液の電気分解による酸素が発生しない電位範囲内で前記参照電極に対する当該作用電極の電位を変化させつつ前記対向電極および当該作用電極の間を流れる電流の電流値を測定し、測定した当該電流値に基づいて前記第1の電位を決定する第1の電位決定処理を実行する。   Moreover, the electrolytic plating solution analyzer according to claim 2 is the electrolytic plating solution analyzer according to claim 1, wherein the processing unit is configured to apply the electrolytic plating to the electrode surface of the working electrode prior to the electrode surface adjustment processing. It flows between the counter electrode and the working electrode while changing the potential of the working electrode with respect to the reference electrode within a potential range in which no metal in the liquid is deposited and oxygen is not generated by electrolysis of the electrolytic plating solution. A current value of a current is measured, and a first potential determination process for determining the first potential based on the measured current value is executed.

また、請求項3記載の電解メッキ液分析装置は、請求項1または2記載の電解メッキ液分析装置において、前記処理部は、前記電極面調整処理において、前記被膜形成処理を実行した後に、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に形成されている前記酸化被膜が還元される第2の電位に制御して当該酸化被膜を還元する被膜還元処理を実行する。   Moreover, the electrolytic plating solution analyzer according to claim 3 is the electrolytic plating solution analyzer according to claim 1 or 2, wherein the processing unit performs the film formation process in the electrode surface adjustment process, A film reduction process for reducing the oxide film is performed by controlling the potential of the working electrode with respect to the reference electrode to a second potential at which the oxide film formed on the electrode surface of the working electrode is reduced.

また、請求項4記載の電解メッキ液分析装置は、請求項3記載の電解メッキ液分析装置において、前記処理部は、前記電極面調整処理に先立ち、前記作用電極の前記電極面に前記電解メッキ液中の金属が析出せず、かつ当該電解メッキ液の電気分解による酸素が発生しない電位範囲内で前記参照電極に対する当該作用電極の電位を変化させつつ前記対向電極および当該作用電極の間を流れる電流の電流値を測定し、測定した当該電流値に基づいて前記第2の電位を決定する第2の電位決定処理を実行する。   In addition, the electrolytic plating solution analyzer according to claim 4 is the electrolytic plating solution analyzer according to claim 3, wherein the processing unit is configured to apply the electrolytic plating to the electrode surface of the working electrode prior to the electrode surface adjustment processing. It flows between the counter electrode and the working electrode while changing the potential of the working electrode with respect to the reference electrode within a potential range in which no metal in the liquid is deposited and oxygen is not generated by electrolysis of the electrolytic plating solution. A current value of a current is measured, and a second potential determination process for determining the second potential based on the measured current value is executed.

なお、請求項2,4記載の電解メッキ液分析装置の発明における「電解メッキ液の電気分解による酸素が発生しない」との状態には、電気分解によって極く少量の酸素が発生するものの、その発生量が視認可能な大きさの気泡となる量ではない状態、すなわち、実質的には酸素が発生していない状態が含まれる。   In addition, in the invention of the electrolytic plating solution analyzer according to claims 2 and 4, in the state of “no oxygen is generated by electrolysis of the electrolytic plating solution”, a very small amount of oxygen is generated by the electrolysis, A state where the amount of generation is not an amount of bubbles that are visible is included, that is, a state where oxygen is not substantially generated.

また、請求項5記載の電解メッキ液分析装置は、請求項1から4のいずれかに記載の電解メッキ液分析装置において、前記処理部は、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を前記電解メッキ液の電気分解による酸素が発生する第3の電位に制御して、発生した酸素によって当該作用電極の電極面をクリーニングする。   Further, the electrolytic plating solution analyzer according to claim 5 is the electrolytic plating solution analyzer according to any one of claims 1 to 4, wherein the processing unit performs the operation on the reference electrode in the electrode surface adjustment processing. The electrode potential is controlled to a third potential at which oxygen is generated by electrolysis of the electrolytic plating solution, and the electrode surface of the working electrode is cleaned with the generated oxygen.

また、請求項6記載の電解メッキ液分析方法は、分析対象の電解メッキ液に接触させた参照電極に対する作用電極の電位を制御しつつ当該電解メッキ液に接触させた対向電極および当該作用電極の間を流れる電流の電流値を測定する測定処理に適した状態に当該作用電極の電極面を調整する電極面調整処理、前記測定処理を実行して測定値を取得する測定値取得処理、および取得した当該測定値に基づいて前記電解メッキ液の状態を分析する分析処理を実行する電解メッキ液分析方法であって、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に酸化被膜が形成される第1の電位に制御して当該電極面に当該酸化被膜を形成する被膜形成処理を実行する。   The method of analyzing an electroplating solution according to claim 6 is characterized in that the counter electrode and the working electrode brought into contact with the electrolytic plating solution are controlled while controlling the potential of the working electrode with respect to the reference electrode brought into contact with the electrolytic plating solution to be analyzed. An electrode surface adjustment process for adjusting the electrode surface of the working electrode to a state suitable for a measurement process for measuring a current value of a current flowing between them, a measurement value acquisition process for acquiring a measurement value by executing the measurement process, and an acquisition An electrolytic plating solution analysis method for performing an analysis process for analyzing the state of the electrolytic plating solution based on the measured value, wherein the potential of the working electrode with respect to the reference electrode is set to the working electrode in the electrode surface adjustment processing. A film forming process for forming the oxide film on the electrode surface is performed by controlling the first potential at which the oxide film is formed on the electrode surface.

また、請求項7記載の電解メッキ液分析方法は、請求項6記載の電解メッキ液分析方法において、前記電極面調整処理において、前記被膜形成処理を実行した後に、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に形成されている前記酸化被膜が還元される第2の電位に制御して当該酸化被膜を還元する被膜還元処理を実行する。   Further, the electrolytic plating solution analysis method according to claim 7 is the electrolytic plating solution analysis method according to claim 6, wherein after the film formation process is performed in the electrode surface adjustment process, the working electrode with respect to the reference electrode is processed. A film reduction process for reducing the oxide film is performed by controlling the potential to a second potential at which the oxide film formed on the electrode surface of the working electrode is reduced.

また、請求項8記載の電解メッキ液分析方法は、請求項6または7記載の電解メッキ液分析方法において、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を前記電解メッキ液の電気分解による酸素が発生する第3の電位に制御して、発生した酸素によって当該作用電極の電極面をクリーニングする   The electrolytic plating solution analysis method according to claim 8 is the electrolytic plating solution analysis method according to claim 6 or 7, wherein the potential of the working electrode with respect to the reference electrode is set to a value of the electrolytic plating solution in the electrode surface adjustment process. The electrode surface of the working electrode is cleaned with the generated oxygen by controlling to a third potential at which oxygen is generated by electrolysis.

なお、請求項5記載の電解メッキ液分析装置の発明、および請求項8記載の電解メッキ液分析方法の発明における「電解メッキ液の電気分解による酸素が発生する」との状態は、電気分解による酸素の発生量が、視認可能な大きさ気泡となる程度の十分な量となる状態を意味する。   In the invention of the electrolytic plating solution analyzer according to claim 5 and the invention of the electrolytic plating solution analysis method according to claim 8, the state of “oxygen is generated by electrolysis of the electrolytic plating solution” is based on electrolysis. It means a state in which the amount of oxygen generated is a sufficient amount to form bubbles that are visible.

請求項1記載の電解メッキ液分析装置、および請求項6記載の電解メッキ液分析方法では、参照電極に対する作用電極の電位を制御しつつ対向電極および作用電極の間を流れる電流の電流値を測定する測定処理に適した状態に作用電極の電極面を調整する電極面調整処理、測定処理を実行して測定値を取得する測定値取得処理、および取得した測定値に基づいて電解メッキ液の状態を分析する分析処理を実行する際に、電極面調整処理において、参照電極に対する作用電極の電位を作用電極の電極面に酸化被膜が形成される第1の電位に制御して電極面に酸化被膜を形成する被膜形成処理を実行する。   In the electrolytic plating solution analyzing apparatus according to claim 1 and the electrolytic plating solution analyzing method according to claim 6, the current value of the current flowing between the counter electrode and the working electrode is measured while controlling the potential of the working electrode with respect to the reference electrode. An electrode surface adjustment process for adjusting the electrode surface of the working electrode to a state suitable for the measurement process, a measurement value acquisition process for executing the measurement process to acquire a measurement value, and a state of the electrolytic plating solution based on the acquired measurement value In the electrode surface adjustment process, the potential of the working electrode with respect to the reference electrode is controlled to a first potential at which an oxide film is formed on the electrode surface of the working electrode, and the oxide film is formed on the electrode surface. The film formation process which forms is performed.

したがって、請求項1記載の電解メッキ液分析装置、および請求項6記載の電解メッキ液分析方法によれば、被膜形成処理によって作用電極の電極面の全域に亘って酸化皮膜が形成されることで作用電極の酸化状態のばらつきの影響が排除されるため、分析作業を行う都度、その電極面が同様の状態となっている作用電極を使用して測定値取得処理を実行することができる結果、取得した測定値に基づき、電解メッキ液の状態を的確に分析することができる。   Therefore, according to the electrolytic plating solution analyzer of claim 1 and the electrolytic plating solution analysis method of claim 6, an oxide film is formed over the entire electrode surface of the working electrode by the coating formation process. Since the influence of the variation in the oxidation state of the working electrode is eliminated, the measurement value acquisition process can be performed using the working electrode whose electrode surface is in the same state each time analysis work is performed. Based on the acquired measurement value, the state of the electrolytic plating solution can be accurately analyzed.

請求項2記載の電解メッキ液分析装置、およびその電解メッキ液分析方法によれば、電極面調整処理に先立ち、作用電極の電極面に電解メッキ液中の金属が析出せず、かつ電解メッキ液の電気分解による酸素が発生しない電位範囲内で参照電極に対する作用電極の電位を変化させつつ対向電極および作用電極の間を流れる電流の電流値を測定し、測定した電流値に基づいて第1の電位を決定する第1の電位決定処理を実行することにより、電極面調整処理に際して使用する電解メッキ液や、実際に電極面を調整する作用電極の状態に即した第1の電位を実際に取得することで、電極面調整処理(被膜形成処理)に際して作用電極の電極面に酸化皮膜を好適に形成することができる。これにより、作用電極の酸化状態のばらつきの影響を一層好適に排除することができる。   According to the electrolytic plating solution analyzing apparatus and the electrolytic plating solution analyzing method according to claim 2, the metal in the electrolytic plating solution is not deposited on the electrode surface of the working electrode prior to the electrode surface adjustment process, and the electrolytic plating solution The current value of the current flowing between the counter electrode and the working electrode is measured while changing the potential of the working electrode with respect to the reference electrode within a potential range where oxygen is not generated by electrolysis of the first electrode, and the first current is measured based on the measured current value. By executing the first potential determination process for determining the potential, the first potential according to the state of the electrolytic plating solution used for the electrode surface adjustment process and the working electrode for actually adjusting the electrode surface is actually acquired. By doing so, an oxide film can be suitably formed on the electrode surface of the working electrode during the electrode surface adjustment process (film formation process). Thereby, the influence of the dispersion | variation in the oxidation state of a working electrode can be eliminated more suitably.

請求項3記載の電解メッキ液分析装置、および請求項7記載の電解メッキ液分析方法によれば、電極面調整処理において、被膜形成処理を実行した後に、参照電極に対する作用電極の電位を作用電極の電極面に形成されている酸化被膜が還元される第2の電位に制御して酸化被膜を還元する被膜還元処理を実行することにより、被膜還元処理によって作用電極の電極面の全域において酸化皮膜が還元されることで作用電極の酸化状態のばらつきの影響が排除されるため、分析作業を行う都度、その電極面が同様の状態となっている作用電極を使用して測定値取得処理を実行することができる結果、取得した測定値に基づき、電解メッキ液の状態を的確に分析することができる。   According to the electrolytic plating solution analyzing apparatus according to claim 3 and the electrolytic plating solution analyzing method according to claim 7, the potential of the working electrode with respect to the reference electrode is set to the working electrode after the film formation processing is performed in the electrode surface adjustment processing. By performing a film reduction process for reducing the oxide film by controlling to the second potential at which the oxide film formed on the electrode surface is reduced, an oxide film is formed on the entire electrode surface of the working electrode by the film reduction process. Since the effect of the variation in the oxidation state of the working electrode is eliminated by reducing the amount of oxygen, the measurement value acquisition process is performed using a working electrode that has the same electrode surface each time analysis is performed. As a result, the state of the electrolytic plating solution can be accurately analyzed based on the acquired measurement value.

また、作用電極の電極面に酸化被膜が形成された状態で電極面調整処理を終了させた場合、測定値取得処理において取得される測定値が酸化皮膜の存在の影響を受けて、酸化被膜が存在しない状態の作用電極を使用した測定値取得処理の実行時とは異なる値となることがあり、そのような測定値の相違が分析処理の弊害となるときには、酸化皮膜の影響分を考慮して測定値を補正する必要が生じることがあるのに対し、被膜還元処理によって酸化被膜を還元した状態で電極面調整処理を終了させることで、測定値取得処理において酸化皮膜の存在の影響を受けない測定値を取得することができるため、上記のような場合であっても、測定値の補正を行わずに電解メッキ液の状態を分析することができる。   In addition, when the electrode surface adjustment process is terminated with the oxide film formed on the electrode surface of the working electrode, the measurement value acquired in the measurement value acquisition process is affected by the presence of the oxide film, When the measured value acquisition process using a non-existing working electrode is performed, the value may be different, and when such a difference in measured value is detrimental to the analysis process, consider the effect of the oxide film. In some cases, it may be necessary to correct the measured value.However, if the electrode surface adjustment process is terminated with the oxide film reduced by the film reduction process, the measurement value acquisition process is affected by the presence of the oxide film. Since no measured value can be obtained, even in the above case, the state of the electrolytic plating solution can be analyzed without correcting the measured value.

請求項4記載の電解メッキ液分析装置、およびその電解メッキ液分析方法によれば、電極面調整処理に先立ち、作用電極の電極面に電解メッキ液中の金属が析出せず、かつ電解メッキ液の電気分解による酸素が発生しない電位範囲内で参照電極に対する作用電極の電位を変化させつつ対向電極および作用電極の間を流れる電流の電流値を測定し、測定した電流値に基づいて第2の電位を決定する第2の電位決定処理を実行することにより、電極面調整処理に際して使用する電解メッキ液や、実際に電極面を調整する作用電極の状態に即した第2の電位を実際に取得することで、電極面調整処理(被膜還元処理)に際して作用電極の電極面の酸化皮膜を好適に還元することができる。これにより、作用電極の酸化状態のばらつきの影響を一層好適に排除することができる。   According to the electrolytic plating solution analyzing apparatus and the electrolytic plating solution analyzing method according to claim 4, the metal in the electrolytic plating solution is not deposited on the electrode surface of the working electrode prior to the electrode surface adjustment process, and the electrolytic plating solution The current value of the current flowing between the counter electrode and the working electrode is measured while changing the potential of the working electrode with respect to the reference electrode within a potential range where oxygen is not generated by electrolysis of the second electrode, and the second current is measured based on the measured current value. By executing the second potential determination process for determining the potential, the second potential according to the state of the electrolytic plating solution used for the electrode surface adjustment process and the working electrode for actually adjusting the electrode surface is actually acquired. Thus, the oxide film on the electrode surface of the working electrode can be suitably reduced during the electrode surface adjustment process (film reduction process). Thereby, the influence of the dispersion | variation in the oxidation state of a working electrode can be eliminated more suitably.

請求項5記載の電解メッキ液分析装置、および請求項8記載の電解メッキ液分析方法によれば、電極面調整処理において、参照電極に対する作用電極の電位を電解メッキ液の電気分解による酸素が発生する第3の電位に制御して、発生した酸素によって作用電極の電極面をクリーニングすることにより、電極面調整処理の開始時に作用電極の電極面に少量の異物が付着していたとしても、これがクリーニングされた後に被膜形成処理が実行されるため、異物の影響を受けることなく、作用電極の電極面に酸化皮膜を好適に形成することができる。   According to the electrolytic plating solution analysis apparatus according to claim 5 and the electrolytic plating solution analysis method according to claim 8, in the electrode surface adjustment processing, the potential of the working electrode with respect to the reference electrode is generated by the electrolysis of the electrolytic plating solution. Even if a small amount of foreign matter adheres to the electrode surface of the working electrode at the start of the electrode surface adjustment process by controlling the third potential to clean the electrode surface of the working electrode with the generated oxygen, Since the film forming process is performed after the cleaning, an oxide film can be suitably formed on the electrode surface of the working electrode without being affected by foreign matter.

電解メッキ液分析システム1の構成図である。1 is a configuration diagram of an electrolytic plating solution analysis system 1. FIG. 参照電極11に対する作用電極12の電位と、対向電極13および作用電極12の間を流れる電流との関係の一例を示すボルタモグラムである。4 is a voltammogram showing an example of the relationship between the potential of the working electrode 12 with respect to the reference electrode 11 and the current flowing between the counter electrode 13 and the working electrode 12. 電解メッキ液分析システム1(電気化学測定装置2)による各処理時における参照電極11に対する作用電極12の電位の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the electric potential of the working electrode 12 with respect to the reference electrode 11 at the time of each process by the electroplating liquid analysis system 1 (electrochemical measuring device 2). 電解メッキ液分析システム1(電気化学測定装置2)による各処理時における参照電極11に対する作用電極12の電位の他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the electric potential of the working electrode 12 with respect to the reference electrode 11 at the time of each process by the electroplating liquid analysis system 1 (electrochemical measuring apparatus 2). 電解メッキ液分析システム1(電気化学測定装置2)による各処理時における参照電極11に対する作用電極12の電位のさらに他の一例について説明するための説明図である。It is explanatory drawing for demonstrating another example of the electric potential of the working electrode 12 with respect to the reference electrode 11 at the time of each process by the electroplating liquid analysis system 1 (electrochemical measuring device 2).

以下、電解メッキ液分析装置および電解メッキ液分析方法の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of an electrolytic plating solution analyzing apparatus and an electrolytic plating solution analyzing method will be described with reference to the accompanying drawings.

図1に示す電解メッキ液分析システム1は、メッキ液槽X内に貯液されている電解メッキ液(メッキ浴)Xaの状態を「電解メッキ液分析方法」に従って分析可能な「電解メッキ液分析装置」の一例であって、電気化学測定装置2および分析装置3を備えて構成されている。   The electrolytic plating solution analysis system 1 shown in FIG. 1 is an “electrolytic plating solution analysis” that can analyze the state of the electrolytic plating solution (plating bath) Xa stored in the plating solution tank X according to the “electrolytic plating solution analysis method”. It is an example of an “apparatus” and includes an electrochemical measurement device 2 and an analysis device 3.

電気化学測定装置2は、電気化学センサ2aおよび測定装置本体2bを備えている。電気化学センサ2aは、三極測定による電気化学測定処理を実行するためのセンサ装置であって、ケーシング10、参照電極11、作用電極12、対向電極13および信号処理回路基板14を備えている。この場合、この電気化学センサ2aでは、作用電極12が白金電極で構成されている。なお、本明細書では、「電解メッキ液分析装置」および「電解メッキ液分析方法」に関する理解を容易とするために、参照電極11および対向電極13を作用電極12と同じ形状・同じ大きさに図示しているが、実際には、測定対象(電解メッキ液分析システム1による分析対象)の電解メッキ液Xaの種類に応じて、各電極11〜13毎に各種の形状・大きさ・構成の電極が採用される。   The electrochemical measuring device 2 includes an electrochemical sensor 2a and a measuring device main body 2b. The electrochemical sensor 2 a is a sensor device for performing an electrochemical measurement process by triode measurement, and includes a casing 10, a reference electrode 11, a working electrode 12, a counter electrode 13, and a signal processing circuit board 14. In this case, in this electrochemical sensor 2a, the working electrode 12 is composed of a platinum electrode. In this specification, the reference electrode 11 and the counter electrode 13 have the same shape and size as the working electrode 12 in order to facilitate understanding of the “electrolytic plating solution analyzer” and the “electrolytic plating solution analysis method”. Although illustrated, in actuality, various shapes, sizes, and configurations are provided for the respective electrodes 11 to 13 in accordance with the type of the electrolytic plating solution Xa to be measured (the analysis target by the electrolytic plating solution analysis system 1). An electrode is employed.

ケーシング10は、耐薬品性樹脂材料などで形成された容器体であって、各電極11〜13が取り付けられると共に、各電極11〜13に接続された信号処理回路基板14を収容する。信号処理回路基板14は、ポテンショスタットやI/V変換回路などが実装された回路基板であって、信号ケーブル2cを介して測定装置本体2bに接続されている。なお、この信号処理回路基板14については、測定装置本体2b側の構成要素とすることもできる。   The casing 10 is a container body made of a chemical-resistant resin material or the like. The casing 10 is attached with the electrodes 11 to 13 and accommodates the signal processing circuit board 14 connected to the electrodes 11 to 13. The signal processing circuit board 14 is a circuit board on which a potentiostat, an I / V conversion circuit, and the like are mounted, and is connected to the measurement apparatus main body 2b via a signal cable 2c. The signal processing circuit board 14 can also be a component on the measuring apparatus body 2b side.

測定装置本体2bは、操作部21、表示部22、処理部23および記憶部24を備えている。操作部21は、測定条件等の設定操作、各種処理の開始/停止の指示、および測定結果の分析装置3への送信指示などの操作が可能な操作スイッチを備え、これらの操作に応じた操作信号を処理部23に出力する。表示部22は、処理部23の制御下で、処理部23によって演算される電気化学測定処理の測定結果などを表示する。   The measuring apparatus body 2 b includes an operation unit 21, a display unit 22, a processing unit 23, and a storage unit 24. The operation unit 21 includes operation switches that can perform operations such as setting operations for measurement conditions, instructions for starting / stopping various processes, and instructions for transmitting measurement results to the analyzer 3, and operations according to these operations. The signal is output to the processing unit 23. The display unit 22 displays the measurement result of the electrochemical measurement process calculated by the processing unit 23 under the control of the processing unit 23.

処理部23は、電気化学測定装置2を総括的に制御する。具体的には、処理部23は、操作部21からの操作信号に応じて「処理条件取得処理」、「電極面調整処理」および「測定値取得処理(電気化学測定処理)」などを実行する。この場合、処理部23は、「処理条件取得処理」として、後述するように電解メッキ液Xaおよび電気化学センサ2aの組み合わせで電気化学測定処理を実行して、「電極面調整処理」の処理条件を取得する処理を実行する。また、処理部23は、後述するように、「電極面調整処理」として、電気化学センサ2aにおける参照電極11に対する作用電極12の電位(以下、単に「作用電極12の電極電位」ともいう)を制御することで、作用電極12の電極面に酸化被膜を形成した後に還元することにより、作用電極12の電極面を電気化学測定処理に適した状態に調整する処理を実行する。なお、「処理条件取得処理」および「電極面調整処理」については、後に詳細に説明する。   The processing unit 23 comprehensively controls the electrochemical measurement device 2. Specifically, the processing unit 23 executes “processing condition acquisition processing”, “electrode surface adjustment processing”, “measurement value acquisition processing (electrochemical measurement processing)”, and the like according to an operation signal from the operation unit 21. . In this case, the processing unit 23 performs an electrochemical measurement process using a combination of the electrolytic plating solution Xa and the electrochemical sensor 2a as described later, as a “processing condition acquisition process”, thereby processing conditions for the “electrode surface adjustment process”. Execute the process to get. Further, as will be described later, the processing unit 23 performs, as “electrode surface adjustment processing”, a potential of the working electrode 12 with respect to the reference electrode 11 in the electrochemical sensor 2a (hereinafter, also simply referred to as “electrode potential of the working electrode 12”). By controlling, an oxide film is formed on the electrode surface of the working electrode 12 and then reduced, thereby executing a process for adjusting the electrode surface of the working electrode 12 to a state suitable for the electrochemical measurement process. The “processing condition acquisition process” and the “electrode surface adjustment process” will be described in detail later.

さらに、処理部23は、後述するように、「測定値取得処理」として、電気化学センサ2aから出力されたセンサ信号に基づいて測定値を演算し、演算結果(測定値)を記録した測定値データD1を生成して記憶部24に記憶させる処理を実行する。また、処理部23は、操作部21からの操作信号(または、分析装置3からの制御信号)に応じて記憶部24から測定値データD1を読み出して分析装置3に出力する。なお、上記の「測定値取得処理」および分析装置3への測定値データD1の出力については、後に詳細に説明する。   Further, as will be described later, the processing unit 23 calculates a measurement value based on the sensor signal output from the electrochemical sensor 2a as a “measurement value acquisition process” and records the calculation result (measurement value). A process of generating the data D1 and storing it in the storage unit 24 is executed. In addition, the processing unit 23 reads the measurement value data D1 from the storage unit 24 according to an operation signal from the operation unit 21 (or a control signal from the analysis device 3), and outputs it to the analysis device 3. The “measurement value acquisition process” and the output of the measurement value data D1 to the analyzer 3 will be described in detail later.

この場合、処理部23は、電気化学センサ2aの信号処理回路基板14、および後述する分析装置3の処理部33と相俟って「処理部」を構成し、上記の「電極面調整処理」および「測定値取得処理」において、電解メッキ液Xaに接触させられた作用電極12の電極電位を制御しつつ、電解メッキ液Xaに接触させられた対向電極13および作用電極12の間を流れる電流の電流値を測定する。記憶部24は、処理部23の動作ブログラムや、上記の測定値データD1などを記憶する。   In this case, the processing unit 23 constitutes a “processing unit” in combination with the signal processing circuit board 14 of the electrochemical sensor 2a and the processing unit 33 of the analyzer 3 described later, and the above “electrode surface adjustment processing”. In the “measurement value acquisition process”, the current flowing between the counter electrode 13 and the working electrode 12 brought into contact with the electrolytic plating solution Xa while controlling the electrode potential of the working electrode 12 brought into contact with the electrolytic plating solution Xa. Measure the current value. The storage unit 24 stores an operation program of the processing unit 23, the measurement value data D1, and the like.

一方、分析装置3は、一例として、電解メッキ液分析システム1用の分析プログラムがインストールされたパーソナルコンピュータで構成されており、操作部31、表示部32、処理部33および記憶部34を備えている。操作部31は、キーボードや、マウスおよびタッチパッド等のポインティングデバイスで構成されて、これらの操作に応じた操作信号を処理部33に出力する。表示部32は、処理部33による「分析処理」の結果(分析結果)などを表示する。   On the other hand, the analyzer 3 is constituted by a personal computer in which an analysis program for the electrolytic plating solution analysis system 1 is installed as an example, and includes an operation unit 31, a display unit 32, a processing unit 33, and a storage unit 34. Yes. The operation unit 31 includes a keyboard, a pointing device such as a mouse and a touch pad, and outputs operation signals corresponding to these operations to the processing unit 33. The display unit 32 displays the result (analysis result) of the “analysis process” by the processing unit 33.

処理部33は、前述したように、電気化学測定装置2(測定装置本体2b)の処理部23と相俟って「処理部」を構成し、測定値が記録された測定値データD1を電気化学測定装置2(測定装置本体2b)から送信させて記憶部34に記憶させる。また、処理部33は、電気化学測定装置2から送信させた測定値データD1を解析することにより、後述する各分析項目毎に電解メッキ液Xaの状態を分析し、分析結果を表示部32に表示させると共に、分析結果を記録した分析結果データD2を生成して記憶部34に記憶させる(「分析処理」の一例)。記憶部34は、上記の分析プログラムや、電気化学測定装置2から送信された測定値データD1、および処理部33によって生成された分析結果データD2などを記憶する。   As described above, the processing unit 33 constitutes a “processing unit” together with the processing unit 23 of the electrochemical measurement device 2 (measurement device main body 2b), and the measurement value data D1 in which the measurement values are recorded is electrically stored. It is transmitted from the chemical measurement device 2 (measurement device main body 2b) and stored in the storage unit 34. Further, the processing unit 33 analyzes the measurement value data D1 transmitted from the electrochemical measurement device 2 to analyze the state of the electrolytic plating solution Xa for each analysis item described later, and displays the analysis result on the display unit 32. In addition to the display, the analysis result data D2 in which the analysis result is recorded is generated and stored in the storage unit 34 (an example of “analysis process”). The storage unit 34 stores the analysis program, the measurement value data D1 transmitted from the electrochemical measurement device 2, the analysis result data D2 generated by the processing unit 33, and the like.

この電解メッキ液分析システム1によって電解メッキ液Xaの状態を分析する際には、まず、電解メッキ液Xaが貯液されているメッキ液槽Xの設置場所に電気化学測定装置2を搬送する。この場合、本例の電解メッキ液分析システム1では、上記したように、「処理条件取得処理」、「電極面調整処理」および「測定値取得処理」を実行する電気化学測定装置2と、「測定値取得処理」によって取得した測定値に基づく「分析処理」を実行する分析装置3とが別体に構成されている。これにより、本例の電解メッキ液分析システム1では、分析装置3から切り離した電気化学測定装置2だけを電解メッキ液Xaが貯留されているメッキ液槽Xの設置場所に携行することにより、「処理条件取得処理」、「電極面調整処理」および「測定値取得処理」を電気化学測定装置2単体で実行することが可能となっている。   When the state of the electrolytic plating solution Xa is analyzed by the electrolytic plating solution analysis system 1, first, the electrochemical measuring device 2 is transported to the installation place of the plating solution tank X in which the electrolytic plating solution Xa is stored. In this case, in the electrolytic plating solution analysis system 1 of this example, as described above, the electrochemical measurement apparatus 2 that executes the “processing condition acquisition process”, the “electrode surface adjustment process”, and the “measurement value acquisition process”; The analyzer 3 that executes the “analysis process” based on the measurement value acquired by the “measurement value acquisition process” is configured separately. Thereby, in the electrolytic plating solution analysis system 1 of this example, only the electrochemical measurement device 2 separated from the analysis device 3 is carried to the installation place of the plating solution tank X in which the electrolytic plating solution Xa is stored. The “processing condition acquisition process”, “electrode surface adjustment process”, and “measurement value acquisition process” can be executed by the electrochemical measuring apparatus 2 alone.

次いで、ケーシング10に各電極11〜13を取り付けて電気化学センサ2aを組み立てる。これにより、各電極11〜13がケーシング10に取り付けられてケーシング10内において信号処理回路基板14に接続された状態となる。続いて、信号ケーブル2cを介して電気化学センサ2aを測定装置本体2bに接続することにより、電気化学測定装置2による電気化学測定処理を開始する準備が整う。   Next, the electrodes 11 to 13 are attached to the casing 10 to assemble the electrochemical sensor 2a. As a result, the electrodes 11 to 13 are attached to the casing 10 and connected to the signal processing circuit board 14 in the casing 10. Subsequently, the electrochemical sensor 2a is connected to the measuring apparatus main body 2b via the signal cable 2c, so that the preparation for starting the electrochemical measuring process by the electrochemical measuring apparatus 2 is completed.

続いて、「処理条件取得処理)」を実行して「電極面調整処理」を実行するための処理条件を取得する。なお、この「処理条件取得処理」については、電解メッキ液Xaが貯留されているメッキ液槽Xの設置場所とは別の場所において実行することもできるが、後述の「測定値取得処理」およびその事前に実行する「電極面調整処理」に先立ってメッキ液槽Xの設置場所において実行する例を以下に説明する。具体的には、まず、一例として、メッキ液槽Xに貯液されている電解メッキ液Xa(分析対象の電解メッキ液Xa)と同じ電解メッキ液Xaであって有機添加剤を含んでいない電解メッキ液Xa(一例として、添加剤を混入していない新品の電解メッキ液Xa)を用意する。   Subsequently, “processing condition acquisition processing” is executed to acquire processing conditions for executing “electrode surface adjustment processing”. The “processing condition acquisition process” can be executed at a place different from the installation place of the plating solution tank X in which the electrolytic plating solution Xa is stored. An example of executing at the place where the plating solution tank X is installed prior to the “electrode surface adjustment process” executed in advance will be described below. Specifically, first, as an example, an electrolytic plating solution Xa that is the same as the electrolytic plating solution Xa (electrolytic plating solution Xa to be analyzed) stored in the plating solution tank X and does not contain an organic additive. A plating solution Xa (as an example, a new electrolytic plating solution Xa in which no additive is mixed) is prepared.

なお、電解メッキ液Xaおよび電気化学センサ2aの組み合わせによる電気化学測定処理によって、作用電極12の電極面に電解メッキ液Xa内の金属イオンが析出する電位の範囲(一例として、図2に示す電位Vbを下回る電位)、作用電極12の電極面に電解メッキ液Xa内の金属イオンが析出しない電位の範囲(一例として、図2に示す電位Vb以上の電位)、および電気分解によって酸素が発生する電位の範囲(一例として、図2に示す電位Vf以上の電位)については、以下に説明する各処理とは別個に実施した処理によって既知となっているか、或いは、電解メッキ液Xaの製造メーカ等からそれらの電位についての情報が既に提供されているものとする。   It should be noted that the potential range in which metal ions in the electrolytic plating solution Xa are deposited on the electrode surface of the working electrode 12 by an electrochemical measurement process using a combination of the electrolytic plating solution Xa and the electrochemical sensor 2a (as an example, the potential shown in FIG. 2). (Potential lower than Vb), a potential range in which metal ions in the electrolytic plating solution Xa are not deposited on the electrode surface of the working electrode 12 (for example, a potential higher than the potential Vb shown in FIG. 2), and oxygen is generated by electrolysis. The potential range (for example, a potential equal to or higher than the potential Vf shown in FIG. 2) is known by processing performed separately from each processing described below, or the manufacturer of the electrolytic plating solution Xa, etc. Information on those potentials has already been provided.

次いで、用意した電解メッキ液Xa内に電気化学センサ2aにおける各電極11〜13の電極面をそれぞれ浸した後に、測定装置本体2bの操作部21を操作して、「処理条件取得処理」の開始を指示する。この際に、処理部23は、まず、一例として、作用電極12の電極電位を図2に示す電位V3(電気分解によって酸素が発生する電位)に制御する。この際には、作用電極12の電極面に異物が付着した状態となっていたときに、電気分解によって電解メッキ液Xaから充分な酸素が発生するため、この酸素(気泡)の発生、および発生した酸素(気泡)の浮上に伴って電極面から異物が除去される。   Next, after immersing the electrode surfaces of the electrodes 11 to 13 in the electrochemical sensor 2a in the prepared electrolytic plating solution Xa, the operation unit 21 of the measurement apparatus main body 2b is operated to start the “processing condition acquisition process”. Instruct. At this time, as an example, the processing unit 23 first controls the electrode potential of the working electrode 12 to a potential V3 (a potential at which oxygen is generated by electrolysis) shown in FIG. At this time, when foreign matter adheres to the electrode surface of the working electrode 12, sufficient oxygen is generated from the electroplating solution Xa by electrolysis. Foreign substances are removed from the electrode surface with the rising of the oxygen (bubbles).

続いて、処理部23は、作用電極12の電極電位を制御しつつ、対向電極13および作用電極12の間を流れる電流の電流値を取得し、その測定値を測定値データD1として記憶部24に記憶させる。具体的には、処理部23は、図2に示す電位Vb(一例として、作用電極12の電極面に金属イオンが析出しない電位の範囲において最も低い電位)から電位Vf(一例として、電解メッキ液Xaの電気分解による酸素が実質的に発生しない電位の範囲において最も低い電位)までの範囲R0内で作用電極12の電極電位を制御しつつ、対向電極13および作用電極12の間を流れる電流の電流値を測定する(サイクリックボルタンメトリーの実行)。   Subsequently, the processing unit 23 acquires the current value of the current flowing between the counter electrode 13 and the working electrode 12 while controlling the electrode potential of the working electrode 12, and stores the measured value as measured value data D1 in the storage unit 24. Remember me. Specifically, the processing unit 23 generates a potential Vf (as an example, an electrolytic plating solution) from the potential Vb (as an example, the lowest potential in a range where no metal ions are deposited on the electrode surface of the working electrode 12). The electric current flowing between the counter electrode 13 and the working electrode 12 is controlled while controlling the electrode potential of the working electrode 12 within a range R0 up to the lowest potential in the range of the potential where oxygen is not substantially generated by electrolysis of Xa. Measure the current value (execute cyclic voltammetry).

この際に、電位Vbから電位Vfまで作用電極12の電極電位を一定の変化率で上昇させているときには、各電位毎に同図に一点鎖線で示すような電流値が測定される。また、電位Vfから電位Vbまで作用電極12の電極電位を一定の変化率で下降させているときには、各電位毎に同図に二点鎖線で示すような電流値が測定される。したがって、処理部23は、これらの電流値を測定結果として測定値データD1を生成し、生成した測定値データD1を記憶部24に記憶させる。   At this time, when the electrode potential of the working electrode 12 is increased from the potential Vb to the potential Vf at a constant rate of change, a current value as indicated by a one-dot chain line in the figure is measured for each potential. Further, when the electrode potential of the working electrode 12 is decreased from the potential Vf to the potential Vb at a constant rate of change, a current value as indicated by a two-dot chain line in the figure is measured for each potential. Therefore, the processing unit 23 generates measurement value data D1 using these current values as measurement results, and stores the generated measurement value data D1 in the storage unit 24.

次いで、処理部23は、記憶部24に記憶させた測定値データD1に基づき、作用電極12の電極面に酸化被膜が形成される「第1の電位(酸化電位)」の範囲を特定し、特定した範囲のなかから予め規定された条件を満たす電位を「第1の電位」として決定する「第1の電位決定処理」を実行する。また、処理部23は、記憶部24に記憶させた測定値データD1に基づき、作用電極12の電極面に形成された酸化被膜が還元される「第2の電位(還元電位)」の範囲を特定し、特定した範囲のなかから予め規定された条件を満たす電位を「第2の電位」として決定する「第2の電位決定処理」を実行する。   Next, the processing unit 23 specifies a range of “first potential (oxidation potential)” in which an oxide film is formed on the electrode surface of the working electrode 12 based on the measured value data D1 stored in the storage unit 24, From the specified range, a “first potential determination process” is performed in which a potential that satisfies a predetermined condition is determined as a “first potential”. In addition, the processing unit 23 sets a range of “second potential (reduction potential)” in which the oxide film formed on the electrode surface of the working electrode 12 is reduced based on the measurement value data D1 stored in the storage unit 24. A “second potential determination process” is performed in which the potential that satisfies the condition that is specified and is determined from the specified range is determined as the “second potential”.

この場合、電解メッキ液Xaの種類によっても相違するが、本例の電解メッキ液Xaの場合には、電位Vbから電位Vfに向かって作用電極12の電極電位を上昇させたときに、電位Vdを超えた辺りから、作用電極12の電極面に酸化被膜が形成される(作用電極12の電極面が酸化する)ことで対向電極13および作用電極12の間を流れる電流の電流値が増加し、電位Veに達してから、電気分解による酸素の発生量が増加する電位Vfに達するまで、単位時間当りに電極面に形成される酸化被膜の量、すなわち、対向電極13および作用電極12の間を単位時間当りに流れる電流の電流値がほぼ一定量となる。また、作用電極12の電極電位が電位Vfを超えて電気分解による酸素の発生量が規定量を超える状態においては、電気化学センサ2aに供給しているエネルギーの多くが電気分解のために消費されて作用電極12の電極面への酸化被膜の形成効率が低下する。   In this case, although it varies depending on the type of the electrolytic plating solution Xa, in the case of the electrolytic plating solution Xa of this example, the potential Vd is increased when the electrode potential of the working electrode 12 is increased from the potential Vb toward the potential Vf. Since the oxide film is formed on the electrode surface of the working electrode 12 from above (the electrode surface of the working electrode 12 is oxidized), the current value of the current flowing between the counter electrode 13 and the working electrode 12 increases. The amount of oxide film formed on the electrode surface per unit time from the time when the potential Ve is reached until the potential Vf at which the amount of oxygen generated by electrolysis increases is reached, that is, between the counter electrode 13 and the working electrode 12. The current value of the current flowing per unit time is substantially constant. When the electrode potential of the working electrode 12 exceeds the potential Vf and the amount of oxygen generated by electrolysis exceeds a specified amount, much of the energy supplied to the electrochemical sensor 2a is consumed for electrolysis. As a result, the formation efficiency of the oxide film on the electrode surface of the working electrode 12 decreases.

したがって、本例の電解メッキ液分析システム1(電気化学測定装置2)では、測定値データD1に基づき、一例として、上記の電位Veから電位Vfの範囲R1を「第1の電位として決定可能な電位の範囲」と特定し、特定した範囲R1の中心値(この例では、電位V1)を「第1の電位」として決定する。   Therefore, in the electrolytic plating solution analysis system 1 (electrochemical measurement apparatus 2) of the present example, based on the measurement value data D1, as an example, the range R1 of the potential Ve to the potential Vf can be determined as “the first potential”. The potential range is specified, and the center value of the specified range R1 (in this example, the potential V1) is determined as the “first potential”.

また、電解メッキ液Xaの種類によっても相違するが、本例の電解メッキ液Xaの場合には、電位Vfから電位Vbに向かって作用電極12の電極電位を下降させたときに、電位Vcに達する辺りから、作用電極12の電極面に形成されている酸化被膜が徐々に還元されることで対向電極13および作用電極12の間を流れる電流の電流値が増加する。また、作用電極12の電極電位が電位Vbを下回ったときには、作用電極12の電極面に電解メッキ液Xa内の金属イオンが析出してしまう。したがって、本例の電解メッキ液分析システム1(電気化学測定装置2)では、測定値データD1に基づき、一例として、上記の電位Vcから電位Vbの範囲R2を「第2の電位として決定可能な電位の範囲」と特定し、特定した範囲R2の中心値(この例では、電位V2)を「第2の電位」として決定する。   Further, although it differs depending on the type of the electrolytic plating solution Xa, in the case of the electrolytic plating solution Xa of this example, when the electrode potential of the working electrode 12 is lowered from the potential Vf toward the potential Vb, the potential Vc is reached. From the vicinity, the oxide film formed on the electrode surface of the working electrode 12 is gradually reduced, so that the current value of the current flowing between the counter electrode 13 and the working electrode 12 increases. Further, when the electrode potential of the working electrode 12 falls below the potential Vb, metal ions in the electrolytic plating solution Xa are deposited on the electrode surface of the working electrode 12. Therefore, in the electrolytic plating solution analysis system 1 (electrochemical measurement apparatus 2) of this example, the range R2 from the potential Vc to the potential Vb can be determined as “second potential” as an example based on the measured value data D1. The potential range is specified, and the central value of the specified range R2 (in this example, the potential V2) is determined as the “second potential”.

続いて、処理部23は、決定した電位V1(第1の電位)および電位V2(第2の電位)を記録して調整処理用データD0を生成し、生成した調整処理用データD0を記憶部24に記憶させる。以上により、「処理条件取得処理」が完了し、「電極面調整処理」を実行する準備が整う。なお、この「処理条件取得処理」については、後述するように「測定値取得処理」の開始に先立って「電極面調整処理」を実行する都実行してもよいが、上記の調整処理用データD0(電位V1,V2)は、電解メッキ液Xaおよび作用電極12の組み合わせに固有の電位であるため、他の「電解メッキ液」等を使用したり、作用電極12を新しい電極に交換したりしない限り、いずれかの時点において生成した調整処理用データD0を継続的に使用することができる。   Subsequently, the processing unit 23 records the determined potential V1 (first potential) and potential V2 (second potential) to generate adjustment processing data D0, and the generated adjustment processing data D0 is stored in the storage unit. 24. As described above, the “processing condition acquisition process” is completed, and the preparation for executing the “electrode surface adjustment process” is completed. Note that the “processing condition acquisition process” may be executed in the same way as the “electrode surface adjustment process” is executed prior to the start of the “measurement value acquisition process” as described later. Since D0 (potential V1, V2) is a potential inherent to the combination of the electrolytic plating solution Xa and the working electrode 12, another “electrolytic plating solution” or the like is used, or the working electrode 12 is replaced with a new electrode. Unless this is done, the adjustment processing data D0 generated at any point in time can be used continuously.

一方、本例の電解メッキ液分析システム1では、一例として、上記の「処理条件取得処理」が完了して記憶部24に調整処理用データD0が記憶されている状態において操作部21の操作によって「測定値取得処理(電気化学測定処理)」の開始を指示されたときに、「測定値取得処理」に先立って「電極面調整処理」が自動的に実行される構成が採用されている。具体的には、メッキ液槽Xから汲み取った分析対象の電解メッキ液Xaに各電極11〜13を浸した状態において操作部21の操作によって「測定値取得処理」の開始が指示されたときに、処理部23は、「電極面調整処理」を開始して、図3に示すように作用電極12の電極電位を制御する。   On the other hand, in the electrolytic plating solution analysis system 1 of the present example, as an example, when the “processing condition acquisition process” is completed and the adjustment processing data D0 is stored in the storage unit 24, the operation unit 21 is operated. A configuration is adopted in which when the start of “measurement value acquisition processing (electrochemical measurement processing)” is instructed, “electrode surface adjustment processing” is automatically executed prior to “measurement value acquisition processing”. Specifically, when the start of the “measurement value acquisition process” is instructed by the operation of the operation unit 21 in a state where each electrode 11 to 13 is immersed in the electrolytic plating solution Xa to be analyzed drawn from the plating solution tank X. The processing unit 23 starts the “electrode surface adjustment process” and controls the electrode potential of the working electrode 12 as shown in FIG.

より具体的には、処理部23は、処理開始を指示された時点t0において作用電極12の電極電位を電位V3(「電解メッキ液の電気分解による酸素が発生する第3の電位」の一例)に制御し、その状態を時点t1まで維持する。この際には、作用電極12の電極面に異物が付着した状態となっていたときに、電気分解によって電解メッキ液Xaから充分な酸素が発生するため、この酸素(気泡)の発生、および発生した酸素(気泡)の浮上に伴って電極面から異物が除去される(「作用電極の電極面をクリーニングする」との処理の一例)。   More specifically, the processing unit 23 sets the electrode potential of the working electrode 12 to the potential V3 (an example of “third potential at which oxygen is generated by electrolysis of the electrolytic plating solution”) at the time point t0 when the processing start is instructed. And maintain that state until time t1. At this time, when foreign matter adheres to the electrode surface of the working electrode 12, sufficient oxygen is generated from the electroplating solution Xa by electrolysis. The foreign matter is removed from the electrode surface with the rising of the oxygen (bubbles) (an example of a process of “cleaning the electrode surface of the working electrode”).

次いで、処理部23は、時点t1において作用電極12の電極電位を電位V1(第1の電位)に制御し、その状態を時点t2まで維持する。この際には、作用電極12の電極面が酸化反応によって酸化する結果、電極面に酸化皮膜が形成される(「被膜形成処理」の実行)。   Next, the processing unit 23 controls the electrode potential of the working electrode 12 to the potential V1 (first potential) at time t1, and maintains this state until time t2. At this time, as a result of the oxidation of the electrode surface of the working electrode 12 by an oxidation reaction, an oxide film is formed on the electrode surface (execution of “film formation process”).

この場合、本例の作業手順とは相違するが、作用電極12の電極面に異物が付着している状態であって、上記したように電気分解によって発生した酸素によってこれを好適に除去するのが困難なときには、「電極面調整処理」に先立って作用電極12を洗浄液に浸して物理的に洗浄する作業を行うことがある。かかる作業を行った場合には、作用電極12の電極面の一部に酸化物が生じた状態となることがある。また、不使用時における作用電極12の保管状態が良好ではなかったときには、その電極面が部分的に酸化した状態となっていることもある。   In this case, although it is different from the work procedure of this example, foreign matter is attached to the electrode surface of the working electrode 12, and this is preferably removed by oxygen generated by electrolysis as described above. When this is difficult, an operation of physically cleaning the working electrode 12 by immersing the working electrode 12 in a cleaning liquid may be performed prior to the “electrode surface adjustment process”. When such an operation is performed, an oxide may be generated on a part of the electrode surface of the working electrode 12. Further, when the working electrode 12 is not well stored when not in use, the electrode surface may be partially oxidized.

したがって、本例の電解メッキ液分析システム1(電気化学測定装置2)では、作用電極12の電極面の酸化状態を問わず、「測定値取得処理」の開始に先立って作用電極12の電極電位を電位V1(酸化電位)に制御して電極面の全域に酸化皮膜を形成する「被膜形成処理」を実行する構成が採用されている。これにより、作用電極12の電極面に酸化物が生じている状態であったときや、電極面が部分的に酸化している状態であったときには、それらの部位を覆うようにして電極面の全域に酸化皮膜が形成され、作用電極12の電極面に酸化物が生じていない状態であったときや、電極面が酸化していない状態であったときにも、電極面の全域に酸化皮膜が形成される。このため、この「被膜形成処理」より後の処理(工程)における作用電極12の電極面の状態が、分析作業の都度、毎回同様の状態となる。   Therefore, in the electrolytic plating solution analysis system 1 (electrochemical measurement apparatus 2) of the present example, the electrode potential of the working electrode 12 prior to the start of the “measurement value acquisition process” regardless of the oxidation state of the electrode surface of the working electrode 12. A configuration is adopted in which the “film forming process” is performed in which the oxide film is formed on the entire surface of the electrode by controlling the voltage to the potential V1 (oxidation potential). Thus, when oxide is generated on the electrode surface of the working electrode 12 or when the electrode surface is partially oxidized, the electrode surface is covered so as to cover those portions. An oxide film is formed on the entire surface of the electrode surface even when an oxide film is formed on the entire surface and no oxide is formed on the electrode surface of the working electrode 12 or when the electrode surface is not oxidized. Is formed. For this reason, the state of the electrode surface of the working electrode 12 in the process (step) after the “film formation process” is the same every time the analysis work is performed.

一方、この「被膜形成処理」が完了した時点において「測定値取得処理」を直ちに開始することもできるが、本例の電解メッキ液分析システム1(電気化学測定装置2)では、「被膜形成処理」によって形成した酸化皮膜を完全に還元することで「電極面調整処理」を完了する構成が採用されている。具体的には、処理部23は、時点t2において作用電極12の電極電位を電位V2(第2の電位)に制御し、その状態を時点t3まで維持する。この際には、上記の「被膜形成処理」によって作用電極12の電極面に形成された酸化皮膜が還元され、電極面の全域において「酸化していない白金」が電解メッキ液Xaに接する状態となる(「被膜還元処理」の実行)。これにより、この「被膜還元処理」より後の処理(工程)における作用電極12の電極面の状態が、分析作業の都度、毎回同様の状態となる。以上により、「電極面調整処理」が完了する。   On the other hand, when the “film formation process” is completed, the “measurement value acquisition process” can be started immediately. In the electrolytic plating solution analysis system 1 (electrochemical measurement apparatus 2) of this example, The structure that completes the “electrode surface adjustment processing” by completely reducing the oxide film formed by “.” Is adopted. Specifically, the processing unit 23 controls the electrode potential of the working electrode 12 to the potential V2 (second potential) at time t2, and maintains the state until time t3. At this time, the oxide film formed on the electrode surface of the working electrode 12 by the “film formation process” is reduced, and “non-oxidized platinum” is in contact with the electrolytic plating solution Xa over the entire area of the electrode surface. (Execution of “film reduction process”). Thereby, the state of the electrode surface of the working electrode 12 in the process (step) after the “film reduction process” becomes the same state every time the analysis work is performed. Thus, the “electrode surface adjustment process” is completed.

続いて、処理部23は、「測定値取得処理」を開始する。この場合、この電解メッキ液分析システム1(電気化学測定装置2)では、上記のように「電極面調整処理」を完了した時点t3以降、処理部23が、「測定値取得処理」として、作用電極12の電極面に金属を析出させつつ測定値を得る処理(析出処理)と、作用電極12に析出している金属を電解メッキ液Xaに溶出させつつ測定値を得る処理(溶出処理)とをこの順で実行する「析出溶出処理」を、「析出処理」における作用電極12の電極電位を変更して複数回に亘って連続して実行する。   Subsequently, the processing unit 23 starts a “measurement value acquisition process”. In this case, in the electrolytic plating solution analysis system 1 (electrochemical measurement apparatus 2), the processing unit 23 operates as the “measurement value acquisition process” after the time point t3 when the “electrode surface adjustment process” is completed as described above. A process for obtaining a measurement value while depositing metal on the electrode surface of the electrode 12 (precipitation process), and a process for obtaining a measurement value while eluting the metal deposited on the working electrode 12 into the electrolytic plating solution Xa (elution process). The “precipitation elution process” is executed continuously in this order by changing the electrode potential of the working electrode 12 in the “deposition process”.

なお、この「測定値取得処理」の具体的な内容については、一例として、出願人が特開2016−105072号公報や特開2016−105073号公報に開示している「測定値取得処理」と同様の手順で実施することができる。これにより、各「析出溶出処理」毎に測定値データD1が生成されて記憶部24に記憶され、「測定値取得処理」が完了する。   The specific content of the “measurement value acquisition process” is, for example, “measurement value acquisition process” disclosed by the applicant in Japanese Patent Application Laid-Open Nos. 2006-105072 and 2006-105073. The same procedure can be performed. Thereby, the measurement value data D1 is generated for each “precipitation elution process” and stored in the storage unit 24, and the “measurement value acquisition process” is completed.

続いて、電気化学センサ2aをメッキ液槽Xから引き上げ、必要に応じて各電極11〜13をケーシング10から取り外して保管用のケースに収容した後に、分析装置3が設置されている場所まで電気化学測定装置2を搬送し、信号ケーブル4(図1参照)を介して測定装置本体2bを分析装置3に接続する。   Subsequently, the electrochemical sensor 2a is lifted from the plating solution tank X, and the electrodes 11 to 13 are detached from the casing 10 and accommodated in a storage case as necessary. The chemical measuring device 2 is transported, and the measuring device main body 2b is connected to the analyzer 3 via the signal cable 4 (see FIG. 1).

次いで、電気化学測定装置2(測定装置本体2b)の操作部21を操作することにより、記憶部24に記憶されている各測定値データD1を分析装置3に送信する。これに応じて、分析装置3では、処理部33が、電気化学測定装置2から送信された各測定値データD1を記憶部34に記憶させる。なお、電気化学測定装置2から分析装置3への測定値データD1の送信については、電気化学測定装置2の操作部21を操作する上記の例に限定されず、分析装置3の操作部31を操作して分析装置3から電気化学測定装置2に送信要求信号を送信することで、電気化学測定装置2から分析装置3に測定値データD1を送信させることもできる。以上により、電解メッキ液Xaの分析に必要な測定値データD1が分析装置3の記憶部34に記憶された状態となる。   Subsequently, each measurement value data D1 memorize | stored in the memory | storage part 24 is transmitted to the analyzer 3 by operating the operation part 21 of the electrochemical measuring device 2 (measuring device main body 2b). In response to this, in the analysis device 3, the processing unit 33 stores each measurement value data D <b> 1 transmitted from the electrochemical measurement device 2 in the storage unit 34. The transmission of the measurement value data D1 from the electrochemical measurement device 2 to the analysis device 3 is not limited to the above example of operating the operation unit 21 of the electrochemical measurement device 2, and the operation unit 31 of the analysis device 3 By operating and transmitting a transmission request signal from the analysis device 3 to the electrochemical measurement device 2, the measurement value data D1 can be transmitted from the electrochemical measurement device 2 to the analysis device 3. As described above, the measurement value data D1 necessary for the analysis of the electrolytic plating solution Xa is stored in the storage unit 34 of the analyzer 3.

次いで、分析装置3において「分析処理」を実行する。なお、この「分析処理」に関しても、一例として、出願人が上記の公開公報に開示している「分析処理」と同様の手順で実施することができる。これにより、処理部33によって分析結果を記録した分析結果データD2が生成されて記憶部34に記憶されると共に、分析結果を示す各グラフや分析値が表示部32に表示され、一連の作業が完了する。この後、利用者は、表示部32に表示された分析結果を参照しつつ、分析対象の電解メッキ液Xaを用いたメッキ処理時の処理条件を任意に規定する。これにより、電解メッキ液Xaの状態に即した好適な条件下でメッキ処理を行うことができる結果、良好な製品(メッキ製品)を製造することが可能となる。   Next, the “analysis process” is executed in the analyzer 3. Note that the “analysis process” can also be performed by the same procedure as the “analysis process” disclosed by the applicant in the above publication. Thereby, the analysis result data D2 in which the analysis result is recorded by the processing unit 33 is generated and stored in the storage unit 34, and each graph and analysis value indicating the analysis result is displayed on the display unit 32. Complete. Thereafter, the user arbitrarily defines processing conditions during plating using the electrolytic plating solution Xa to be analyzed while referring to the analysis result displayed on the display unit 32. Thereby, as a result of being able to perform the plating process under suitable conditions in accordance with the state of the electrolytic plating solution Xa, it becomes possible to manufacture a good product (plated product).

このように、この電解メッキ液分析システム1、およびその電解メッキ液分析方法では、参照電極11に対する作用電極12の電位を制御しつつ対向電極13および作用電極12の間を流れる電流の電流値を測定する「測定処理」に適した状態に作用電極12の電極面を調整する「電極面調整処理」、「測定処理」を実行して測定値を取得する「測定値取得処理」、および取得した測定値に基づいて電解メッキ液Xaの状態を分析する「分析処理」を実行する際に、「電極面調整処理」において、参照電極11に対する作用電極12の電位を作用電極12の電極面に酸化被膜が形成される「第1の電位(本例では、電位V1)」に制御して電極面に酸化被膜を形成する「被膜形成処理」を実行する。   Thus, in the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, the value of the current flowing between the counter electrode 13 and the working electrode 12 is controlled while controlling the potential of the working electrode 12 with respect to the reference electrode 11. “Electrode surface adjustment process” for adjusting the electrode surface of the working electrode 12 in a state suitable for the “measurement process” to be measured, “measurement value acquisition process” for acquiring the measurement value by executing the “measurement process”, and the acquired When the “analysis process” for analyzing the state of the electrolytic plating solution Xa based on the measured value is performed, the potential of the working electrode 12 with respect to the reference electrode 11 is oxidized to the electrode surface of the working electrode 12 in the “electrode surface adjustment process”. A “film formation process” is performed in which an oxide film is formed on the electrode surface under the control of the “first potential (in this example, the potential V1)” at which the film is formed.

したがって、この電解メッキ液分析システム1、およびその電解メッキ液分析方法によれば、「被膜形成処理」によって作用電極12の電極面の全域に亘って酸化皮膜が形成されることで作用電極12の酸化状態のばらつきの影響が排除されるため、分析作業を行う都度、その電極面が同様の状態となっている作用電極12を使用して「測定値取得処理」を実行することができる結果、取得した測定値データD1に基づき、電解メッキ液Xaの状態を的確に分析することができる。   Therefore, according to the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, an oxide film is formed over the entire area of the electrode surface of the working electrode 12 by the “film forming process”, thereby forming the working electrode 12. Since the influence of the variation in the oxidation state is eliminated, each time an analysis operation is performed, the result of being able to execute the “measurement value acquisition process” using the working electrode 12 whose electrode surface is in the same state, Based on the acquired measured value data D1, the state of the electrolytic plating solution Xa can be accurately analyzed.

また、この電解メッキ液分析システム1、およびその電解メッキ液分析方法によれば、「電極面調整処理」に先立ち、作用電極12の電極面に電解メッキ液Xa中の金属が析出せず、かつ電解メッキ液Xaの電気分解による酸素が発生しない予め規定された電位範囲(本例では、範囲R0)内で参照電極11に対する作用電極12の電位を変化させつつ対向電極13および作用電極12の間を流れる電流の電流値を測定し、測定した電流値に基づいて「第1の電位」を決定する「第1の電位決定処理」を実行することにより、「電極面調整処理」に際して使用する電解メッキ液Xaや、実際に電極面を調整する作用電極12の状態に即した「第1の電位(電位V1)」を実際に取得することで、「電極面調整処理(被膜形成処理)」に際して作用電極12の電極面に酸化皮膜を好適に形成することができる。これにより、作用電極12の酸化状態のばらつきの影響を一層好適に排除することができる。   Further, according to the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, the metal in the electrolytic plating solution Xa is not deposited on the electrode surface of the working electrode 12 prior to the “electrode surface adjustment process”, and Between the counter electrode 13 and the working electrode 12 while changing the potential of the working electrode 12 with respect to the reference electrode 11 within a predetermined potential range (in this example, the range R0) in which oxygen is not generated by electrolysis of the electrolytic plating solution Xa. The electrolysis used in the “electrode surface adjustment process” is performed by measuring the current value of the current flowing through the substrate and executing the “first potential determination process” for determining the “first potential” based on the measured current value. By actually acquiring the “first potential (potential V1)” corresponding to the state of the plating solution Xa and the working electrode 12 that actually adjusts the electrode surface, the “electrode surface adjustment process (film formation process)” Oxide film on the electrode surface of the use electrode 12 can be suitably formed of. Thereby, the influence of the dispersion | variation in the oxidation state of the working electrode 12 can be eliminated more suitably.

さらに、この電解メッキ液分析システム1、およびその電解メッキ液分析方法によれば、「電極面調整処理」において、「被膜形成処理」を実行した後に、参照電極11に対する作用電極12の電位を作用電極12の電極面に形成されている酸化被膜が還元される「第2の電位」に制御して酸化被膜を還元する「被膜還元処理」を実行することにより、「被膜還元処理」によって作用電極12の電極面の全域において酸化皮膜が還元されることで作用電極12の酸化状態のばらつきの影響が排除されるため、分析作業を行う都度、その電極面が同様の状態となっている作用電極12を使用して「測定値取得処理」を実行することができる結果、取得した測定値データD1に基づき、電解メッキ液Xaの状態を的確に分析することができる。   Furthermore, according to the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, after performing the “film formation process” in the “electrode surface adjustment process”, the potential of the working electrode 12 is applied to the reference electrode 11. By performing “film reduction treatment” that reduces the oxide film by controlling to the “second potential” at which the oxide film formed on the electrode surface of the electrode 12 is reduced, the working electrode is obtained by “film reduction treatment”. Since the effect of variation in the oxidation state of the working electrode 12 is eliminated by reducing the oxide film over the entire area of the 12 electrode surfaces, the working electrode in which the electrode surface is in the same state each time an analysis operation is performed As a result of performing the “measurement value acquisition process” using 12, the state of the electrolytic plating solution Xa can be accurately analyzed based on the acquired measurement value data D1.

また、作用電極12の電極面に酸化被膜が形成された状態で「電極面調整処理」を終了させた場合、「測定値取得処理」において取得される「測定値(測定値データD1の値)」が酸化皮膜の存在の影響を受けて、酸化被膜が存在しない状態の作用電極12を使用した「測定値取得処理」の実行時とは異なる値となることがあり、そのような「測定値」の相違が「分析処理」の弊害となるときには、酸化皮膜の影響分を考慮して「測定値」を補正する必要が生じることがあるのに対し、「被膜還元処理」によって酸化被膜を還元した状態で「電極面調整処理」を終了させることで、「測定値取得処理」において酸化皮膜の存在の影響を受けない測定値を取得することができるため、上記のような場合であっても、「測定値」の補正を行わずに電解メッキ液Xaの状態を分析することができる。   Further, when the “electrode surface adjustment process” is terminated in a state where the oxide film is formed on the electrode surface of the working electrode 12, the “measurement value (value of the measurement value data D1) acquired in the“ measurement value acquisition process ”” ”Is affected by the presence of the oxide film, and may have a value different from the time when the“ measurement value acquisition process ”using the working electrode 12 in the absence of the oxide film is performed. When the difference in "" is an adverse effect of "analysis process", it may be necessary to correct the "measured value" in consideration of the influence of the oxide film, whereas the "film reduction process" reduces the oxide film. In such a state, since the “electrode surface adjustment process” is terminated, a measurement value that is not affected by the presence of the oxide film can be acquired in the “measurement value acquisition process”. Without correcting the “measurement value” It can be analyzed the state of the solution plating solution Xa.

また、この電解メッキ液分析システム1、およびその電解メッキ液分析方法によれば、「電極面調整処理」に先立ち、作用電極12の電極面に電解メッキ液Xa中の金属が析出せず、かつ電解メッキ液Xaの電気分解による酸素が発生しない予め規定された電位範囲(本例では、範囲R0)内で参照電極11に対する作用電極12の電位を変化させつつ対向電極13および作用電極12の間を流れる電流の電流値を測定し、測定した電流値に基づいて「第2の電位」を決定する「第2の電位決定処理」を実行することにより、「電極面調整処理」に際して使用する電解メッキ液Xaや、実際に電極面を調整する作用電極12の状態に即した「第2の電位(電位V2)」を実際に取得することで、「電極面調整処理(被膜還元処理)」に際して作用電極12の電極面の酸化皮膜を好適に還元することができる。これにより、作用電極12の酸化状態のばらつきの影響を一層好適に排除することができる。   Further, according to the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, the metal in the electrolytic plating solution Xa is not deposited on the electrode surface of the working electrode 12 prior to the “electrode surface adjustment process”, and Between the counter electrode 13 and the working electrode 12 while changing the potential of the working electrode 12 with respect to the reference electrode 11 within a predetermined potential range (in this example, the range R0) in which oxygen is not generated by electrolysis of the electrolytic plating solution Xa. Electrolysis used in the “electrode surface adjustment process” by performing a “second potential determination process” for measuring a current value of a current flowing through the substrate and determining a “second potential” based on the measured current value. By actually acquiring the “second potential (potential V2)” corresponding to the state of the plating solution Xa and the working electrode 12 that actually adjusts the electrode surface, the “electrode surface adjustment process (film reduction process)” Oxide film on the electrode surface of the use electrode 12 can be suitably reduced. Thereby, the influence of the dispersion | variation in the oxidation state of the working electrode 12 can be eliminated more suitably.

さらに、この電解メッキ液分析システム1、およびその電解メッキ液分析方法によれば、「電極面調整処理」において、参照電極11に対する作用電極12の電位を電解メッキ液Xaの電気分解による酸素が発生する「第3の電位(本例では、電位V3)」に制御して、発生した酸素によって作用電極12の電極面をクリーニングすることにより、「電極面調整処理」の開始時に作用電極12の電極面に少量の異物が付着していたとしても、これがクリーニングされた後に「被膜形成処理」が実行されるため、異物の影響を受けることなく、作用電極12の電極面に酸化皮膜を好適に形成することができる。   Further, according to the electrolytic plating solution analysis system 1 and the electrolytic plating solution analysis method, in the “electrode surface adjustment process”, the potential of the working electrode 12 with respect to the reference electrode 11 is changed to generate oxygen by electrolysis of the electrolytic plating solution Xa. The electrode of the working electrode 12 is started at the start of the “electrode surface adjustment process” by controlling the “third potential (in this example, the potential V3)” and cleaning the electrode surface of the working electrode 12 with the generated oxygen. Even if a small amount of foreign matter adheres to the surface, since the “film formation process” is performed after the surface is cleaned, an oxide film is suitably formed on the electrode surface of the working electrode 12 without being affected by the foreign matter. can do.

なお、「電解メッキ液分析装置」の構成、および「電解メッキ液分析方法」の具体的な手順については、上記の電解メッキ液分析システム1の構成、および電解メッキ液分析システム1による電解メッキ液分析方法の手順の例に限定されない。例えば、「被膜形成処理」において作用電極12の電位を一定時間に亘って電位V1(第1の電位)に維持すると共に、「被膜還元処理」において作用電極12の電位を一定時間に亘って電位V2(第2の電位)に維持する例について説明したが、このような構成・方法に代えて、「被膜形成処理」において「第1の電位として決定可能な範囲(上記の例における範囲R1)」内で作用電極12の電位を変化させる制御を行ったり、「被膜還元処理」において「第2の電位として決定可能な範囲(上記の例における範囲R2)」内で作用電極12の電位を変化させる制御を行ったりする構成・方法を採用することもできる。   The configuration of the “electrolytic plating solution analyzer” and the specific procedure of the “electrolytic plating solution analysis method” are as follows. The configuration of the above electrolytic plating solution analysis system 1 and the electrolytic plating solution by the electrolytic plating solution analysis system 1 It is not limited to the example of the procedure of the analysis method. For example, the potential of the working electrode 12 is maintained at the potential V1 (first potential) for a certain period of time in the “film formation process”, and the potential of the working electrode 12 is maintained for a certain period of time in the “film reduction process”. Although an example of maintaining at V2 (second potential) has been described, instead of such a configuration / method, “a range that can be determined as the first potential” (range R1 in the above example) in “film formation processing” The potential of the working electrode 12 is controlled within the range "", or the potential of the working electrode 12 is changed within the "range that can be determined as the second potential (range R2 in the above example)" in the "film reduction treatment". It is also possible to adopt a configuration / method for performing control.

具体的には、一例として、図4に示すように、処理開始を指示された時点t0において、作用電極12の電極電位を電位Veから電位Vfに向かって一定の変化率で上昇させ、電極電位が電位Vfに達した時点taにおいて、電極電位を電位Vfから電位Vbに向かって一定の変化率で下降する制御を実行する。   Specifically, as an example, as shown in FIG. 4, at the time t0 when the start of processing is instructed, the electrode potential of the working electrode 12 is increased from the potential Ve toward the potential Vf at a constant rate of change, and the electrode potential is increased. At the time ta when the voltage reaches the potential Vf, a control is performed to lower the electrode potential from the potential Vf toward the potential Vb at a constant rate of change.

この制御の例では、作用電極12の電極電位が電位Ve〜Vfまで上昇している時点t0〜taの間の処理、および作用電極12の電極電位が電位Vf〜Veまで下降している時点ta〜tbの間の処理がそれぞれ「被膜形成処理」に相当する。また、この制御の例では、作用電極12の電極電位が電位Vc〜Vbまで下降している時点tc〜tdの間の処理が「被膜還元処理」に相当する。この後、「被膜還元処理」が完了した時点td以降に「測定値取得処理」を実行することにより、前述した制御の例のときと同様に作用電極12の酸化状態の影響が排除された測定値データD1を取得することができる。   In this control example, the processing during the time t0 to ta when the electrode potential of the working electrode 12 rises to the potential Ve to Vf, and the time ta when the electrode potential of the working electrode 12 falls to the potential Vf to Ve. The process between tb and tb corresponds to a “film formation process”. Further, in this control example, the process between the time points tc and td when the electrode potential of the working electrode 12 drops to the potentials Vc to Vb corresponds to the “film reduction process”. Thereafter, by performing the “measurement value acquisition process” after the time point td when the “film reduction process” is completed, the measurement in which the influence of the oxidation state of the working electrode 12 is eliminated as in the control example described above. The value data D1 can be acquired.

また、「被膜形成処理」の後に「被膜還元処理」を実行してから「測定値取得処理」を実行する例について説明したが、このような構成・方法に代えて、図5に示すように、「被膜形成処理」が完了した時点t2において、「被膜還元処理」を実行することなく「測定値取得処理」を開始する構成・方法を採用することもできる。さらに、作用電極12の電極面に異物が付着しているおそれがないときには、図4に示す制御の例のように、「被膜形成処理」の開始に先立って電極面をクリーニングする処理を行わない構成・方法を採用することもできる。   Further, the example in which the “measurement value acquisition process” is executed after the “film reduction process” after the “film formation process” has been described, but instead of such a configuration / method, as shown in FIG. It is also possible to adopt a configuration / method in which the “measurement value acquisition process” is started without executing the “film reduction process” at the time point t2 when the “film formation process” is completed. Further, when there is no possibility of foreign matter adhering to the electrode surface of the working electrode 12, the electrode surface cleaning process is not performed prior to the start of the “film formation process” as in the control example shown in FIG. A configuration / method can also be adopted.

また、「電極面調整処理」や「測定値取得処理」を実行する電気化学測定装置2と、「分析処理」を実行する分析装置3とを別体に構成した電解メッキ液分析システム1を例に挙げて説明したが、この電解メッキ液分析システム1における電気化学測定装置2および分析装置3を一体化した「電解メッキ液分析装置」(図示せず)を用いて「電解メッキ液分析方法」による電解メッキ液Xaの分析を実行することもできる。   Further, an example of an electrolytic plating solution analysis system 1 in which an electrochemical measurement device 2 that executes “electrode surface adjustment processing” and “measurement value acquisition processing” and an analysis device 3 that executes “analysis processing” are configured separately. As described above, an “electrolytic plating solution analysis method” using an “electrolytic plating solution analysis device” (not shown) in which the electrochemical measurement device 2 and the analysis device 3 in the electrolytic plating solution analysis system 1 are integrated. The analysis of the electrolytic plating solution Xa can also be executed.

1 電解メッキ液分析システム
2 電気化学測定装置
2a 電気化学センサ
2b 測定装置本体
2c 信号ケーブル
3 分析装置
4 信号ケーブル
11 参照電極
12 作用電極
13 対向電極
14 信号処理回路基板
23,33 処理部
24,34 記憶部
D0 調整処理用データ
D1 測定値データ
D2 分析結果データ
R0〜R2 範囲
t0,t1・・ta,tb 時点
V1,V2・・Va,Vb・・ 電位
X メッキ液槽
Xa 電解メッキ液
DESCRIPTION OF SYMBOLS 1 Electrolytic plating liquid analysis system 2 Electrochemical measuring device 2a Electrochemical sensor 2b Measuring device main body 2c Signal cable 3 Analyzing device 4 Signal cable 11 Reference electrode 12 Working electrode 13 Counter electrode 14 Signal processing circuit board 23, 33 Processing part 24, 34 Storage unit D0 Adjustment processing data D1 Measured value data D2 Analysis result data R0 to R2 Range t0, t1, · ta, tb Time point V1, V2, · · Va, Vb · · Potential X Plating solution bath Xa Electrolytic plating solution

Claims (8)

分析対象の電解メッキ液に接触させられた参照電極に対する作用電極の電位を制御しつつ当該電解メッキ液に接触させられた対向電極および当該作用電極の間を流れる電流の電流値を測定する測定処理を実行可能に構成されると共に、前記作用電極の電極面を前記測定処理に適した状態に調整する電極面調整処理、前記測定処理を実行して測定値を取得する測定値取得処理、および取得した当該測定値に基づいて前記電解メッキ液の状態を分析する分析処理を実行する処理部を備えた電解メッキ液分析装置であって、
前記処理部は、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に酸化被膜が形成される第1の電位に制御して当該電極面に当該酸化被膜を形成する被膜形成処理を実行する電解メッキ液分析装置。
Measurement process for measuring the current value of the current flowing between the counter electrode and the working electrode in contact with the electrolytic plating solution while controlling the potential of the working electrode with respect to the reference electrode in contact with the electrolytic plating solution to be analyzed Electrode surface adjustment processing for adjusting the electrode surface of the working electrode to a state suitable for the measurement processing, measurement value acquisition processing for acquiring measurement values by executing the measurement processing, and acquisition An electrolytic plating solution analyzer including a processing unit that performs an analysis process for analyzing the state of the electrolytic plating solution based on the measured value,
In the electrode surface adjustment process, the processing unit controls the potential of the working electrode with respect to the reference electrode to a first potential at which an oxide film is formed on the electrode surface of the working electrode, thereby oxidizing the electrode surface. An electrolytic plating solution analyzer for performing a film forming process for forming a film.
前記処理部は、前記電極面調整処理に先立ち、前記作用電極の前記電極面に前記電解メッキ液中の金属が析出せず、かつ当該電解メッキ液の電気分解による酸素が発生しない電位範囲内で前記参照電極に対する当該作用電極の電位を変化させつつ前記対向電極および当該作用電極の間を流れる電流の電流値を測定し、測定した当該電流値に基づいて前記第1の電位を決定する第1の電位決定処理を実行する請求項1記載の電解メッキ液分析装置。   Prior to the electrode surface adjustment process, the processing unit has a potential range in which no metal in the electrolytic plating solution is deposited on the electrode surface of the working electrode and oxygen is not generated by electrolysis of the electrolytic plating solution. A current value of a current flowing between the counter electrode and the working electrode is measured while changing a potential of the working electrode with respect to the reference electrode, and the first potential is determined based on the measured current value. The electrolytic plating solution analyzer according to claim 1, wherein the potential determination process is performed. 前記処理部は、前記電極面調整処理において、前記被膜形成処理を実行した後に、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に形成されている前記酸化被膜が還元される第2の電位に制御して当該酸化被膜を還元する被膜還元処理を実行する請求項1または2記載の電解メッキ液分析装置。   In the electrode surface adjustment process, the processing unit reduces the oxide film formed on the electrode surface of the working electrode with the potential of the working electrode with respect to the reference electrode after performing the film forming process. The electrolytic plating solution analyzer according to claim 1 or 2, wherein a coating film reduction process for controlling the second potential to reduce the oxide film is performed. 前記処理部は、前記電極面調整処理に先立ち、前記作用電極の前記電極面に前記電解メッキ液中の金属が析出せず、かつ当該電解メッキ液の電気分解による酸素が発生しない電位範囲内で前記参照電極に対する当該作用電極の電位を変化させつつ前記対向電極および当該作用電極の間を流れる電流の電流値を測定し、測定した当該電流値に基づいて前記第2の電位を決定する第2の電位決定処理を実行する請求項3記載の電解メッキ液分析装置。   Prior to the electrode surface adjustment process, the processing unit has a potential range in which no metal in the electrolytic plating solution is deposited on the electrode surface of the working electrode and oxygen is not generated by electrolysis of the electrolytic plating solution. A current value of a current flowing between the counter electrode and the working electrode is measured while changing a potential of the working electrode with respect to the reference electrode, and a second potential is determined based on the measured current value The electrolytic plating solution analyzer according to claim 3, wherein the potential determination process is executed. 前記処理部は、前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を前記電解メッキ液の電気分解による酸素が発生する第3の電位に制御して、発生した酸素によって当該作用電極の電極面をクリーニングする請求項1から4のいずれかに記載の電解メッキ液分析装置。   In the electrode surface adjustment process, the processing unit controls the potential of the working electrode with respect to the reference electrode to a third potential at which oxygen is generated by electrolysis of the electrolytic plating solution. 5. The electrolytic plating solution analyzer according to claim 1, wherein the electrode surface is cleaned. 分析対象の電解メッキ液に接触させた参照電極に対する作用電極の電位を制御しつつ当該電解メッキ液に接触させた対向電極および当該作用電極の間を流れる電流の電流値を測定する測定処理に適した状態に当該作用電極の電極面を調整する電極面調整処理、前記測定処理を実行して測定値を取得する測定値取得処理、および取得した当該測定値に基づいて前記電解メッキ液の状態を分析する分析処理を実行する電解メッキ液分析方法であって、
前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に酸化被膜が形成される第1の電位に制御して当該電極面に当該酸化被膜を形成する被膜形成処理を実行する電解メッキ液分析方法。
Suitable for measurement processing that measures the value of the current flowing between the counter electrode and the working electrode in contact with the electrolytic plating solution while controlling the potential of the working electrode with respect to the reference electrode in contact with the electrolytic plating solution to be analyzed The electrode surface adjustment process for adjusting the electrode surface of the working electrode to the state, the measurement value acquisition process for executing the measurement process to acquire the measurement value, and the state of the electrolytic plating solution based on the acquired measurement value An electrolytic plating solution analysis method for performing an analysis process to analyze,
In the electrode surface adjustment process, a film that controls the potential of the working electrode with respect to the reference electrode to a first potential that forms an oxide film on the electrode surface of the working electrode to form the oxide film on the electrode surface An electrolytic plating solution analysis method for performing a forming process.
前記電極面調整処理において、前記被膜形成処理を実行した後に、前記参照電極に対する前記作用電極の電位を当該作用電極の前記電極面に形成されている前記酸化被膜が還元される第2の電位に制御して当該酸化被膜を還元する被膜還元処理を実行する請求項6記載の電解メッキ液分析方法。   In the electrode surface adjustment process, after executing the film formation process, the potential of the working electrode with respect to the reference electrode is changed to a second potential at which the oxide film formed on the electrode surface of the working electrode is reduced. The electrolytic plating solution analysis method according to claim 6, wherein a film reduction process for controlling and reducing the oxide film is performed. 前記電極面調整処理において、前記参照電極に対する前記作用電極の電位を前記電解メッキ液の電気分解による酸素が発生する第3の電位に制御して、発生した酸素によって当該作用電極の電極面をクリーニングする請求項6または7記載の電解メッキ液分析方法。   In the electrode surface adjustment process, the potential of the working electrode with respect to the reference electrode is controlled to a third potential at which oxygen is generated by electrolysis of the electrolytic plating solution, and the electrode surface of the working electrode is cleaned by the generated oxygen. The electrolytic plating solution analyzing method according to claim 6 or 7.
JP2016212404A 2016-10-31 2016-10-31 Electrolytic plating solution analyzer and electrolytic plating solution analysis method Pending JP2018072166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212404A JP2018072166A (en) 2016-10-31 2016-10-31 Electrolytic plating solution analyzer and electrolytic plating solution analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212404A JP2018072166A (en) 2016-10-31 2016-10-31 Electrolytic plating solution analyzer and electrolytic plating solution analysis method

Publications (1)

Publication Number Publication Date
JP2018072166A true JP2018072166A (en) 2018-05-10

Family

ID=62114993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212404A Pending JP2018072166A (en) 2016-10-31 2016-10-31 Electrolytic plating solution analyzer and electrolytic plating solution analysis method

Country Status (1)

Country Link
JP (1) JP2018072166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118517A (en) * 2019-01-23 2020-08-06 日置電機株式会社 Liquid impedance measuring apparatus, liquid analysis system, liquid impedance measuring method and liquid analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118517A (en) * 2019-01-23 2020-08-06 日置電機株式会社 Liquid impedance measuring apparatus, liquid analysis system, liquid impedance measuring method and liquid analysis method

Similar Documents

Publication Publication Date Title
TW591123B (en) Method and apparatus for controlling and/or measuring additive concentration in an electroplating bath
JP4041667B2 (en) Plating bath analysis method
JP6511989B2 (en) Electroplating solution analyzer and electroplating solution analysis method
JP2007139725A (en) Residual chlorine measuring method and residual chlorine measuring instrument
JP2016114391A (en) Electric copper plating solution analysis device and electric copper plating solution analysis method
WO1999057549A1 (en) Measuring additive concentration in an electroplating bath
JP2018072166A (en) Electrolytic plating solution analyzer and electrolytic plating solution analysis method
Baron et al. Electrochemical methods to measure gold leaching current in an alkaline thiosulfate solution
TWI704346B (en) Smart concentration measuring system, method and smart concentration analyzing module
US9964518B2 (en) Electroplating solution analyzing apparatus
WO2015137400A1 (en) Electrolytic copper plating solution analysis device and electrolytic copper plating solution analysis method
US20070102301A1 (en) One-point recalibration method for reducing error in concentration measurements for an electrolytic solution
JP6409291B2 (en) Electrolytic copper plating solution analyzer and electrolytic copper plating solution analysis method
JP7045268B2 (en) Signal generator and its control method
JP6608220B2 (en) Electrolytic plating solution analyzer and electrolytic plating solution analysis method
JP2015010991A (en) Evaluation method of depressant contained in plating solution
JP2018205149A (en) Electrolytic plating solution analyzer, electrolytic plating solution analysis system, and electrolytic plating solution analysis method
JP2019211324A (en) Electrochemical sensor, working electrode therefor and method for measuring electroplating solution
Schiecke et al. Method—Time-Variance In EIS Measurements: The Simple Case of Dilution
US20110241709A1 (en) Apparatus and method for measuring activity of plating solution
JP2013140105A (en) Moisture measuring method, moisture control method, and manufacturing method of metal structure
JP2002350395A (en) Method for measuring concentration of chlorine in plating solution
JP2018072172A (en) Electrolytic plating solution analyzer, electrolytic plating solution analysis method and program for electrolytic plating solution analysis
JP2018205148A (en) Electrolytic plating solution analyzer, electrolytic plating solution analysis system, and electrolytic plating solution analysis method
Kryshtop et al. A rate of zinc potentiostatic nucleation on a pyrolytic carbon electrode from an alkaline solution