JPS6313286B2 - - Google Patents

Info

Publication number
JPS6313286B2
JPS6313286B2 JP57187901A JP18790182A JPS6313286B2 JP S6313286 B2 JPS6313286 B2 JP S6313286B2 JP 57187901 A JP57187901 A JP 57187901A JP 18790182 A JP18790182 A JP 18790182A JP S6313286 B2 JPS6313286 B2 JP S6313286B2
Authority
JP
Japan
Prior art keywords
wire
magnetic field
superconducting
rod
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57187901A
Other languages
Japanese (ja)
Other versions
JPS5978404A (en
Inventor
Mitsunobu Wakata
Kyoshi Yoshizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57187901A priority Critical patent/JPS5978404A/en
Publication of JPS5978404A publication Critical patent/JPS5978404A/en
Publication of JPS6313286B2 publication Critical patent/JPS6313286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 この発明は、高磁界発生用の超電導磁石に使用
されるGa、In等の金属元素を添加したNb3Sn系
化合物超電導線材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Nb 3 Sn-based compound superconducting wire to which metal elements such as Ga and In are added, which is used in superconducting magnets for generating high magnetic fields.

現在10T(テスラ)以上の高磁界を発生させる
超電導磁石用接材として、極細多心Nb3Sn線が開
発され、核融合、加速器、及び物性実験装置等に
応用されている。
Currently, ultrafine multi-core Nb 3 Sn wires have been developed as a contact material for superconducting magnets that generate high magnetic fields of 10 T (Tesla) or higher, and are being applied to nuclear fusion, accelerators, and physical properties experimental equipment.

第1図はこれらの超電導機器に使用する矩形断
面を有する1個の超電導磁石の発生する磁界分布
図で、図に示される様に、磁石の最内層の線材は
最大磁界Bmが印加され、最外層に向かつてほぼ
一様に磁界は減少する。この超電導磁石に使用す
るNb3Sn線材の印加磁場と臨界電流との関係は第
2図の曲線aで表わされ、直線cで適当な形状の
Nb3Snコイルの電流と最大磁界Bmとの関係が表
わされる。曲線aと直線cとの交点における磁界
Bmaが曲線aの特性をもつNb3Sn線材で巻かれ
たコイルの最大発生磁界である。第2図からわか
るように、高磁界における臨界電流密度を高める
と、磁石の発生磁界を向上させることができるの
で、同じ磁界を発生させ得る磁石が小型化でき、
そのための線材量や冷却に必要な液体Heの使用
量を低減することができる。
Figure 1 is a magnetic field distribution diagram generated by a single superconducting magnet with a rectangular cross section used in these superconducting devices. As shown in the figure, the wire in the innermost layer of the magnet receives the maximum magnetic field Bm, and The magnetic field decreases almost uniformly toward the outer layer. The relationship between the applied magnetic field and critical current of the Nb 3 Sn wire used in this superconducting magnet is represented by curve a in Figure 2, and straight line c
The relationship between the current in the Nb 3 Sn coil and the maximum magnetic field Bm is shown. Magnetic field at the intersection of curve a and straight line c
Bma is the maximum generated magnetic field of a coil wound with Nb 3 Sn wire having the characteristic of curve a. As can be seen from Figure 2, increasing the critical current density in a high magnetic field can improve the magnetic field generated by the magnet, so the magnet that can generate the same magnetic field can be made smaller.
The amount of wire used for this purpose and the amount of liquid He required for cooling can be reduced.

近年、上記の観点からNb3SnにGa、In、Pb、
Al、及びMg等の金属元素を添加しその上部臨界
磁場を高めることによつて、Bma近傍の高磁界
における臨界電流密度を改善する試みがなされて
いる。
In recent years, from the above point of view, Nb 3 Sn has been replaced with Ga, In, Pb,
Attempts have been made to improve the critical current density in a high magnetic field near Bma by adding metal elements such as Al and Mg to increase the upper critical magnetic field.

即ち、Nb3Snに添加するGaを例にとれば、ま
ずCuとSnとGaの3元合金を作成し、これをNb
棒と組合わせた後伸縮し、最終寸法で化合物生成
熱処理を施す方法である。
That is, taking Ga added to Nb 3 Sn as an example, first create a ternary alloy of Cu, Sn, and Ga, and then add this to Nb 3 Sn.
This method involves expanding and contracting the material after it is combined with a rod, and then subjecting it to heat treatment to form a compound at its final size.

上記の方法で得られた線材の印加磁場と臨界電
流の関係は第2図の曲線bで示され、第2図から
わかるようにこの線材の臨界電流は約8T以下で
は同様の構成のGaを添加しないNb3Sn線材の臨
界電流(曲線a)より低いが、それ以上の磁界で
は高く、同じ構成の磁石の最大発生磁界もBma
からBmbと高くなる。
The relationship between the applied magnetic field and critical current of the wire obtained by the above method is shown by curve b in Figure 2, and as can be seen from Figure 2, the critical current of this wire is less than about 8 T, compared to Ga of a similar configuration. The critical current is lower than that of the non-added Nb 3 Sn wire (curve a), but higher at higher magnetic fields, and the maximum generated magnetic field of a magnet with the same configuration is also Bma
It becomes high from Bmb.

しかしながらこの方法においては、Cuに合金
化されるSnとGaの量が加工上制限される上、加
工硬化が激しく線材加工工程において数十回にも
及ぶ中間熱処理を必要とする欠点があつた。更に
高磁界特性の改善に必要なSnの数百倍も高価な
Ga(Inも同様)を、高磁界特性を改善する必要の
ないコイルの外周部に巻かれる線材にも一様に添
加されるため、製造された線材も高価なものにな
る欠点もあつた。
However, this method has the disadvantage that the amount of Sn and Ga that can be alloyed with Cu is limited during processing, and that work hardening is severe and requires dozens of intermediate heat treatments in the wire processing process. Furthermore, it is several hundred times more expensive than Sn, which is necessary to improve high-field characteristics.
Since Ga (as well as In) is uniformly added to the wire wound around the outer periphery of the coil, which does not need to improve high-field characteristics, the manufactured wire also has the disadvantage of being expensive.

後者の欠点を改良するための方法として、それ
ぞれの印加磁界に応じた線材を接続して使う方法
(グレーデイング)、あるいは特性の異なる線材で
別のコイルを作りそれを組合せて用いる方法(ハ
イブリツド化)等が従来から知られている。
As a method to improve the latter drawback, there is a method of connecting wires according to each applied magnetic field (grading), or a method of creating separate coils using wires with different characteristics and using them in combination (hybridization). ) etc. are conventionally known.

しかしながら前者の方法では極細多心線の接続
が複雑で困難な工程であり、しかも接続部に生じ
た電気抵抗による発熱が起こるという別の欠点が
生じる。又、後者の方法では分割されたコイル間
のマツチングが困難であり、しかもコイル間に無
駄な空間が生じるという欠点がある。
However, in the former method, connecting the ultra-fine multi-core wires is a complicated and difficult process, and there is another drawback in that heat generation occurs due to electrical resistance generated at the connecting portion. In addition, the latter method has the disadvantage that it is difficult to match the divided coils, and wasteful space is created between the coils.

この発明は上記した従来の第三元素を添加した
Nb3Sn系線材や、従来構成により製作される高磁
界用超電導磁石の欠点に鑑みてなされたもので、
母相がCuSn系合金で、埋設された超電導繊維が
Nb3Sn系化合物である超電導線材において、長手
方向に連続した線材をコイルとした場合に生ずる
高磁界部分に対応する線材の部分の母相及び超電
導繊維層にGa、In、Pb、及びAlのうち少なくと
も一種以上が含まれているという構成の線材にす
ることにより、コイルに巻いた場合高磁界が印加
される部分の特性に優れていて、しかもGa、In
等の金属元素を添加することによる原価上昇が小
さく、連続した長さのNb3Sn系化合物超電導線材
を提供することを目的とするものである。
This invention adds the above-mentioned conventional third element.
This was done in view of the shortcomings of high-field superconducting magnets manufactured using Nb 3 Sn-based wires and conventional configurations.
The matrix is a CuSn alloy, and the buried superconducting fibers are
In a superconducting wire made of Nb 3 Sn-based compounds, Ga, In, Pb, and Al are added to the matrix and superconducting fiber layer of the part of the wire that corresponds to the high magnetic field that occurs when a longitudinally continuous wire is made into a coil. By making the wire material containing at least one type of Ga, In, etc., it has excellent characteristics in the part where a high magnetic field is applied when wound into a coil.
The purpose of the present invention is to provide a continuous length Nb 3 Sn-based compound superconducting wire with a small increase in cost due to the addition of metal elements such as.

この発明のNb3Sn系化合物超電導線材を容易に
かつ信頼性高く製造するためには、Nb基金属材
とSn基金属材の周辺にCu基金属材を配置した状
態で断面縮少加工して熱処理することによつて線
材を製造する方法において、Sn基金属材の線材
長手方向の一部分に、Ga、In、Pb、及びAlのう
ち少なくとも一種以上の成分が、Snに対して0.1
〜50wt%の範囲で合金化、もしくは配置されて
いることが肝要である。
In order to easily and reliably manufacture the Nb 3 Sn-based compound superconducting wire of the present invention, a cross-sectional reduction process is performed with the Cu-based metal material placed around the Nb-based metal material and the Sn-based metal material. In a method for manufacturing a wire rod by heat treatment, a portion of the Sn-based metal material in the wire longitudinal direction contains at least one component of Ga, In, Pb, and Al at a ratio of 0.1 to Sn.
It is important that it is alloyed or arranged in a range of ~50wt%.

以下、実施例に基き詳細に説明する。 Hereinafter, a detailed explanation will be given based on examples.

この発明の線材長手方向の一部分にGaを含む
Nb3Sn系化合物超電導線材を製造するには、まず
第3図の断面図に示すような、母相がCu1であ
り、この母相に多数のNb心線2が埋設された、
中央に中空部3を持つ複合多心チユーブを用意し
た。この実施例の場合チユーブの寸法は外径24
mm、内径9mm、長さ200mmであり、Nb心線の径は
約0.26mm、本数は2400本であつた。次に第4図に
示すような直径8.8mm、長さ50mmのSn−5wt%Ga
棒4aと直径8.8mm、長さ150mmのSn棒4bとが長
手方向に接合された複合棒4を用意した。複合棒
4はSn−Ga棒4aとSn棒4bより成る。
Contains Ga in a portion of the wire in the longitudinal direction of this invention
To manufacture a Nb 3 Sn-based compound superconducting wire, first, as shown in the cross-sectional view of Fig. 3, the matrix is Cu1, and a large number of Nb core wires 2 are embedded in this matrix.
A composite multi-core tube with a hollow part 3 in the center was prepared. In this example, the tube dimensions are outer diameter 24
The diameter of the Nb core wires was approximately 0.26 mm, and the number of Nb core wires was 2400. Next, as shown in Figure 4, a Sn-5wt%Ga film with a diameter of 8.8 mm and a length of 50 mm was prepared.
A composite rod 4 was prepared in which a rod 4a and an Sn rod 4b having a diameter of 8.8 mm and a length of 150 mm were joined in the longitudinal direction. The composite rod 4 consists of a Sn--Ga rod 4a and a Sn rod 4b.

これを第3図の複合多心チユーブの中空部に挿
入配置し、その外側にSnやGaの拡散障壁となる
Taチユーブ5、更にその外側に安定化のための
Cuチユーブ6を被覆して、第5図にその断面が
示された複合多心棒を作成した。この複合多心棒
は直径0.35mmまで冷間引抜加工されたが、伸縮加
工は中間焼鈍の必要もなく、又SnとSnGaの合金
との接合部からの悪影響もなく、最終寸法まで極
めて良好に行なわれた。
This is inserted into the hollow part of the composite multi-core tube shown in Figure 3, and the outside serves as a diffusion barrier for Sn and Ga.
Ta tube 5, further outside for stabilization
The Cu tube 6 was coated to create a composite multi-core rod, the cross section of which is shown in FIG. This composite multi-core rod was cold drawn to a diameter of 0.35 mm, and the expansion and contraction process was performed extremely well up to the final dimension without the need for intermediate annealing and without any negative effects from the joints between the Sn and SnGa alloys. It was.

上記方法により製造された線材の両端及びSn
とSnGa合金との接合部を適当な長さ切り出し、
熱処理してNb3Snを生成させた後、液体ヘリウム
温度(4.2K)に冷却し、印加磁界中で臨界電流
を測定した。その測定結果を第6図に示す。図に
おいて曲線aはGaを添加していない部分の、曲
線bはGaを添加した部分の、曲線cは両者の接
合部の印加磁界(テスラ)と臨界電流Aの関係を
示す特性図である。12Tでの臨界電流はGaを添
加していない部分の試料では25A、Gaを添加し
た部分の試料では36A、接合部(すなわちSnと
SnGa合金の接合部を含む領域で、その長さは全
長約1400m中約10mであつた。)では25〜36Aと、
添加されているGa量に応じて変化したものとな
つた。熱処理後の線材の横断面をX線マイクロア
ナライザーで分析したところ、Nb3Sn生成熱処理
中にSnとGaが母相のCuの中に拡散することによ
つて生成した母相のCuSn合金及びNb3Sn層にGa
の存在が認められ、又、SnとSnGa合金の接合部
ではGaは連続的に変化した結果が得られたがSn
のみが配置された部分では母相及びNb3Sn層中に
Gaは検知されなかつた。
Both ends of the wire manufactured by the above method and Sn
Cut out a suitable length of the joint between the and SnGa alloy,
After heat treatment to generate Nb 3 Sn, it was cooled to liquid helium temperature (4.2 K) and the critical current was measured in an applied magnetic field. The measurement results are shown in FIG. In the figure, curve a is a characteristic diagram showing a portion where no Ga is added, curve b is a portion where Ga is added, and curve c is a characteristic diagram showing the relationship between the applied magnetic field (Tesla) and the critical current A at the junction between the two. The critical current at 12T is 25A for the sample with no Ga added, 36A for the sample with Ga added, and the critical current at the junction (i.e. between Sn and
This area included the SnGa alloy joint, and its length was approximately 10 m out of a total length of approximately 1400 m. ) is 25~36A,
It changed depending on the amount of Ga added. When the cross section of the wire rod after heat treatment was analyzed using an X-ray microanalyzer, it was found that the CuSn alloy in the parent phase and the Nb 3 Ga in the Sn layer
The existence of
In the part where only Nb 3 Sn is placed, there is a
Ga was not detected.

なお、第4図の接合されたSn−SnGa合金棒の
代わりに、Sn棒とSnGa合金棒とを長手方向に並
べて接触させCuチユーブに挿入し、伸線加工を
行なつた所、両者は加工中に接合し、一体化さ
れ、以後の加工では前記実施例と同様何ら異常は
生じなかつた。したがつてSn棒とSnGa合金棒と
のあらかじめの接合は必ずしも必要でない。
In addition, instead of the joined Sn-SnGa alloy rod shown in Fig. 4, an Sn rod and a SnGa alloy rod were placed in contact with each other in the longitudinal direction and inserted into a Cu tube, and wire drawing was performed. They were joined and integrated into one piece, and no abnormality occurred during subsequent processing, as in the previous example. Therefore, it is not necessarily necessary to join the Sn rod and the SnGa alloy rod in advance.

次に前述と同じ寸法の複合多心棒を7本用意
し、直径14mmまで冷間引抜加工した。この複合多
心棒7本をSnGa合金側を一端に揃えてCuチユー
ブ中に組立て最終寸法まで伸線加工した。最終段
階では矩形ダイスを通し、0.75mm×15mmの断面の
導体、約1400mを得た。伸線加工は前述の実施例
と同様、極めて良好に行なわれた。この導体の両
端の一部を切断し、熱処理してNb3Snを生成させ
た後、液体ヘリウム温度(4.2K)に冷却し印加
磁界中で臨界電流を測定した。12Tでの臨界電流
は、予めSnのみが配置された部分の試料では
180Aであつたのに対し、SnGa合金が配置された
部分の試料では260Aであつた。
Next, seven composite multi-core rods with the same dimensions as above were prepared and cold drawn to a diameter of 14 mm. Seven of these composite multi-core rods were assembled into a Cu tube with the SnGa alloy side aligned at one end, and wire-drawn to final dimensions. In the final step, the conductor was passed through a rectangular die to obtain approximately 1400 m of conductor with a cross section of 0.75 mm x 15 mm. The wire drawing process was performed extremely well as in the previous example. A portion of both ends of this conductor was cut, heat treated to generate Nb 3 Sn, cooled to liquid helium temperature (4.2 K), and the critical current was measured in an applied magnetic field. The critical current at 12T is
While it was 180A, it was 260A in the sample where the SnGa alloy was placed.

因みに、従来のCu−Sn−Ca3元合金を母相と
したこの実施例と同一構成の線材の12Tでの臨界
電流は約220Aであつた。この実施例の導体を用
い、SnGa合金が配置された側をコイル内層に配
置し、ガラス絶縁物と共に巻回して内径50mm、外
径140mm長さ120mmの矩形断面コイルを製作した。
これを熱処理後、液体ヘリウムで4.2Kに冷却し、
8T発生のNb−Tiバイアス・コイル中で励磁した
ところ、高磁界中央部で13.5Tの磁界を発生する
ことができた。線材全長にわたつて、CuとSnと
Gaの3元合金を母相として製造した従来の線材
を上記と同一寸法のコイルに適用した場合の発生
磁界は12Tであり、これに較べて10%以上高い磁
界が得られた。又、この発明による線材は高磁界
の特性を向上させるに必要な高価なGaを従来材
に較べ75%以上節約できたので線材の費用も約15
%廉価になつた。
Incidentally, the critical current at 12T of a wire having the same structure as this example and using a conventional Cu-Sn-Ca ternary alloy as a matrix was about 220A. Using the conductor of this example, the side on which the SnGa alloy was placed was placed in the inner layer of the coil, and wound together with a glass insulator to produce a rectangular cross-section coil with an inner diameter of 50 mm, an outer diameter of 140 mm, and a length of 120 mm.
After heat treating this, it was cooled to 4.2K with liquid helium.
When excited in an 8T Nb-Ti bias coil, we were able to generate a 13.5T magnetic field at the center of the high magnetic field. Over the entire length of the wire, Cu and Sn
When a conventional wire manufactured using a Ga ternary alloy as a matrix was applied to a coil with the same dimensions as above, the generated magnetic field was 12T, which was more than 10% higher. In addition, the wire material of this invention saves more than 75% of the expensive Ga required to improve high magnetic field characteristics compared to conventional materials, reducing the cost of the wire material by approximately 15%.
% cheaper.

次にこの発明の線材を製造する他の実施例とし
て、円錐形状の突起を底面に持つるつぼの中に
Snを鋳込み、その後その凹部に溶融したInを流
し込むことにより第7図に示したSn−In複合棒
4を作製した。図において4a′はIn棒、4bはSn
棒で、複合棒4は4a,4bよりなる。これを第
4図の複合棒の代わりに用いて、前記実施例と同
様の方法でNb3Sn線材を製造した。このNb3Sn線
材のみで発生中心磁界12Tのコイルを製作したと
ころ、Inを添加しない線材を使用した場合に較べ
Nb3Sn線材は30%節約でき、かつコイルの容積も
30%小さくなり、冷却コストは著しく低下した。
又、CuとSnとInの合金を線材全長にわたつて母
相としている従来の線材を同一寸法のコイルに適
用した場合に較べ、このコイルの発生磁界は10%
以上高く、且つ、Inの使用量を90%以上も節約で
きたので、使用した線材の費用は約25%廉価にな
つた。
Next, as another embodiment of manufacturing the wire rod of this invention, a crucible having a conical protrusion on the bottom surface is placed.
The Sn--In composite rod 4 shown in FIG. 7 was produced by casting Sn and then pouring molten In into the recess. In the figure, 4a' is In rod, 4b is Sn
The composite rod 4 consists of 4a and 4b. Using this instead of the composite rod shown in FIG. 4, a Nb 3 Sn wire was produced in the same manner as in the previous example. When we fabricated a coil with a generated central magnetic field of 12T using only this Nb 3 Sn wire, it was found that the coil with a central magnetic field of 12T was produced compared to when a wire without In was used.
Nb 3 Sn wire can save 30% and reduce coil volume.
It is now 30% smaller, significantly reducing cooling costs.
Additionally, the magnetic field generated by this coil is 10% lower than that when a conventional wire with an alloy of Cu, Sn, and In is used as the matrix over the entire length of the wire is applied to a coil of the same size.
In addition, since the amount of In used could be reduced by more than 90%, the cost of the wire used was reduced by about 25%.

以上、GaとInを添加した場合について述べた
が、この他にAl、Pbを前記実施例と同様にSn基
金属材にAl又はPbを組み合わせて合金化したが、
すべて高磁界電流特性に優れ、Al又はPbの節約
ができた。又この発明ではSn基金属材にGa、In、
Al又はPbを二種以上組合せること、Nb基金属材
にZr、Hf、Ta及びTiなどの元素を添加するこ
と、及びCu基金属材にSn、Ga、In、Al、及び
Pbのうち少なくとも一種以上を加工上の制限を
受けない範囲で合金化あるいは配置されているこ
とも、この発明の特徴を損なうものではない。
The case where Ga and In were added was described above, but in addition to this, Al and Pb were alloyed by combining Al or Pb with Sn-based metal material as in the above example.
All have excellent high magnetic field current characteristics and save on Al or Pb. In addition, in this invention, Ga, In,
Combining two or more types of Al or Pb, adding elements such as Zr, Hf, Ta, and Ti to Nb-based metal materials, and adding Sn, Ga, In, Al, and other elements to Cu-based metal materials.
The feature of the present invention is not impaired by alloying or arranging at least one type of Pb within a range not subject to processing limitations.

この発明において、Ga、In、Pb及びAlのうち
少なくとも一種以上のSnに対する量は、0.1wt%
以上から高磁界特性の向上に寄与するようになる
が、50wt%以上になると伸線加工性が阻害され
るので、これ以上の添加は望ましくない。
In this invention, the amount of at least one of Ga, In, Pb, and Al relative to Sn is 0.1wt%
From the above, it contributes to the improvement of high magnetic field characteristics, but if it exceeds 50 wt%, wire drawability is inhibited, so it is not desirable to add more than this.

以上説明したようにこの発明によれば、母相が
CuSn系合金で、埋設された超電導繊維がNb3Sn
系化合物である超電導線材にいて、長手方向に連
続した線材をコイルとした場合に生ずる高磁界部
分に対応する線材の母相及び超電導繊維層にGa、
In、Pb及びAlのうち少なくとも一種以上が含ま
れているという構成にすることにより、高磁界電
流特性にも優れ、Ga、In、PbあるいはAlを節約
できる線材が得られる。又、この発明のNb3Sn線
材を超電導コイルに適用すれば、発生磁界の向
上、コイルの小型化、必要Nb3Sn線材の減少、線
材費用の低減、冷却コストの低減など多くの利点
がある。
As explained above, according to this invention, the matrix is
CuSn alloy, the buried superconducting fibers are Nb 3 Sn
In superconducting wire, which is a system compound, Ga is added to the matrix and superconducting fiber layer of the wire, which corresponds to the high magnetic field part that occurs when a longitudinally continuous wire is made into a coil.
By configuring the wire to contain at least one of In, Pb, and Al, it is possible to obtain a wire that has excellent high magnetic field current characteristics and can save Ga, In, Pb, or Al. Furthermore, if the Nb 3 Sn wire of the present invention is applied to a superconducting coil, there are many advantages such as improved magnetic field generation, smaller coil size, less required Nb 3 Sn wire, lower wire cost, and lower cooling cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は矩形断面を有する超電導磁石の発生す
る径方向の磁界分布を示す図である。第2図曲線
aは従来例のGa等を添加していないNb3Sn超電
導線材の、曲線bはこの発明の実施例であるGa
を添加したNb3Sn超電導線材の、4.2Kにおける
印加磁界と臨界電流の関係を示す特性図で、又、
直線cは適当な寸法のNb3Sn超電導線材を用いた
コイルの励磁電流と、コイル最内層の発生磁界
Bmとの関係を示す特性図である。第3図はこの
発明の実施例に係わる複合多心チユーブの断面
図、第4図は同じく複合多心チユーブの中空部に
挿入されるSn−SnGa合金接合棒の構成図であ
る。第5図はこの発明の実施例の線材製造過程の
断面縮少加工前の断面図である。第6図はこの発
明の実施例であるNb3Sn超電導線材の4.2Kにお
ける印加磁界と臨界電流との関係を示したもの
で、曲線aはGaを添加していない部分の、曲線
bはGaを添加した部分の、曲線cは両者の接合
部分の特性図である。第7図はこの発明の他の実
施例に係わるSn−In複合棒の構成図である。 図において、1は母相であるCu、2はNb心
線、3は中空部、4は(4a)Sn−Ga棒と(4
b)Sn棒よりなる複合棒、4a′はIn棒、5はTa
チユーブ、6はCuチユーブである。なお図中同
一符号は同一又は相当部分を示す。
FIG. 1 is a diagram showing the radial magnetic field distribution generated by a superconducting magnet having a rectangular cross section. In Fig. 2, curve a is a conventional example of Nb 3 Sn superconducting wire with no addition of Ga, etc., and curve b is an example of the present invention.
This is a characteristic diagram showing the relationship between applied magnetic field and critical current at 4.2K of Nb 3 Sn superconducting wire added with
Straight line c represents the excitation current of a coil using Nb 3 Sn superconducting wire of appropriate dimensions and the magnetic field generated in the innermost layer of the coil.
FIG. 3 is a characteristic diagram showing the relationship with Bm. FIG. 3 is a sectional view of a composite multi-core tube according to an embodiment of the present invention, and FIG. 4 is a configuration diagram of a Sn--SnGa alloy joining rod inserted into the hollow portion of the composite multi-core tube. FIG. 5 is a sectional view before cross-sectional reduction processing in the wire manufacturing process according to the embodiment of the present invention. Figure 6 shows the relationship between the applied magnetic field and the critical current at 4.2K for a Nb 3 Sn superconducting wire according to an embodiment of the present invention, where curve a is for the portion where Ga is not added, and curve b is for the portion where Ga is not added. The curve c of the part where . FIG. 7 is a block diagram of a Sn--In composite rod according to another embodiment of the present invention. In the figure, 1 is Cu which is the parent phase, 2 is Nb core wire, 3 is hollow part, 4 is (4a) Sn-Ga rod and (4
b) Composite rod consisting of Sn rod, 4a' is In rod, 5 is Ta
Tube 6 is a Cu tube. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 母層がCuSn系合金で、埋設された超電導繊
維層がNb3Sn系化合物である超電導線材におい
て、長手方向に連続した線材をコイルとした場合
に生ずる高磁界部分に対応する線材の部分の母相
及び超電導繊維層にGa、In、Pb、及びAlのうち
少なくとも一種類以上が含まれていることを特徴
とするNb3Sn系化合物超電導線材。
1. In a superconducting wire whose base layer is a CuSn-based alloy and whose buried superconducting fiber layer is a Nb 3 Sn-based compound, the portion of the wire that corresponds to the high magnetic field that occurs when a longitudinally continuous wire is made into a coil. A Nb 3 Sn-based compound superconducting wire characterized in that the matrix and the superconducting fiber layer contain at least one of Ga, In, Pb, and Al.
JP57187901A 1982-10-26 1982-10-26 Nb3sn compound superconductive wire Granted JPS5978404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187901A JPS5978404A (en) 1982-10-26 1982-10-26 Nb3sn compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187901A JPS5978404A (en) 1982-10-26 1982-10-26 Nb3sn compound superconductive wire

Publications (2)

Publication Number Publication Date
JPS5978404A JPS5978404A (en) 1984-05-07
JPS6313286B2 true JPS6313286B2 (en) 1988-03-24

Family

ID=16214175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187901A Granted JPS5978404A (en) 1982-10-26 1982-10-26 Nb3sn compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS5978404A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667211U (en) * 1993-03-02 1994-09-22 中前 誠一 Bar pad
JP6719141B2 (en) * 2017-04-27 2020-07-08 国立研究開発法人物質・材料研究機構 Nb3Sn superconducting wire manufacturing method, precursor for Nb3Sn superconducting wire, and Nb3Sn superconducting wire using the same

Also Published As

Publication number Publication date
JPS5978404A (en) 1984-05-07

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH0261764B2 (en)
US4743713A (en) Aluminum-stabilized NB3SN superconductor
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JP2008300337A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JPS5823110A (en) Method of producing nb3sn superconductive wire material
US4153986A (en) Method for producing composite superconductors
JPS6313286B2 (en)
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH0570888B2 (en)
JP3754522B2 (en) Nb (3) Sn superconducting wire
US4215465A (en) Method of making V3 Ga superconductors
JP2655918B2 (en) A. Method for manufacturing stabilized superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JPH0272511A (en) Manufacture of nb3sn superconductive wire rod
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH04129106A (en) Manufacture of superconductive wire material made of nb3-sn compound
JPS62229720A (en) Manufacture of nb3 sn superconductor wire
JPH0735561B2 (en) Method for producing fiber-dispersed superconducting wire
JPS5840287B2 (en) Manufacturing method of hollow superconducting wire
Dew-hughes et al. Method of making V 3 Ga superconductors