JPS63140827A - Pumping loss reduction device for rotary piston engine - Google Patents

Pumping loss reduction device for rotary piston engine

Info

Publication number
JPS63140827A
JPS63140827A JP61288344A JP28834486A JPS63140827A JP S63140827 A JPS63140827 A JP S63140827A JP 61288344 A JP61288344 A JP 61288344A JP 28834486 A JP28834486 A JP 28834486A JP S63140827 A JPS63140827 A JP S63140827A
Authority
JP
Japan
Prior art keywords
intake
fuel
low load
extremely low
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61288344A
Other languages
Japanese (ja)
Inventor
Shizo Kariyama
四三 苅山
Hirobumi Nishimura
博文 西村
Kazutoyo Watanabe
一豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61288344A priority Critical patent/JPS63140827A/en
Publication of JPS63140827A publication Critical patent/JPS63140827A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve fuel consumption performance by operating a slowly closing type pumping loss reducing means in the extremely low load region, while making a mixture rich with a means for making fuel rich to expand a region controllable of reducing the pumping loss to the extremely low load region. CONSTITUTION:A controlling valve 22 is opened as negative pressure in an intake pipe is reduced in low load running, and a communicating path 21 affords communication between a compression chamber in a trochoid space 6a and an intake operation chamber in the other space 6b in the compression stroke in which a rotor 7a closes intake ports 17a, 18a to discharge a portion of intake to the space 6b. Similarly in the compression stroke of the rotor 7b, the intake is discharged to the space 6a through the communicating path 21. Next, in a extremely low load, the controlling valve 22 is further opened as negative pressure in the intake pipe is reduced, while the extremely low load region is judged by the rotational frequency and intake negative pressure of an engine. Then, fuel is increasingly injected from a fuel injection valve to make fuel rich and ensure the stability of fuel. Thus, the pumping loss reduction control can be expanded to the extremely low load region to improve the fuel consumption as a whole even if the fuel is made rich.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリピストンエンジンのポンプ損失低減装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a pump loss reduction device for a rotary piston engine.

(従来技術とその問題点) 従来、インタメゾイエイトハウジングと、該インタメゾ
イエイトハウジングの両側に位置した2つのロータハウ
ジングと、該2つのロータハウジングの外側にそれぞれ
配置された2つのサイドハウジングとにより形成される
トロコイド空間を、偏心軸に軸支した2つのロータが遊
星回転運動する2気筒ロータリピストンエンジンにおい
て、ロータの回転に応じて、一方のトロコイド空間の圧
縮作動室と他方のトロコイド空間の吸気作動室との連通
状態と、上記他方のトロコイド空間の圧縮作動室と上記
一方のトロコイド空間の吸気作動室との連通状態を交互
に作り出す連通路を、上記インタメゾイエイトハウジン
グに穿設するととしに、この連通路に、エンジン負荷の
大きさに応じて該連通路の通気量を制限する制御弁を設
けた2気筒ロータリピストンエンジンの吸気装置が提案
されている(特開昭58−172429号公報診照)。
(Prior art and its problems) Conventionally, an intermezzo eight housing, two rotor housings located on both sides of the intermezzo eight housing, and two side housings each located on the outside of the two rotor housings. In a two-cylinder rotary piston engine in which two rotors pivotally supported on an eccentric shaft perform planetary rotation, the trochoid space formed by A communication path is bored in the intermezoate housing to alternately create a communication state with the intake working chamber of the trochoid space, and a communication state between the compression working chamber of the other trochoid space and the intake working chamber of the one trochoid space. Accordingly, an intake system for a two-cylinder rotary piston engine has been proposed in which the communication passage is provided with a control valve that limits the amount of ventilation in the communication passage according to the magnitude of the engine load (Japanese Patent Application Laid-Open No. 1983-1999). Publication No. 172429).

当該吸気装置によれば、軽負荷域の圧縮行程時に、一方
の気筒の圧縮作動室の吸入空気の一部を、連通路を介し
て他方の気筒の吸気作動室に漏出(還流)させるように
した所謂、遅閉じ式ポンプ損失制御が行なわれ、ポンプ
損失を低減することができるという効果がある。
According to this intake device, during a compression stroke in a light load range, a portion of the intake air in the compression working chamber of one cylinder is leaked (refluxed) into the intake working chamber of the other cylinder through the communication passage. So-called late-closing pump loss control is performed, which has the effect of reducing pump loss.

ところが、棒径負荷域にまで、上記のポンプ損失低減制
御を拡大しようとした場合、この棒径負荷域では圧縮圧
ツノやエンジン温度の低下に加えて、グイリュージョン
増大により着火不良が惹起され失火が発生するといった
問題があるため、遅閉じ式ポンプ損失制御を行なうこと
ができず、棒径負荷域では、ポンプ損失の低減ができな
いという問題があった。
However, when trying to extend the pump loss reduction control described above to the rod diameter load range, in this rod diameter load range, in addition to the drop in compression pressure horn and engine temperature, an increase in illusion causes ignition failure and misfires. Because of this problem, late-closing pump loss control cannot be performed, and pump loss cannot be reduced in the rod diameter load range.

(発明の目的) 本発明は上記問題を解消するためになされたちので、極
低負荷域でもポンプ損失の低減が図れるようにすること
を基本的な目的とするものである。
(Objective of the Invention) The present invention has been made to solve the above-mentioned problems, and its basic purpose is to reduce pump loss even in an extremely low load range.

(発明の構成) このため本発明は、ロータリピストンエンジンにおい七
、軽負荷域の圧縮行程時に吸入空気の一部を漏出させる
遅閉じ式ポンプ損失低減手段が設けられていて、該手段
は、棒径負荷域でも遅閉じポンプ損失制御が行なわれる
ように作動されると共に、棒径負荷域での該装置の作動
時に燃料をリッチにする燃料リッチ化手段が設けられて
いることを特徴とするものである。
(Structure of the Invention) Therefore, in the present invention, a rotary piston engine is provided with a slow-closing pump loss reducing means for leaking a part of the intake air during the compression stroke in a light load range, and the means is a rotary piston engine. The device is operated so that late-closing pump loss control is performed even in the rod diameter load range, and is further provided with a fuel enrichment means that enriches the fuel when the device is operated in the rod diameter load range. It is.

(発明の効果) 本発明によれば、棒径負荷域において、遅閉じ式ポンプ
損失低減手段を作動させると同時に、燃料リッチ化手段
により燃料をリッチにするようにしたものであるから、
燃焼安定性を確保することができ、よってポンプ損失低
減制御を棒径負荷域にまで拡大することができ、たとえ
燃料をリッチ化したとしてもポンプ損失の低減効果によ
って、全体として燃費性能を向上することができる。
(Effects of the Invention) According to the present invention, in the rod diameter load range, the late-closing pump loss reduction means is operated and at the same time, the fuel is made rich by the fuel enrichment means.
Combustion stability can be ensured, and pump loss reduction control can therefore be extended to the rod diameter load range, and even if the fuel is enriched, the pump loss reduction effect improves overall fuel efficiency. be able to.

(実施例) 以下、本発明の実施例を添付図面について詳細に説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図及び第2図に示すように、2気筒ロータリピスト
ンエンジン1は、ケーシング2を備え、該ケーシング2
は、インタメゾイエイトハウジング3と、該ハウジング
3の両側に配置された2つのロータハウジング4a、4
bと、該ハウジング4a。
As shown in FIGS. 1 and 2, a two-cylinder rotary piston engine 1 includes a casing 2.
consists of an intermezzo housing 3 and two rotor housings 4a and 4 disposed on both sides of the housing 3.
b, and the housing 4a.

4bの外側に配置された2つのサイドハウジング5a、
5bとて構成されている。
two side housings 5a arranged outside of 4b;
5b.

上記ロータハウジング4a、4bは、内周面がトロコイ
ド面となっており、このトロコイド面と、インタメゾイ
エイトハウジング3の両側面と、サイドハウジング5a
、5bの内側面とで、2つのトロコイド空間6a、6b
を形成している。
The inner circumferential surfaces of the rotor housings 4a, 4b are trochoidal surfaces, and the trochoidal surfaces, both side surfaces of the intermezoate housing 3, and the side housing 5a
, 5b, and the two trochoidal spaces 6a, 6b.
is formed.

この2つのトロコイド空間6a、6bには、それぞれロ
ータ7a、7bが収容されており、このロータ7a、7
bは偏心軸8に支持されて上記トロコイド空間6a、6
bを互いに180度の位相をもって遊星回転運動するよ
うになっている。
These two trochoid spaces 6a, 6b accommodate rotors 7a, 7b, respectively, and these rotors 7a, 7
b is supported by the eccentric shaft 8 and is connected to the trochoidal spaces 6a, 6.
b are planetarily rotated with a phase of 180 degrees relative to each other.

一方、吸気通路10には、エアクリーナ11゜エアフロ
メータ12.スロットル弁13等が設けられ、該吸気通
路10はスロットル弁I3の下流側で、2つの主(プラ
イマリ−)吸気通路15a、15bと2つの副(セカン
ダリ)吸気通路16a、16bとに分岐され、主吸気通
路15a、15bはインクメゾイエイトハウジング3の
両側壁に開口する主吸気ポート17a、17bに連結さ
れると共に、副吸気通路16a、16bはサイドハウジ
ング5a、5bの内側壁に開口する副吸気ポート18b
、18bに連結されている。
On the other hand, the intake passage 10 includes an air cleaner 11° air flow meter 12. A throttle valve 13 and the like are provided, and the intake passage 10 is branched into two primary intake passages 15a, 15b and two secondary intake passages 16a, 16b on the downstream side of the throttle valve I3. The main intake passages 15a, 15b are connected to main intake ports 17a, 17b that open on both side walls of the ink mezzo 8 housing 3, and the sub intake passages 16a, 16b are auxiliary intake ports that open on the inner walls of the side housings 5a, 5b. Intake port 18b
, 18b.

上記主、副吸気通路]、 5a、 15b、 16a、
 16bには燃料噴射弁19(主吸気通路15aの分の
み図示)がそれぞれ設けられている。
the above main and sub-intake passages], 5a, 15b, 16a,
Fuel injection valves 19 (only those for the main intake passage 15a are shown) are provided in the fuel injection valves 16b, respectively.

上記インタメゾイエイトハウジング3には、ロータ7a
、7bの180度位相のずれた回転に応して、一方のト
ロコイド空間6aの圧縮作動室を他方のトロコイド空間
の吸気作動室に連通ずる連通状態と、他方のトロコイド
空間6bの圧縮作動室を一方のトロコイド空間6aの吸
気作動室に連通する連通状態とを、交互に作り出す連通
路21が形成されている。
The intermediate housing 3 includes a rotor 7a.
, 7b out of phase by 180 degrees, the compression working chamber of one trochoid space 6a is communicated with the intake working chamber of the other trochoid space, and the compression working chamber of the other trochoid space 6b is connected. A communication path 21 is formed that alternately creates a communication state in which one trochoid space 6a communicates with the intake working chamber.

該連通路2Iには制御弁22が介設され、該制御弁22
は、第3図に示すように、減速両カット域■、減速片カ
ット域■、アイドル域■、高回転域■、過給域■、高出
力域■では閉じられ、極軽負荷域■とフィードバック補
正域■では、吸気管負圧により、その負荷に応じた開度
で開くように構成されている。
A control valve 22 is interposed in the communication path 2I, and the control valve 22
As shown in Figure 3, is closed in the deceleration double cut region ■, deceleration single cut region ■, idle region ■, high rotation region ■, supercharging region ■, and high output region ■, and is closed in the extremely light load region ■. In the feedback correction region (3), the intake pipe is configured to open at an opening degree corresponding to the load due to the intake pipe negative pressure.

この制御弁22は、吸気管負圧センサー25により、負
荷に応じた開度で開いて、上記連通路21の通気量を調
整し、作動室の充填mを制御する。
This control valve 22 is opened at an opening degree according to the load by an intake pipe negative pressure sensor 25 to adjust the amount of ventilation in the communication passage 21 and control the filling m of the working chamber.

そして、車載のマイクロコンピュータ23には、吸気管
負圧、エンジン回転数、制御弁22の開度などが入力さ
れて演算処理され、該マイクロコンピュータ23の出力
信号により、制御弁22のアクチュエータ24、燃料噴
射弁19などか制御される。
Then, the intake pipe negative pressure, the engine rotation speed, the opening degree of the control valve 22, etc. are inputted to the on-vehicle microcomputer 23 and processed, and the output signals of the microcomputer 23 actuate the actuator 24 of the control valve 22, The fuel injection valve 19 and the like are also controlled.

上記のような構成であれば、高負荷運転時には、制御弁
22が閉じられているので、トロコイド空間6a、6b
の圧縮作動室へは各吸気通路15a、15b、 16a
、 16bを介して吸入空気が供給されて、通常のエン
ジンと同様な状態で運転される。
With the above configuration, the control valve 22 is closed during high-load operation, so the trochoid spaces 6a and 6b are closed.
Each intake passage 15a, 15b, 16a is connected to the compression working chamber of
, 16b, and the engine is operated in the same manner as a normal engine.

次に、低負荷運転時には、吸気管負圧か低下するのに連
動して制御弁22が開かれるようになる。
Next, during low-load operation, the control valve 22 is opened as the intake pipe negative pressure decreases.

この結果、一方のロータ7aが吸気ボー)17a。As a result, one rotor 7a has an intake bow) 17a.

18aを閉じてから連通路2Iを閉じるまでの圧縮行程
において連通路2Iはトロコイド空間6aの圧縮作動室
をトロコイド空間6bの吸気作動室に連通させるので、
トロコイド空間6aの圧縮作動室内の吸入空気の一部を
トロコイド空間6bの吸気作動室に排出する。
During the compression stroke from closing 18a to closing communication passage 2I, communication passage 2I communicates the compression working chamber of trochoid space 6a with the intake working chamber of trochoid space 6b.
A part of the intake air in the compression working chamber of the trochoid space 6a is discharged to the intake working chamber of the trochoid space 6b.

次いて、他方のロータ7bが吸気ボーH7b。Next, the other rotor 7b is at the intake bow H7b.

18bを閉じてから連通路21を閉じるまでの圧縮行程
において、連通路2Iはトロコイド空間6bの圧縮作動
室をトロコイド空間6aの吸気作動室に連通させるので
、トロコイド空間6bの圧縮作動室の吸入空気の一部を
トロコイド空間6aの吸気作動室に排出する。
During the compression stroke from closing 18b to closing communication passage 21, communication passage 2I communicates the compression working chamber of trochoid space 6b with the intake working chamber of trochoid space 6a, so that the intake air in the compression working chamber of trochoid space 6b is A part of the air is discharged into the intake working chamber of the trochoid space 6a.

この排出量は、吸気管負圧センター25で検出された吸
気管負圧に応じて開度が調節される制御弁2Iによって
制御される。
This discharge amount is controlled by a control valve 2I whose opening degree is adjusted according to the intake pipe negative pressure detected by the intake pipe negative pressure center 25.

以上を交互に繰り返すことによって、トロコイド空間6
a、6bの圧縮作動室から吸入空気の−・部を排出して
、エンジンを実質的に負荷に応じた行程容積のものとし
て作動させろことができる。
By repeating the above steps alternately, the trochoid space 6
By discharging a portion of the intake air from the compression working chambers a and 6b, the engine can be operated with a stroke volume that substantially corresponds to the load.

一方、題軽負荷域では、圧縮圧力、温度の低下皮びダイ
リューション増大による着火不良で失火が発生するのを
防止するために、従来では制御弁22が閉じられていた
。したがって、極軽負荷域ではポンプ損失の低減が図れ
なかった。
On the other hand, in the light load range, the control valve 22 has conventionally been closed in order to prevent a misfire from occurring due to ignition failure due to a decrease in compression pressure and temperature and an increase in skin dilution. Therefore, it was not possible to reduce pump loss in the extremely light load range.

そこで、本発明では、第5図にフローチャートを示すよ
うに、ステップS1でエンジン回転数と吸気管負圧を検
出し、ステップS2で極軽負荷域を検出すると、ステッ
プS3でA/F’(空燃比)をリッチ(増量)に設定口
、ステップS4で制御弁22のオン、オフを判定し、閉
作動しておればステップS5で開作動して、ステップS
6で最終燃料噴射量を演算し、ステップS7で燃料噴射
弁19から燃料を増量させて噴射させる。
Therefore, in the present invention, as shown in the flowchart in FIG. The air-fuel ratio) is set to rich (increase), and in step S4 it is determined whether the control valve 22 is on or off, and if it is closed, it is opened in step S5, and then the control valve 22 is opened in step S5.
In step S6, the final fuel injection amount is calculated, and in step S7, the amount of fuel is increased and injected from the fuel injection valve 19.

これにより、燃費率が悪化するように思えるか、第4図
に制御弁が“閉”の従来の場合(黒丸を連ねた実線)と
、制御弁22を開制御する本発明の場合(×印を連ねた
点線)との燃費率を比較して示すように、燃焼安定性の
指標となるP max変動率を5%以内に保持するよう
に、燃料をリッチ化した場合、本発明の燃費率は、制御
弁22を閉じた状態で燃料をリッチ化する場合に比して
明らかに向上している。かかる燃費の改善は、ポンプ損
失の低減効果と、燃料のリッチ化とが相乗的に作用して
燃焼安定性が確保できるためであると考えられる。
As a result, it seems that the fuel efficiency rate worsens. Figure 4 shows the conventional case where the control valve is "closed" (solid line with a series of black circles) and the case of the present invention where the control valve 22 is controlled to open (marked with an x). As shown by comparing the fuel efficiency rate with the dotted line), when the fuel is enriched so that the P max fluctuation rate, which is an index of combustion stability, is maintained within 5%, the fuel efficiency rate of the present invention decreases. is clearly improved compared to the case where the fuel is enriched with the control valve 22 closed. This improvement in fuel efficiency is thought to be due to the effect of reducing pump loss and enriching the fuel acting synergistically to ensure combustion stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るロータリピストンエンジンのポン
プ損失低減装置の構成図、第2図は第1図のロータリピ
ストンエンジンの断面図、第3図はエンジン回転数と吸
気管負圧との関係における運転領域図、第4図は空燃比
とポンプ損失、燃費率、P max変動率との関係を示
すグラフ、第5図は極軽負荷域での制御を示すフローチ
ャートである。 1・・・ロータリピストンエンジン、 2・・・ケーシング、7a、7b・・・ロータ、IO・
・吸気通路、  19・・・燃料噴射弁、21・・・連
通路、   22・・・制御弁、23・・・マイクロコ
ンピュータ。
Fig. 1 is a block diagram of a pump loss reduction device for a rotary piston engine according to the present invention, Fig. 2 is a sectional view of the rotary piston engine shown in Fig. 1, and Fig. 3 is a relationship between engine speed and intake pipe negative pressure. FIG. 4 is a graph showing the relationship between air-fuel ratio, pump loss, fuel consumption rate, and P max fluctuation rate, and FIG. 5 is a flowchart showing control in an extremely light load range. 1... Rotary piston engine, 2... Casing, 7a, 7b... Rotor, IO・
- Intake passage, 19...Fuel injection valve, 21...Communication passage, 22...Control valve, 23...Microcomputer.

Claims (1)

【特許請求の範囲】[Claims] (1)トロコイド状の内周面を有するロータハウジング
とその両側に位置するサイドハウジングとで構成される
ケーシング内を多角形状のロータが遊星回転運動するロ
ータリピストンエンジンにおいて、 軽負荷域の圧縮行程時に吸入空気の一部を漏出させる遅
閉じ式ポンプ損失低減手段が設けられていて、該手段は
、極軽負荷域でも遅閉じポンプ損失制御が行なわれるよ
うに作動されると共に、極軽負荷域での該装置の作動時
に燃料をリッチにする燃料リッチ化手段が設けられてい
ることを特徴とするロータリピストンエンジンのポンプ
損失低減装置。
(1) In a rotary piston engine in which a polygonal rotor rotates planetarily within a casing consisting of a rotor housing with a trochoidal inner peripheral surface and side housings located on both sides of the rotor housing, during the compression stroke in the light load range. A slow-closing pump loss reduction means for leaking a portion of the intake air is provided, and the means is operated so that the late-closing pump loss control is carried out even in a very light load range. 1. A pump loss reduction device for a rotary piston engine, characterized in that the device is provided with fuel enrichment means for enriching the fuel when the device is operated.
JP61288344A 1986-12-03 1986-12-03 Pumping loss reduction device for rotary piston engine Pending JPS63140827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288344A JPS63140827A (en) 1986-12-03 1986-12-03 Pumping loss reduction device for rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288344A JPS63140827A (en) 1986-12-03 1986-12-03 Pumping loss reduction device for rotary piston engine

Publications (1)

Publication Number Publication Date
JPS63140827A true JPS63140827A (en) 1988-06-13

Family

ID=17728987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288344A Pending JPS63140827A (en) 1986-12-03 1986-12-03 Pumping loss reduction device for rotary piston engine

Country Status (1)

Country Link
JP (1) JPS63140827A (en)

Similar Documents

Publication Publication Date Title
US4009688A (en) Rotary piston type engine
US4756284A (en) Intake system for internal combustion engine
US4566412A (en) Intake system for rotary piston engine
US4562804A (en) Intake system for rotary piston engine
US4627395A (en) Intake system for rotary piston engines
JPS63140827A (en) Pumping loss reduction device for rotary piston engine
US4759324A (en) Intake system for rotary piston engine
US4562803A (en) Intake system for rotary piston engine
US4562805A (en) Intake system for rotary piston engine
US4116190A (en) Trochoidal rotary piston engine with bypass of compressed mixture to exhaust chamber
US4750458A (en) Intake system for rotary piston engine
JPH0436026A (en) Intake system of engine
JPH0658163A (en) Rotary piston engine
JPS63179132A (en) Rotary piston engine with pumping loss reducing device
JPH045697Y2 (en)
JPS63143329A (en) Pumping loss reducing device for rotary piston engine
JP3441471B2 (en) Engine control device
JP3349723B2 (en) Engine control device
JPH0447388Y2 (en)
JPS62170729A (en) Intake device for rotary piston engine
JPS63143328A (en) Pumping loss reducing device for rotary piston engine
JPS60201026A (en) Supercharger of rotary piston engine
JPS62157236A (en) Suction device for rotary piston engine
JPS6390622A (en) Suction system for rotary engine
JPH0647943B2 (en) Intake device for rotary piston engine