JPS63141346A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63141346A
JPS63141346A JP28673786A JP28673786A JPS63141346A JP S63141346 A JPS63141346 A JP S63141346A JP 28673786 A JP28673786 A JP 28673786A JP 28673786 A JP28673786 A JP 28673786A JP S63141346 A JPS63141346 A JP S63141346A
Authority
JP
Japan
Prior art keywords
oxidation
resistant film
film
grooves
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28673786A
Other languages
Japanese (ja)
Inventor
Koji Otsu
大津 孝二
Hiroyuki Moriya
博之 守屋
Jitsuya Noda
野田 実也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28673786A priority Critical patent/JPS63141346A/en
Publication of JPS63141346A publication Critical patent/JPS63141346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To almost eliminate the generation bird's beak and to lessen a dimensional conversion difference by a method wherein a second oxidation-resistant film is formed is grooves formed using a selectively formed first oxidation-resistant film as a mask, this is subjected to anisotropic etching and each semiconductor layer formed in the grooves is oxidized to use as an element isolation region. CONSTITUTION:An Si3N4 is deposited on an oxide film 7 in a thickness of about 500 Angstrom to form a first oxidation-resistant film 2. Then, a resist 9 is patterned excluding element isolation regions 6 to be formed on the first oxidation-resistant film 2. Then, after an Si substrate 1 is etched by about 0.4 mum using the first oxidation-resistant film 2 as a mask by an RIE method to form grooves 3, channel stopper regions 8 are formed. A second oxidation-resistant film 4 is formed in the grooves 3 and on the first oxidation-resistant film 2 using an Si3N4 by a CVD method and the second oxidation-resistant film 4 is subjected to anisotropic etching (a) by an RIE method and so on. Hereby, the second oxidation-resistant film 4 is left on the sidewall parts in the grooves 3, on which the Si3N4 is adhered thickly in the direction to be etched. Then, semiconductor layer 5 of a thickness of about 1500 Angstrom are each selectively formed in the exposed grooves 3, a thermal oxide film is grown and a single crystal Si film is all turned into an SiO2 film. At this time, as the second oxidationresistant film 4 at both ends of each element isolation region 6 fulfills the role of a mask at the time of oxidation of the semiconductor layer 5, the dimensional conversion different can be lessened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に素子分離
領域を有する半導体装置における、該素子分離領域の形
成方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for forming an isolation region in a semiconductor device having an isolation region.

〔発明の概要〕[Summary of the invention]

本発明は、素子分離領域を有する半導体装置の製造方法
において、半導体基板上に第1の耐酸化膜を選択的に形
成し、これをマスクにして選択的に半導体基板をエツチ
ングして溝を形成した後、該溝内と第1の耐酸化膜上を
第2の耐酸化膜で覆い、該第2の耐酸化膜を異方性エツ
チングして溝側壁部に残し、少なくとも溝内に半導体層
を形成してこれを酸化した後、第1の耐酸化膜を除去し
て平坦化することにより、基板表面と素子分離領域表面
との段差が小さく、かつ寸法変換差の少ない素子分離領
域を形成することができるようにしたものである。
The present invention is a method for manufacturing a semiconductor device having an element isolation region, in which a first oxidation-resistant film is selectively formed on a semiconductor substrate, and the semiconductor substrate is selectively etched using this as a mask to form a groove. After that, the inside of the trench and the top of the first oxidation-resistant film are covered with a second oxidation-resistant film, and the second oxidation-resistant film is anisotropically etched to remain on the sidewalls of the trench, and at least a semiconductor layer is formed in the trench. After forming and oxidizing this, the first oxidation-resistant film is removed and planarized to form an element isolation region with a small step difference between the substrate surface and the element isolation region surface and a small dimensional conversion difference. It was made so that it could be done.

〔従来の技術〕[Conventional technology]

従来の半導体装置の製造方法、なかでも素子分M fi
i域の形成方法として、種々の方法が提案されており、
例えばLOCOS法、変形LOCOS法、P、P、L(
Poly Pad LOCOS)法、Stをエツチング
するトレンチ法、ボックス法、SWAM方法などが行わ
れている。
Conventional semiconductor device manufacturing methods, especially element component M fi
Various methods have been proposed as methods for forming the i-region.
For example, LOCOS method, modified LOCOS method, P, P, L (
The methods used include the Poly Pad LOCOS method, the trench method for etching St, the box method, and the SWAM method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した通常のLOCOS法による場合、素子分離領域
とする熱酸化膜が成長して両端が鳥のくちばし状に基板
に食い込む、いわゆるバーズビーブが生じて寸法変換差
が太き(なり(酸化膜の厚さとバーズビーブの長さが略
同じ)、1μ以下のデザインルールによる超LSIの場
合には適用できないという問題点がある。変形LOCO
S法、P、P、L (PolyPad LOCOS)法
ではシリコン基板表面と素子分離領域表面との間に段差
ができるため、その上に微細配線加工を行うことが難し
いという問題点がある。
When using the above-mentioned normal LOCOS method, the thermal oxide film used as the element isolation region grows and both ends dig into the substrate in the shape of a bird's beak, creating a so-called bird's beak, resulting in a large dimensional conversion difference (the thickness of the oxide film). The problem is that it cannot be applied to a VLSI with a design rule of 1μ or less.Modified LOCO
In the S method and the P, P, L (PolyPad LOCOS) method, a step is formed between the surface of the silicon substrate and the surface of the element isolation region, so there is a problem in that it is difficult to process fine wiring thereon.

また上述したトレンチ法、ボックス法、SWAM法など
によれば、工程が複雑になり、Siと分#領域とのエツ
ジでは結晶欠陥が発生してリーク電流が発生し易くなる
という問題点もある。
Further, according to the above-mentioned trench method, box method, SWAM method, etc., the process becomes complicated, and there are also problems in that crystal defects are generated at the edges of Si and the minute regions, and leakage current is likely to occur.

そこで本発明の目的は、上記問題点を解決することので
きる半導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明は以下の方法をとる
。すなわち本発明においては、第1図(a)〜(hlに
例示する如く、素子分離領域6を有する半導体装置の製
造方法において、半導体基板1上に選択的に第1の耐酸
化膜2を形成する工程と、該第1の耐酸化膜2をマスク
にして選択的に上記半導体基板1をエツチングして溝3
を形成する工程と、該溝3内と上記第1の耐酸化膜2上
を覆って第2の耐酸化膜4を形成する工程と、該第2の
耐酸化M4を異方性エツチングし、上記溝3側壁部に第
2の耐酸化膜4を残す工程と、少なくとも上記:$3内
に半導体層5を形成する工程と、該半導体層5を酸化す
る工程と、上記第1の耐酸化膜2を除去して平坦化する
工程とを備えるようにし、かつ上記第1の耐酸化膜2除
去部に半導体素子を形成する方法をとる。
In order to solve the above problems, the present invention takes the following method. That is, in the present invention, as illustrated in FIGS. 1A to 1H, in a method for manufacturing a semiconductor device having an element isolation region 6, a first oxidation-resistant film 2 is selectively formed on a semiconductor substrate 1. and selectively etching the semiconductor substrate 1 using the first oxidation-resistant film 2 as a mask to form grooves 3.
a step of forming a second oxidation-resistant film 4 covering the inside of the groove 3 and the first oxidation-resistant film 2; and anisotropic etching of the second oxidation-resistant film M4. a step of leaving a second oxidation-resistant film 4 on the side wall of the trench 3; a step of forming a semiconductor layer 5 within at least the above $3; a step of oxidizing the semiconductor layer 5; and a step of oxidizing the semiconductor layer 5; This method includes a step of removing and planarizing the film 2, and forms a semiconductor element in the portion where the first oxidation-resistant film 2 is removed.

以下、本発明の半導体装置の製造方法をさらに詳しく説
明する。
Hereinafter, the method for manufacturing a semiconductor device of the present invention will be explained in more detail.

上記の第1の耐酸化膜2及び第2の耐酸化膜4の形成に
おいては、酸化膜として例えばSi+Naなどを好まし
く用いることができ、これは例えばCVDを使って形成
することができる。
In forming the first oxidation-resistant film 2 and the second oxidation-resistant film 4, for example, Si+Na can be preferably used as the oxide film, and this can be formed using, for example, CVD.

上記の異方性エツチングによって溝3側壁部に第2の耐
酸化膜4を残す工程は、平坦な部分と段差部の膜厚の差
を利用して段差部にエツチング残りを生じさせる、いわ
ゆるサイドウオール技法を使って行うことができる。
The process of leaving the second oxidation-resistant film 4 on the side walls of the groove 3 by the above-mentioned anisotropic etching is a so-called side etching process in which an etching residue is left on the step part by utilizing the difference in film thickness between the flat part and the step part. This can be done using the wall technique.

上記の半導体層5は、半導体基板lと同一の材料を主成
分とするものが好ましく、例えば半導体基板lにシリコ
ンを使った場合、半導体層5にはポリシリコンなどが好
ましく使える。そして半導体層5の形成は、)lcff
 + SiH4系のガスを使用して600〜900℃の
低温で選択的にシリコン(Si)を気相成長させること
により行うことができる。
The semiconductor layer 5 described above preferably has the same material as the semiconductor substrate 1 as its main component. For example, if silicon is used for the semiconductor substrate 1, polysilicon or the like can preferably be used for the semiconductor layer 5. The formation of the semiconductor layer 5 is as follows: )lcff
+ This can be carried out by selectively growing silicon (Si) in a vapor phase using a SiH4-based gas at a low temperature of 600 to 900°C.

なお本明細書中における寸法変換差とは、形成したい領
域の寸法と実際に形成される領域の寸法との偏差をいう
Note that the dimension conversion difference in this specification refers to the deviation between the dimension of the region to be formed and the dimension of the region to be actually formed.

〔作用〕[Effect]

上記したように、本発明は選択的に形成した第1の耐酸
化膜2をマスクとして溝3を選択的に形成し、該溝3内
に第2の耐酸化膜4を形成してこれを異方性エツチング
し、溝3の側壁部に第2の耐酸化膜4を残した後、溝3
内に形成した半導体層5を酸化して素子分1ftM 領
域6とするため、素子分離領域6の両端の耐酸化膜4が
半導体層5の酸化時のマスクの役割をはたし、所望の素
子分離領域の寸法との変換差を小さくできる。
As described above, the present invention involves selectively forming the grooves 3 using the selectively formed first oxidation-resistant film 2 as a mask, and forming the second oxidation-resistant film 4 in the grooves 3. After performing anisotropic etching and leaving the second oxidation-resistant film 4 on the sidewalls of the trench 3,
Since the semiconductor layer 5 formed in the semiconductor layer 5 is oxidized to form a 1 ftM region 6 for the device, the oxidation-resistant film 4 at both ends of the device isolation region 6 serves as a mask when the semiconductor layer 5 is oxidized, and the desired device is formed. The conversion difference with the dimensions of the separation region can be reduced.

そして最後に、表面に残った第1の耐酸化膜2を除去し
て平坦化することにより、該除去部分にさらに半導体素
子を形成することが可能になる。
Finally, by removing and planarizing the first oxidation-resistant film 2 remaining on the surface, it becomes possible to further form a semiconductor element in the removed portion.

〔実施例〕〔Example〕

以下、本発明の半導体装置の製造方法を第1図を参照し
ながら詳細に説明する。なお当然のことであるが、以下
の実施例は本発明の一例を示すもので、本発明はこの例
にのみ限定されない。
Hereinafter, a method for manufacturing a semiconductor device according to the present invention will be explained in detail with reference to FIG. It should be noted that, as a matter of course, the following example shows an example of the present invention, and the present invention is not limited only to this example.

第1図(al〜(h)は本実施例の工程を示す断面図で
ある。
FIGS. 1A to 1H are cross-sectional views showing the steps of this embodiment.

本実施例は、P型のシリコン基板に素子分離領域を形成
する場合に、本発明を適用したものである。
In this embodiment, the present invention is applied when forming an element isolation region on a P-type silicon substrate.

第1図(a)に示す如く、P型シリコン半導体基板(以
下適宜シリコン基板とも称する)1の表面を熱酸化して
、厚さ約300人の酸化膜7を形成する。
As shown in FIG. 1(a), the surface of a P-type silicon semiconductor substrate (hereinafter also referred to as a silicon substrate) 1 is thermally oxidized to form an oxide film 7 having a thickness of approximately 300 nm.

この酸化膜7は、通常のLOCOS法と比べてエツジ部
分のストレスが小さいので薄くてよい。酸化膜7上にC
VD (化学気相成長)法を使って5iJ4を厚さ約5
00人堆積させて第1の耐酸化膜2を形成する。次いで
第1の耐酸化膜2上に形成すべきし、第1図(a)の状
態とする。
This oxide film 7 may be thin because the stress at the edge portion is smaller than that in the normal LOCOS method. C on the oxide film 7
Using VD (chemical vapor deposition) method, 5iJ4 was deposited to a thickness of approximately 5
The first oxidation-resistant film 2 is formed by depositing 0.000 people. Next, it should be formed on the first oxidation-resistant film 2, resulting in the state shown in FIG. 1(a).

次いで第1図(b)のように第1の耐酸化膜2と酸化膜
7を除去して、窓開けする。
Next, as shown in FIG. 1(b), the first oxidation-resistant film 2 and the oxide film 7 are removed to form a window.

次に第1図(C)に示す如く、シリコン基板1を第1の
耐酸化膜2をマスクとしてRIEにより約0.4μエツ
チングして溝3を形成後、さらに第1の耐酸化膜2をマ
スクとしてシリコン基板1と同じ導電型の例えばボロン
(Bつをシリコン基板1にイオン注入することによりチ
ャンネルストップ領域8を形成する。この際のイオン注
入は、通常のLOCOS法と比べて低エネルギーかつ低
ドース量で良い。
Next, as shown in FIG. 1(C), the silicon substrate 1 is etched by about 0.4μ by RIE using the first oxidation-resistant film 2 as a mask to form a groove 3, and then the first oxidation-resistant film 2 is etched. The channel stop region 8 is formed by implanting ions of the same conductivity type as the silicon substrate 1, such as boron (B), into the silicon substrate 1 as a mask.The ion implantation at this time uses lower energy and Good in low doses.

次に第1図(d)に示す露出したシリコン基板1の部分
を熱酸化して、約300人のSing膜10膜形0する
Next, the exposed portion of the silicon substrate 1 shown in FIG. 1(d) is thermally oxidized to form about 300 Sing films.

第1図(e)に示す如く、溝3内と第1の耐酸化膜2上
をSi3N4を使ってCVDにより第2の耐酸化膜4を
形成し、l?IEなどで第2の耐酸化膜4を異方性エツ
チングする。
As shown in FIG. 1(e), a second oxidation resistant film 4 is formed inside the trench 3 and on the first oxidation resistant film 2 by CVD using Si3N4, The second oxidation-resistant film 4 is anisotropically etched using IE or the like.

これにより、第1図(f)に示す如く、エツチングされ
る方向にSi3N4が厚く付いている溝3の側壁部に第
2の耐酸化膜4が残る(いわゆるサイドウオール技法)
As a result, as shown in FIG. 1(f), a second oxidation-resistant film 4 remains on the side wall of the groove 3 where Si3N4 is thickly deposited in the direction of etching (so-called sidewall technique).
.

次に第1図(幻に示す如(、HCji +SiH4系の
混合ガスを使用して600〜900℃の低温でSiを気
相成長させることにより、露出した溝3内に選択的に厚
さ約1500人の半導体N5を形成する。この半導体層
5のSiは、単結晶であることが好ましいが、多結晶ま
たは非晶質であっても良い。上記半導体層5 (St)
を水蒸気雰囲気中などで約6000人(矢印の方向に点
線あたりまで成長)の熱酸化膜成長を行い、単結晶Si
膜を全てSi0g膜にする。
Next, as shown in FIG. 1,500 semiconductors N5 are formed.Si of this semiconductor layer 5 is preferably single crystal, but may be polycrystalline or amorphous.Semiconductor layer 5 (St)
A thermal oxide film of approximately 6,000 layers (grown in the direction of the arrow up to the dotted line) was grown in a steam atmosphere, etc., and single crystal Si was grown.
All the films are Si0g films.

この熱酸化膜成長の際、従来であれば熱酸化膜が横方向
にも成長して基板に食い込むため、寸法変換差が大きく
なっていたが、本実施例では素子分離領域6の両端の第
2の耐酸化膜4が半導体層5の酸化時のマスクの役割を
果たすため、寸法変換差を小さくすることができる。
During this thermal oxide film growth, in the conventional case, the thermal oxide film also grows laterally and bites into the substrate, resulting in a large dimensional conversion difference, but in this embodiment, the Since the oxidation-resistant film 4 of No. 2 serves as a mask during oxidation of the semiconductor layer 5, the difference in dimension conversion can be reduced.

次にシリコン基板1上の第1の耐酸化膜2及び酸化膜7
を希フッ酸や塩酸、あるいはリン酸(H3PO,等)な
どを使ってウェットエツチングし、除去し、表面を平坦
化したのが第1図(h)である。
Next, the first oxidation-resistant film 2 and the oxide film 7 on the silicon substrate 1 are formed.
The surface was flattened by wet etching using dilute hydrofluoric acid, hydrochloric acid, or phosphoric acid (H3PO, etc.), and the surface was flattened, as shown in FIG. 1(h).

この平坦化された除去部分は凹凸がないため、その上に
半導体素子(図示しない)などを信頼性良く形成するこ
とができる。
Since this flattened removed portion has no irregularities, a semiconductor element (not shown) or the like can be formed thereon with high reliability.

〔発明の効果〕〔Effect of the invention〕

上記したように、本発明の半導体装置の製造方法によっ
て、素子分離領域を形成した場合、基板の横方向へ食い
込むバーズビークの発生が殆どなく、寸法変換差を小さ
くすることができる。このため例えば1μ以下のデザイ
ンルールによる超LSIの製造にも、本発明は有効に適
用することができる。
As described above, when an element isolation region is formed by the method of manufacturing a semiconductor device of the present invention, there is almost no occurrence of bird's beaks that dig into the lateral direction of the substrate, and dimensional conversion differences can be reduced. Therefore, the present invention can be effectively applied to the manufacture of VLSIs using a design rule of 1 μm or less, for example.

また平坦化工程によって素子分離領域上には凹凸がない
ようにでき、その上にさらに半導体素子を形成すること
ができる。
Moreover, the planarization process makes it possible to eliminate unevenness on the element isolation region, and further semiconductor elements can be formed thereon.

更に、素子分離領域のエツジ部分は、従来はこのエツジ
部分にリーク電流が発生し易かったが、本発明により得
られるものはストレスが木質的に加わりにくい構造であ
るため、リーク電流を小さく抑えることができる。
Furthermore, in the past, leakage current was likely to occur at the edge portion of the element isolation region, but the structure obtained by the present invention is such that stress is not easily applied to the edge portion, so leakage current can be suppressed to a small level. I can do it.

またチャンネルストップ領域において、熱酸化 (’C
J)の際の不純物の再分布が少なくなるため、従来と比
較してイオン注入量を減少することができ、不純物拡散
領域の拡がりを少なくすることができる。
Also, in the channel stop region, thermal oxidation ('C
Since the redistribution of impurities during step J) is reduced, the amount of ion implantation can be reduced compared to the conventional method, and the spread of the impurity diffusion region can be reduced.

このイオン注入量の減少は、本発明をMOS LSIに
適用した場合、ソース、ドレイン領域とチャンネルスト
ップ領域間の接合容量が小さくなるため高速化が図れる
。                 (9)
When the present invention is applied to a MOS LSI, this reduction in the amount of ion implantation reduces the junction capacitance between the source and drain regions and the channel stop region, thereby increasing the speed. (9)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(hlは本発明の一実施例を説明する工
程断面図である。
FIGS. 1A to 1H are process sectional views illustrating an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 素子分離領域を有する半導体装置の製造方法において、 半導体基板上に選択的に第1の耐酸化膜を形成する工程
と、 該第1の耐酸化膜をマスクにして選択的に上記半導体基
板をエッチングして溝を形成する工程と、該溝内と上記
第1の耐酸化膜上を覆って第2の耐酸化膜を形成する工
程と、 該第2の耐酸化膜を異方性エッチングし、上記溝側壁部
に第2の耐酸化膜を残す工程と、少なくとも上記溝内に
半導体層を形成する工程と、 該半導体層を酸化する工程と、 上記第1の耐酸化膜を除去して平坦化する工程とを備え
ると共に、 上記第1の耐酸化膜除去部に半導体素子を形成すること
を特徴とする半導体装置の製造方法。
[Claims] A method for manufacturing a semiconductor device having an element isolation region, comprising: selectively forming a first oxidation-resistant film on a semiconductor substrate; and selectively forming a first oxidation-resistant film using the first oxidation-resistant film as a mask. forming a groove by etching the semiconductor substrate; forming a second oxidation-resistant film covering the inside of the groove and over the first oxidation-resistant film; a step of anisotropically etching to leave a second oxidation-resistant film on the trench sidewalls; a step of forming at least a semiconductor layer within the trench; a step of oxidizing the semiconductor layer; and a step of oxidizing the semiconductor layer; A method for manufacturing a semiconductor device, comprising: removing and planarizing a film, and forming a semiconductor element in the first oxidation-resistant film removed portion.
JP28673786A 1986-12-03 1986-12-03 Manufacture of semiconductor device Pending JPS63141346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28673786A JPS63141346A (en) 1986-12-03 1986-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28673786A JPS63141346A (en) 1986-12-03 1986-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63141346A true JPS63141346A (en) 1988-06-13

Family

ID=17708368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28673786A Pending JPS63141346A (en) 1986-12-03 1986-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63141346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457067A (en) * 1993-10-14 1995-10-10 Goldstar Electron Co., Ltd. Process for formation of an isolating layer for a semiconductor device
US5681776A (en) * 1994-03-15 1997-10-28 National Semiconductor Corporation Planar selective field oxide isolation process using SEG/ELO
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432984A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Integrated circuit device
JPS5893287A (en) * 1981-11-30 1983-06-02 Toshiba Corp Semiconductor device and manufacture thereof
JPS60171737A (en) * 1984-02-17 1985-09-05 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432984A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Integrated circuit device
JPS5893287A (en) * 1981-11-30 1983-06-02 Toshiba Corp Semiconductor device and manufacture thereof
JPS60171737A (en) * 1984-02-17 1985-09-05 Hitachi Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457067A (en) * 1993-10-14 1995-10-10 Goldstar Electron Co., Ltd. Process for formation of an isolating layer for a semiconductor device
US5681776A (en) * 1994-03-15 1997-10-28 National Semiconductor Corporation Planar selective field oxide isolation process using SEG/ELO
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit

Similar Documents

Publication Publication Date Title
US6228727B1 (en) Method to form shallow trench isolations with rounded corners and reduced trench oxide recess
EP0407047B1 (en) Method of planarization of topologies in integrated circuit structures
US5476813A (en) Method of manufacturing a bonded semiconductor substrate and a dielectric isolated bipolar transistor
JPH03155151A (en) Manufacture of semiconductor structure
JPS59115538A (en) Method of producing integrated circuit
JPS6340337A (en) Method of isolating integrated circuit
US6306723B1 (en) Method to form shallow trench isolations without a chemical mechanical polish
JPH0454993B2 (en)
US20020053709A1 (en) Semiconductor device and fabrication method thereof
JPH08139176A (en) Manufacture of semiconductor device
EP0239384B1 (en) Process for isolating semiconductor devices on a substrate
JPS63141346A (en) Manufacture of semiconductor device
JPS59232437A (en) Manufacture of semiconductor device
JPH10125773A (en) Manufacture of semiconductor device
JPH05304202A (en) Fabrication of semiconductor device
JPH0669064B2 (en) Element isolation method for semiconductor device
JPS6257232A (en) Isolation device and making thereof
JPH0313745B2 (en)
JPH09153542A (en) Method of manufacturing semiconductor device
JPH03153031A (en) Manufacture of semiconductor device
JPS60161632A (en) Semiconductor device and manufacture thereof
KR100199007B1 (en) Isolation method mixing forming field oxide film and forming trench
JPH0338742B2 (en)
JPS63197365A (en) Manufacture of semiconductor device
JPH10144780A (en) Manufacture of semiconductor device