JPS63143329A - Pumping loss reducing device for rotary piston engine - Google Patents

Pumping loss reducing device for rotary piston engine

Info

Publication number
JPS63143329A
JPS63143329A JP61291334A JP29133486A JPS63143329A JP S63143329 A JPS63143329 A JP S63143329A JP 61291334 A JP61291334 A JP 61291334A JP 29133486 A JP29133486 A JP 29133486A JP S63143329 A JPS63143329 A JP S63143329A
Authority
JP
Japan
Prior art keywords
control valve
intake
fuel
light load
load range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291334A
Other languages
Japanese (ja)
Inventor
Hirobumi Nishimura
博文 西村
Shizo Kariyama
四三 苅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61291334A priority Critical patent/JPS63143329A/en
Publication of JPS63143329A publication Critical patent/JPS63143329A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To prevent the deposition of fuel on a communicating passage wall by generating a slight air flow in the communicating passage which is formed in an intermediate housing and which communicates cylinders even when said communicating passage is substantially closed by means of a control valve. CONSTITUTION:A communicating passage 21 for alternately connecting the compression operating chamber and the intake air operating chamber of trochoid spaces 6a, 6b in accordance with the rotation of rotors 7a, 7b, is formed in an intermediate housing 3. And, a control valve 22 is provided in the communicating passage 21, and fuel injection valves 30, 31 are provided on both sides of the control valve 22. The valves 22, 30, 31 and fuel injection valves 19 provided in main and sub-intake passages 15a, 15b, etc. are controlled in their opening and closing by means of a microcomputer 23. In this case, the control valve 22 is controlled so as to be closed at a high load zone and opened at an opening corresponding to a load by means of intake pipe negative pressure in a low load zone, while being controlled to be opened so as to generate a slight air flow at the time of an extremely low load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリピストンエンジンのポンプ損失低減装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a pump loss reduction device for a rotary piston engine.

(従来技術とその問題点) 従来、インタメディエイトハウジングと、該インタメデ
ィエイトハウジングの両側に位置した2つのロータハウ
ジングと、該2つのロータハウジングの外側にそれぞれ
配置された2つのサイドハウジングとにより形成される
トロコイド空間を、偏心軸に軸支した2つのロータが遊
星回転運動する2気筒ロータリピストンエンジンにおい
て、ロータの回転に応じて、一方のトロコイド空間の圧
縮作動室と他方のトロコイド空間の吸気作動室との連通
状態と、上記他方のトロコイド空間の圧縮作動室と上記
一方のトロコイド空間の吸気作動室との連通状態を交互
に作り出す連通路を、上記インタメディエイトハウジン
グに穿設するとともに、この連通路に、エンジン負荷の
大きさに応じて該連通路の通気量を制限する制御弁を設
けた2気筒ロータリピストンエンジンの吸気装置が提案
されている(特開昭58−172429号公報参照)。
(Prior art and its problems) Conventionally, an intermediate housing, two rotor housings located on both sides of the intermediate housing, and two side housings located on the outside of the two rotor housings have been used. In a two-cylinder rotary piston engine in which two rotors supported on an eccentric shaft perform planetary rotation, the trochoid space is formed between a compression chamber in one trochoid space and an intake air in the other trochoid space, depending on the rotation of the rotors. Drilling in the intermediate housing a communication passage that alternately creates communication with the working chamber and communication between the compression working chamber of the other trochoid space and the intake working chamber of the one trochoid space; An intake system for a two-cylinder rotary piston engine has been proposed in which the communication passage is provided with a control valve that limits the amount of ventilation in the communication passage according to the size of the engine load (see Japanese Patent Laid-Open No. 172429/1983). ).

当該吸気装置によれば、軽負荷域の圧縮行程時に、一方
の圧縮作動室の吸気空気の一部を、連通路を介して他方
の吸気作動室に漏出(還流)させるようにしたものであ
るから、ユ閉じ式ポンプ損失制御が行なわれ、ポンプ損
失が低減するという効果かある。
According to this intake device, during a compression stroke in a light load range, a part of the intake air in one compression working chamber is leaked (refluxed) into the other intake working chamber through a communication passage. As a result, closed-circuit pump loss control is performed, which has the effect of reducing pump loss.

ところが、従来において極軽負荷域では、圧縮圧力、温
度の低下及びダイリューション増大による着火不良で失
火が発生するおそれがあるために、制御弁を閉じ、遅閉
じ式ポンプ損失制御を行なっていなかった。
However, in the past, in the extremely light load range, the control valve was closed and late-closing pump loss control was not performed because there was a risk of misfire due to ignition failure due to a drop in compression pressure, temperature, and increase in dilution. Ta.

ところで、上記連通路に燃料噴射弁を設けて、軽負荷域
及び極軽負荷域に燃料を噴射させる構造を採用した場合
、吸気通路にのみ燃料噴射弁を設ける従来構造と比較し
て、混合気が移動する領域が減り、ハウジング壁やロー
タ表面に付着する燃料量及び壁面における消炎が減少す
るのでI Cが低減する一方、点火プラグに近い連通路
から燃料を供給できるので、リッヂな混合層を作ること
ができるとともに、連通路による吸気の乱れに燃料をの
せることができるので、燃焼性ら向上するという効果が
ある。
By the way, when a structure is adopted in which a fuel injection valve is provided in the communication passage and fuel is injected in the light load region and extremely light load region, the air-fuel mixture is This reduces the amount of fuel that adheres to the housing wall and rotor surface, and reduces the amount of fuel extinguished on the wall surface, which reduces I This has the effect of improving combustibility because fuel can be placed on the turbulence of intake air caused by the communication passage.

しかしながら、上述したように極軽負荷域で制御弁を閉
じているので、連通路に空気流がほとんどないことから
、連通路壁に燃料が付着し、燃料の気化、霧化が阻害さ
れてHCが増加し、燃焼性が悪化するという問題があっ
た。
However, as mentioned above, since the control valve is closed in the extremely light load range, there is almost no airflow in the communication passage, so fuel adheres to the walls of the communication passage, inhibiting fuel vaporization and atomization, and causing HC. There was a problem in that the amount of carbon dioxide increased and the flammability worsened.

(発明の目的) 本発明は上記問題を解消するためになされたもので、極
軽負荷域でもt(Cの低減と燃焼性の向上が図れるよう
にすることを基本的な目的とするものである。
(Object of the invention) The present invention was made to solve the above problems, and its basic purpose is to reduce t(C) and improve combustibility even in an extremely light load range. be.

(発明の構成) このため本発明は、インタメディエイトハウジ・ングに
気筒間を連通ずる連通路が形成され、該連通路に制御弁
と燃料噴射弁が設けられ、上記制御弁を、極軽負荷域で
実質的に閉じ、軽負荷域で開き、高負荷域で閉じるよう
に制御するとともに、極軽負荷域と軽負荷域で上記燃料
噴射弁から燃料を噴射するように制御ずろロータリピス
トンエンジンのポンプ損失低減装置において、上記極軽
負荷域で、連通路に若干の空気流を発生させる空気流発
生手段が設けられていることを特徴とするものである。
(Structure of the Invention) Therefore, in the present invention, a communication passage that communicates between the cylinders is formed in the intermediate housing, a control valve and a fuel injection valve are provided in the communication passage, and the control valve is configured to be extremely lightweight. A staggered rotary piston engine that is controlled to be substantially closed in a load range, open in a light load range, and closed in a high load range, and controlled to inject fuel from the fuel injection valve in an extremely light load range and a light load range. The pump loss reduction device is characterized in that an air flow generating means is provided for generating a slight air flow in the communication passage in the extremely light load range.

(発明の効果) 本発明によれば、極軽負荷域で制御弁により連通路か実
質的に閉じられたときでも、空気流発生手段で連通路に
若干の空気流が発生ずるようになるから、この空気流に
より連通路壁に燃料が付着せず、燃料の気化、霧化が促
進されてI Cが低減し、燃焼性が向上するようになる
(Effects of the Invention) According to the present invention, even when the communication passage is substantially closed by the control valve in an extremely light load range, the airflow generation means generates a slight airflow in the communication passage. This air flow prevents fuel from adhering to the wall of the communication passage, promotes vaporization and atomization of the fuel, reduces IC, and improves combustibility.

(実施例) 以下、本発明の実施例を添付図面について詳細に説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図及び第2図に示すように、2気筒ロータリピスト
ンエン・ジンlは、ケーシング2を備え、該ケーシング
2は、インタメディエイトハウジング3と、該ハウジン
グ3の両側に配置された2つのロータハウジング4a、
4bと、該ハウジング4a。
As shown in FIGS. 1 and 2, a two-cylinder rotary piston engine l includes a casing 2, which includes an intermediate housing 3 and two intermediate housings disposed on both sides of the housing 3. rotor housing 4a,
4b, and the housing 4a.

4bの外側に配置された2つのサイドハウジング5a、
51〕とで構成されている。
two side housings 5a arranged outside of 4b;
51].

上記ロータハウジング4a、4bは、内周面がトロコイ
ド面となっており、このトロコイド面と、インタメディ
エイトハウジング3の両側面と、サイドハウジング5a
、  5bの内側面とで、2つのトロコイド空間6a、
6bを形成している。
The inner peripheral surfaces of the rotor housings 4a and 4b are trochoidal surfaces, and the trochoidal surfaces, both side surfaces of the intermediate housing 3, and the side housing 5a
, and the inner surface of 5b, two trochoidal spaces 6a,
6b.

この2つのトロコイド空間6a、6bには、それぞれロ
ータ7a、7bが収容されており、このロータ7a、7
bは偏心軸に支持されて上記ト〔フコイド空間6a、6
bを互いに180度の位相をもって遊星回転運動するよ
うになっている。
These two trochoid spaces 6a, 6b accommodate rotors 7a, 7b, respectively, and these rotors 7a, 7
b is supported by an eccentric shaft and the above-mentioned [fucoid spaces 6a, 6
b are planetarily rotated with a phase of 180 degrees relative to each other.

一方、吸気通路■0には、エアクリーナII。On the other hand, air cleaner II is installed in the intake passage ■0.

エアフロメータ+2.スロットル弁13等が設置Jられ
、該吸気通路10はスロワ)・ル弁13の下流側で、2
つの主(プライマリ−)吸気通路15a、15bと2つ
の副(セカンダリ)吸気通路16a、t6bとに分岐さ
れ、主吸気通路!5a、15bはインクメゾイエイトハ
ウジング3の両側壁に開口−4゛る主吸気ポート17a
、1.7bに連結されると共に、副吸気通路16a、1
6bはザイl’ ハウシング5a、5bの内側壁に開口
する副吸気ボーt18a、18!〕に連結されている。
Air flow meter +2. A throttle valve 13 etc. are installed, and the intake passage 10 is connected to the throttle valve 13 downstream of the throttle valve 13,
The main intake passage is branched into two main intake passages 15a, 15b and two secondary intake passages 16a, t6b. 5a and 15b are main intake ports 17a which are opened on both side walls of the ink mezzo 8 housing 3.
, 1.7b, and the sub intake passages 16a, 1.
6b is the sub-intake port t18a, 18! that opens on the inner wall of the housing 5a, 5b. ] is connected to.

上記主、副吸気通路15a、 15b、 l 6a、 
16bには燃料噴射弁19(主吸気通路15aの分のみ
図示)がそれぞれ設けられている。
The main and auxiliary intake passages 15a, 15b, l6a,
Fuel injection valves 19 (only those for the main intake passage 15a are shown) are provided in the fuel injection valves 16b, respectively.

上記インタメディエイトハウジング3には、ロータ7a
、7bの180度位相のずれた回転に応じて、一方のト
ロコイド空間6aの圧縮作動室を他方のトロコイド空間
の吸気作動室に連通ずる連通状態と、他方のトロコイド
空間6bの圧縮作動室を一方のトロコイド空間6aの吸
気作動室に連通ずる連通状態とを、交互に作り出す連通
路21が形成されて゛いろ。
The intermediate housing 3 includes a rotor 7a.
, 7b out of phase by 180 degrees, the compression working chamber of one trochoid space 6a is communicated with the intake working chamber of the other trochoid space, and the compression working chamber of the other trochoid space 6b is connected to one side. A communication path 21 is formed to alternately create a state of communication in which the trochoid space 6a communicates with the intake working chamber.

該連通路21には制御弁22が介設され、該制御弁22
は、第3図に示すように、高負荷域■では閉じられ、軽
負荷域■では、吸気管負圧により、その負荷に応じた開
度で開き、極軽負荷域■では第4図に示すように、若干
の空気流を発生させるように開く(いわゆる、ち上い開
き)ように構成されている。
A control valve 22 is interposed in the communication path 21, and the control valve 22
As shown in Fig. 3, in the high load range ■, it is closed, and in the light load range ■, it opens with the intake pipe negative pressure depending on the load, and in the very light load range ■, it opens as shown in Fig. 4. As shown, it is configured to open so as to generate a slight airflow (so-called "tilt opening").

この制御弁22は、吸気管負圧センサー(不図示)によ
り、負荷に応じた開度で開いて、上記連通路21の通気
量を調整し、作動室の充填量を制御する。
This control valve 22 is opened at an opening degree depending on the load by an intake pipe negative pressure sensor (not shown), adjusts the amount of ventilation in the communication passage 21, and controls the amount of filling in the working chamber.

一方、第5図及び第6図に具体的に示すように、上記連
通路2Iの制御弁22の両側位置には、燃料噴射弁30
.31かそれぞれ設けられている。
On the other hand, as specifically shown in FIGS. 5 and 6, fuel injection valves 30 are located on both sides of the control valve 22 in the communication passage 2I.
.. There are 31 each.

しかして、第1図に示すように、燃料タンク32からポ
ンプ33で送られた燃料は、フィルタ34とパルセーシ
ョンダンパ35を介して上記吸気マニホールド側燃料噴
射弁19と連通路側燃料噴射弁30.31とにそれぞれ
供給される共に、マニホールド負圧で作動されるプレッ
シャレギュレータ36で調圧して燃料タンク32に戻さ
れろようになる。
As shown in FIG. 1, the fuel sent from the fuel tank 32 by the pump 33 passes through the filter 34 and the pulsation damper 35 to the intake manifold side fuel injection valve 19 and the communication passage side fuel injection valve 30. .31 and is then returned to the fuel tank 32 after being pressure regulated by a pressure regulator 36 operated by manifold negative pressure.

そして、車載のマイクロコンピュータ23には、吸気管
負圧、エンジン回転数、制御弁22の開度などが入力さ
れて演算処理され、該マイクロコンピュータ23の出力
信号により、制御弁22のアクチュエータ、燃料噴射弁
19,30.31などが制御される。
The on-vehicle microcomputer 23 inputs and processes the intake pipe negative pressure, engine speed, opening degree of the control valve 22, etc., and the output signal of the microcomputer 23 controls the actuator of the control valve 22, the fuel The injection valves 19, 30, 31, etc. are controlled.

上記のような構成であれば、高負荷運転時には、制御弁
22が閉じられているので、トロコイド空間6a、6b
の圧縮作動室へは燃料噴射弁19により各吸気通路15
a、  I 5b、  l 6a、  I 6bを介し
て混合気が供給されて、通常のエンジンと同様な状態で
運転される。
With the above configuration, the control valve 22 is closed during high-load operation, so the trochoid spaces 6a and 6b are closed.
Each intake passage 15 is connected to the compression working chamber by a fuel injection valve 19.
A, I5b, I6a, and I6b are supplied with air-fuel mixture, and the engine is operated in the same manner as a normal engine.

次に、低負荷運転時には、吸気管負圧が上昇するのに連
動して制御弁22が開かれるようになる。
Next, during low-load operation, the control valve 22 is opened in conjunction with the increase in intake pipe negative pressure.

この結果、一方のロータ7aが吸気ポート17a。As a result, one rotor 7a has the intake port 17a.

18aを閉じてから連通路21を閉じるまでの圧縮行程
において連通路21はトロコイド空間6aの圧縮作動室
をトロコイド空間6bの吸気作動室に連通させるので、
トロコイド空間6aの圧縮作動室内の吸入空気の一部を
トロコイド空間6bの吸気作動室に排出する。
During the compression stroke from closing 18a to closing communication passage 21, communication passage 21 communicates the compression working chamber of trochoid space 6a with the intake working chamber of trochoid space 6b.
A part of the intake air in the compression working chamber of the trochoid space 6a is discharged to the intake working chamber of the trochoid space 6b.

次いで、他方のロータ7bが吸気ボート17b。Next, the other rotor 7b is the intake boat 17b.

+8bを閉してから連通路2Iを閉じるまでの圧縮行程
において、連通路21はトロコイド空間6bの圧縮作動
室をトロコイド空間6aの吸気作動室に連通させるので
、トロコイド空間6bの圧縮作動室の吸入空気の一部を
トロコイド空間6aの吸気作動室に排出する。
During the compression stroke from closing +8b to closing the communication passage 2I, the communication passage 21 communicates the compression working chamber of the trochoid space 6b with the intake working chamber of the trochoid space 6a, so that the suction of the compression working chamber of the trochoid space 6b is A portion of the air is discharged into the intake working chamber of the trochoid space 6a.

この排出量は、吸気管負圧センターで検出された吸気管
負圧に応じて開度が調節される制御弁22によって制御
される。
This discharge amount is controlled by a control valve 22 whose opening degree is adjusted according to the intake pipe negative pressure detected at the intake pipe negative pressure center.

以上を交互に繰り返すことによって、トロコイド空間6
a、6bの圧縮作動室から吸入空気の一部を排出して、
エンジンを実質的に負荷に応じた行程容積のものとして
作動させることができるので、ポンプ損失が低減するよ
うになる。
By repeating the above steps alternately, the trochoid space 6
Part of the intake air is discharged from the compression working chambers a and 6b,
Since the engine can be operated with a stroke volume that substantially depends on the load, pumping losses are reduced.

この軽負荷域■においては、燃料噴射弁30゜31(い
ずれか一方でよい。)から燃料が噴射されるが、制御弁
22が開いて連通路21に空気流が発生しているので、
連通路21に燃料が付着せず、燃料の気化、霧化が促進
されてHCが低減し、燃焼性が向上する。
In this light load range (3), fuel is injected from the fuel injection valves 30 and 31 (either one is fine), but since the control valve 22 is open and air flow is generated in the communication passage 21,
Fuel does not adhere to the communication path 21, vaporization and atomization of the fuel are promoted, HC is reduced, and combustibility is improved.

一方、極軽負荷域■では、圧縮圧力、温度の低下及びダ
リューンヨン増大による着火不良で失火が発生ずるのを
防止するために、従来では制御弁22は実質的にか閉じ
られていた。したがって、極軽負荷域では連通路21に
空気流がほとんどないので、燃料噴射弁30.31から
噴射された燃料が連通路2Iの壁に付着し、燃料の気化
、霧化が阻害されてHCが増加し、燃焼性が悪化してい
た。
On the other hand, in the extremely light load region (3), the control valve 22 has conventionally been substantially closed in order to prevent misfires from occurring due to ignition failure due to a decrease in compression pressure and temperature and an increase in firing speed. Therefore, in the extremely light load range, there is almost no airflow in the communication passage 21, so the fuel injected from the fuel injection valves 30 and 31 adheres to the wall of the communication passage 2I, inhibiting fuel vaporization and atomization, and causing HC. increased, and flammability worsened.

そこで、本発明では、極軽負荷域■では、失火の発生を
防止するのに支障がない限度で制御弁22を僅かに開い
て、連通路21に若干の空気流を発生させる。
Therefore, in the present invention, in the very light load range (3), the control valve 22 is slightly opened to the extent that it does not interfere with preventing misfires, and a slight air flow is generated in the communication passage 21.

これにより、軽負荷域■と同様に、連通路21の壁に燃
料が付着せず、燃料の気化、霧化が促進されてI Cか
低減し、燃焼性か向上するようになる。
As a result, as in the light load range (3), fuel does not adhere to the wall of the communication passage 21, vaporization and atomization of the fuel are promoted, IC is reduced, and combustibility is improved.

なお、極軽負荷域■において、本発明のような制御をし
ない場合には、連a路21に空気流がほとんどないこと
から、塩14墳射弁(インター)30゜31を停止させ
、燃料噴射弁(マニホールド)19から燃料を噴射する
方法が考えられるが、軽負荷域■と極軽負荷域■との微
妙な境で吸気マニホールド側と連通路側の燃料噴射弁1
9と30.31を切換えるのは燃料噴射の安定性が悪く
なる。
In addition, in the very light load range (■), if the control according to the present invention is not performed, since there is almost no air flow in the connecting passage 21, the salt 14 injection valve (inter) 30° 31 is stopped and the fuel is injected. One possible method is to inject fuel from the injection valve (manifold) 19, but at the delicate boundary between the light load region ■ and the very light load region ■, the fuel injection valve 1 on the intake manifold side and the communication passage side
Switching between 9 and 30.31 will result in poor fuel injection stability.

そこで、本発明のように、軽負荷域■と極軽負荷域■で
はインター側の燃料噴射弁30.31のみで燃料を噴射
し、極軽負荷域■では制御弁22を僅かに開くことによ
り発生ずる若干の空気流(アシストエア)で燃焼性を助
けることにより、燃料噴射のつなぎら改善できるように
なる。
Therefore, as in the present invention, in the light load region (■) and the very light load region (■), fuel is injected only by the fuel injection valve 30, 31 on the inter side, and in the very light load region (■), the control valve 22 is slightly opened. By assisting combustion with the small amount of airflow (assist air) that is generated, it becomes possible to improve the flow of fuel injection.

」二記実施例では、制御弁22を僅かに開くようにした
空気流発生手段であったが、第7図に示すように、燃料
噴射弁30.31に対して、ソレノイド40で開閉され
るエアブリード通路41を設け、該通路41から連通路
2Iにエアを導入して若干の空気流を発生さU゛るよう
にしてもよい。
In the second embodiment, the air flow generating means was designed to slightly open the control valve 22, but as shown in FIG. An air bleed passage 41 may be provided, and air may be introduced from the passage 41 into the communication passage 2I to generate a slight air flow.

この場合には、第8図にフローチャートを示すように、
ステップStでスタートし、ステップS2でエンジン回
転数と吸気管負圧を検出し、ステップS3で制御弁22
が閉か否かを検出し、NOであれば高負荷域のであるか
らステップS4でソレノイド40をオフしエアブリード
通路41を閉じてステップS5でエアカットする。
In this case, as shown in the flowchart in Figure 8,
Starts at step St, detects the engine speed and intake pipe negative pressure at step S2, and detects the control valve 22 at step S3.
If it is NO, it means that the load is in the high load range, so the solenoid 40 is turned off in step S4, the air bleed passage 41 is closed, and the air is cut in step S5.

ステップS3でYESであれば、ステップS6で極軽負
荷域■か否かを検出し、Noであれば軽負荷域■である
からステップS4でソレノイド4゜をオフしエアブリー
ド通路4Iを閉じてステップS5でエアカットする。
If YES in step S3, it is detected in step S6 whether or not the load is in the extremely light load range. If NO, it is in the light load range. In step S4, the solenoid 4° is turned off and the air bleed passage 4I is closed. Air is cut in step S5.

ステップS6でYESであれば、ステップS7でソレノ
イド40をオンしエアブリード通路41を開いてステッ
プS8でエアを導入する。
If YES in step S6, the solenoid 40 is turned on in step S7, the air bleed passage 41 is opened, and air is introduced in step S8.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るロータリピストンエンジンのポン
プ損失低減装置の構成図、第2図は第1図のロータリピ
ストンエンジンの断面図、第3図はエンジン回転数と吸
気管負圧との関係における運転領域図、工・1図は制御
弁のちょい開き状態を示す断面図、第5図は第6図の要
部平面図、第6図は第1図のロータリピストンエンジン
の具体的な要部断面図、第7図は第1図の変形例の構成
図、第8図は第7図のエア制御タイミングを示すフロー
チャートである。 l・・・ロータリピストンエンジン、 2・・・ケーシング、 3・・・インタメディエイトハウジング、7 a、 7
 b・・・ロータ、  10・・吸気通路、I9・・・
燃料噴射弁(マニホールド)、21・・・連通路、  
  22・・・制御弁、23・・・マイクロコンピユー
タ、 30.31・・・燃料噴射弁(インター)、40・・ソ
レノイド、 41 ・・エアブリード通路。
Fig. 1 is a block diagram of a pump loss reduction device for a rotary piston engine according to the present invention, Fig. 2 is a sectional view of the rotary piston engine shown in Fig. 1, and Fig. 3 is a relationship between engine speed and intake pipe negative pressure. Fig. 1 is a sectional view showing the control valve in a slightly open state, Fig. 5 is a plan view of the main part of Fig. 6, and Fig. 6 shows specific details of the rotary piston engine shown in Fig. 1. 7 is a configuration diagram of a modification of FIG. 1, and FIG. 8 is a flowchart showing air control timing in FIG. 7. l... rotary piston engine, 2... casing, 3... intermediate housing, 7 a, 7
b...Rotor, 10...Intake passage, I9...
Fuel injection valve (manifold), 21... communication passage,
22...Control valve, 23...Microcomputer, 30.31...Fuel injection valve (inter), 40...Solenoid, 41...Air bleed passage.

Claims (1)

【特許請求の範囲】[Claims] (1)インタメディエイトハウジングに気筒間を連通す
る連通路が形成され、該連通路に制御弁と燃料噴射弁が
設けられ、上記制御弁を、極軽負荷域で実質的に閉じ、
軽負荷域で開き、高負荷域で閉じるように制御するとと
もに、極軽負荷域と軽負荷域で上記燃料噴射弁から燃料
を噴射するように制御するロータリピストンエンジンの
ポンプ損失低減装置において、 上記極軽負荷域で、連通路に若干の空気流を発生させる
空気流発生手段が設けられていることを特徴とするロー
タリピストンエンジンのポンプ損失低減装置。
(1) A communication passage communicating between the cylinders is formed in the intermediate housing, a control valve and a fuel injection valve are provided in the communication passage, and the control valve is substantially closed in an extremely light load range;
In a pump loss reduction device for a rotary piston engine, which controls the fuel injection valve to open in a light load range and close in a high load range, and to inject fuel from the fuel injection valve in an extremely light load range and a light load range, A pump loss reduction device for a rotary piston engine, characterized by being provided with an airflow generating means for generating a slight airflow in a communication passage in an extremely light load range.
JP61291334A 1986-12-05 1986-12-05 Pumping loss reducing device for rotary piston engine Pending JPS63143329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291334A JPS63143329A (en) 1986-12-05 1986-12-05 Pumping loss reducing device for rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291334A JPS63143329A (en) 1986-12-05 1986-12-05 Pumping loss reducing device for rotary piston engine

Publications (1)

Publication Number Publication Date
JPS63143329A true JPS63143329A (en) 1988-06-15

Family

ID=17767571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291334A Pending JPS63143329A (en) 1986-12-05 1986-12-05 Pumping loss reducing device for rotary piston engine

Country Status (1)

Country Link
JP (1) JPS63143329A (en)

Similar Documents

Publication Publication Date Title
US4562804A (en) Intake system for rotary piston engine
JPS63143329A (en) Pumping loss reducing device for rotary piston engine
JPH06221176A (en) Auxiliary air feeding device for rotary piston engine
US4627395A (en) Intake system for rotary piston engines
JPS63143328A (en) Pumping loss reducing device for rotary piston engine
JPS63179132A (en) Rotary piston engine with pumping loss reducing device
JPH077565Y2 (en) Engine idle control device
JP2575784B2 (en) Auxiliary air supply for rotary piston engine
JPS63140827A (en) Pumping loss reduction device for rotary piston engine
JPS62170729A (en) Intake device for rotary piston engine
JPS631719A (en) Intake device for rotary piston engine
JP3349723B2 (en) Engine control device
JPH0442502Y2 (en)
JPS6361714A (en) Intake device for engine
JP3441471B2 (en) Engine control device
JPS61232330A (en) Intake apparatus for rotary piston engine
JPH0647943B2 (en) Intake device for rotary piston engine
JPS63268935A (en) Lubricating oil feeding device for engine
JPS62203925A (en) Intake device for rotary piston engine
JPS63179133A (en) 3-cylinder rotary piston engine with pumping loss reducing device
JPS60201026A (en) Supercharger of rotary piston engine
JPH02115528A (en) Fuel injection system of rotary piston engine
JPS6371519A (en) Intake device for engine
JPH0652046B2 (en) Lubrication device for rotary piston engine
JPS62157236A (en) Suction device for rotary piston engine