JPS6313273A - Fuel cell using three layer structure gas diffusion electrode - Google Patents

Fuel cell using three layer structure gas diffusion electrode

Info

Publication number
JPS6313273A
JPS6313273A JP61155073A JP15507386A JPS6313273A JP S6313273 A JPS6313273 A JP S6313273A JP 61155073 A JP61155073 A JP 61155073A JP 15507386 A JP15507386 A JP 15507386A JP S6313273 A JPS6313273 A JP S6313273A
Authority
JP
Japan
Prior art keywords
air electrode
electrolyte
substrate
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61155073A
Other languages
Japanese (ja)
Other versions
JPH0665039B2 (en
Inventor
Seiji Takeuchi
瀞士 武内
Yuichi Kamo
友一 加茂
Tatsuo Horiba
達雄 堀場
Teruo Kumagai
熊谷 輝夫
Jinichi Imahashi
甚一 今橋
Ryota Doi
良太 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61155073A priority Critical patent/JPH0665039B2/en
Publication of JPS6313273A publication Critical patent/JPS6313273A/en
Publication of JPH0665039B2 publication Critical patent/JPH0665039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To stabilize and increase cell voltage by forming an electrolyte barrier layer also serving as a current collecting layer on a porous conductive substrate side in addition to water repellent treatment of the substrate. CONSTITUTION:In a gas diffusion electrode of a fuel cell, an electrolyte barrier layer 3 which also serves as a current collecting layer is formed on a porous conductive substrate 1 side in addition to water repellent treatment of the substrate 1. Water repellent capability on the substrate side is increased and micropores in the layer 3 prevent permeation of electrolyte. Since electrolyte in an air electrode is steadily retained, cell voltage is high and performance is steady.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、性能が安定化された燃料電池に関し、特に、
改良されたガス拡散電極を有する燃料電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell with stabilized performance, and in particular,
FUEL CELLS WITH IMPROVED GAS DIFFUSION ELECTRODES.

〔従来の技術〕[Conventional technology]

燃料電池に用いられるガス拡散電極構造の一例としては
、特開昭52−155342に記載されているものがあ
る。
An example of a gas diffusion electrode structure used in a fuel cell is described in JP-A-52-155342.

上記発明は、リン酸型燃料電池に関するもので、カソー
ドとしての初期性能の良否を論じているにとどまってお
り、メタノール燃料電池にみられるようなイオン交換膜
とアノード(以下メタノール極と略記する)及びカソー
ド(以下空気極と略記する)という構成において、空気
極の電解液バランスや空気極への電解液のリザーブとい
う点については配慮がなされていなかった。これに対し
、本発明者らは、メタノール燃料電池の長寿命化に関し
、空気極の電解液バランスや電解液保持用マトリックス
の適用及び運転方法の最適化について検討を加え寿命の
改善を行ってきた。これらについては、既に出願済みで
あるが、以下には、これまで改良してきた基本的概念に
ついて述べ、新らたな問題点について記述する。
The above invention relates to a phosphoric acid fuel cell, and only discusses the quality of its initial performance as a cathode. and a cathode (hereinafter abbreviated as air electrode), no consideration was given to the electrolyte balance of the air electrode or the reserve of electrolyte to the air electrode. In response, the present inventors have improved the lifespan of methanol fuel cells by examining the electrolyte balance of the air electrode, the application of an electrolyte retention matrix, and the optimization of operating methods. . Applications have already been filed for these, but below we will describe the basic concepts that have been improved so far and describe new problems.

メタノール燃料電池の性能低下原因を第4図と第5図に
示したモデルで説明する。これまでの研究結果から、初
期数百時間の電池電圧の低下は、空気極の電位低下に太
き(依存していることがわかっている。第4図には、電
池内の電極近傍の拡大モデル図と水の移動の律速過程を
示した。
The causes of performance deterioration in methanol fuel cells will be explained using the models shown in FIGS. 4 and 5. From the results of previous research, we know that the drop in battery voltage during the initial several hundred hours is strongly dependent on the drop in potential at the air electrode. A model diagram and the rate-determining process of water movement are shown.

第4図囚において、空気室9から乾燥空気によって持ち
去られる水の移動速度をrI +  イオン交換膜6を
透過するアノライト中の水の移動速度をr。
In FIG. 4, the moving speed of water carried away by dry air from the air chamber 9 is rI + The moving speed of water in the anolyte that permeates through the ion exchange membrane 6 is r.

及びイオン交換膜を透過した水が空気極5にとり込まれ
る速度をr2とし、r、)r2りr3の関係を仮定した
考察をしてみる。第4囲いには、空気極5近傍のモデル
図を示すが、空気極5は電池の初期性能を発現するため
、電解液をあらかじめ所定量含浸しておく。この量的関
係を二次元的に示すが、このゾーンが反応の場8として
作用することになる。第4図回申イオン交換膜6側には
、アノライト(通常1.5 MH2SO41,0MCl
30HHzO)が接しており、空気極側には、空気室9
に乾燥空気が供給される。このような状態で電池を作動
させたときの電解液のバランスのずれによる電圧変化の
状態を第5図に示す。第5図において、11は電池を間
欠で運転した場合、12は連続で作動させたときの電池
電圧の一般的変化を示した。図において初期の電圧から
徐々に低下する状態13は、空気極の初期性能を発現さ
せるために含浸した電解液中のH2SO,が、イオン交
換膜のH2SO4電解液度と平衡状態を保つための排出
による現象である。このように電圧が低下した状態で電
池の作動を停止すると、イオン交換膜を透過してきたア
ノライト中のH2Oが空気極にとり込まれ空気極中の1
hsO,の希釈による体積増加により第4図回申8の反
応の場が増大し、空気極の性能が向上するので、電圧は
上昇する。この電圧変化状態を表わしたのが図中15に
相当する。
Let r2 be the rate at which the water that has passed through the ion exchange membrane is taken into the air electrode 5, and a discussion will be made assuming the relationship r, )r2 - r3. A model diagram of the vicinity of the air electrode 5 is shown in the fourth box, and in order to develop the initial performance of the battery, the air electrode 5 is impregnated with a predetermined amount of electrolyte in advance. This quantitative relationship is shown two-dimensionally, and this zone acts as a reaction field 8. Figure 4. On the ion exchange membrane 6 side, an anolite (usually 1.5 MH2SO41.0MCl)
30HzO) is in contact with the air chamber 9 on the air electrode side.
dry air is supplied to the FIG. 5 shows the state of voltage change due to the imbalance of the electrolyte when the battery is operated in such a state. In FIG. 5, 11 shows the general change in battery voltage when the battery is operated intermittently, and 12 shows the general change in battery voltage when the battery is operated continuously. In the figure, state 13 where the voltage gradually decreases from the initial voltage is due to the discharge of H2SO in the electrolyte impregnated to develop the initial performance of the air electrode to maintain equilibrium with the H2SO4 electrolyte level in the ion exchange membrane. This is a phenomenon caused by When the battery operation is stopped with the voltage reduced in this way, the H2O in the anorite that has permeated through the ion exchange membrane is taken into the air electrode, and the 1
The increase in volume due to dilution of hsO increases the reaction field in Figure 4, Circulation 8, and improves the performance of the air electrode, so the voltage increases. This voltage change state corresponds to 15 in the figure.

電圧が上昇した状態で、電池を作動させると希釈された
空気極中のHzSOaは、連続的に乾燥空気を供給する
ことから、空気極中のH2SO4は、水分蒸発によって
濃縮される結果、体積の減少すなわち反応の場8の減少
によって電圧は徐々に低下する。間欠運転においては、
このくり返しで運転条件の変化に対応して一定の電圧を
維持することになる。一方連続運転においては、間欠運
転の希釈過程が発現しないだけで、最終的には電解液バ
ランスの平衡を保った状態で電圧も安定化する。ここで
前述の排出の概念について、空気極の撥水性・ の指標
となる電解液(+12SO,濃度)バランスとの関係に
おいて第6図を用いて説明する。第6図は、一般的に使
用される空気極と電解液として1.5MH2SO4を用
いたときの電解液バランスを示したもので、図中16の
曲線は未処理の空気極を1.5 MHzSO4水溶液に
触媒層を法例にして浮遊させたときのH2SO4の浸み
込む変化であり、17は空気極にあらかじめ多量のH,
+SO,を強制的に含浸し、同様の方法においてH2S
O,の排出の変化をみたものである。
When the battery is operated with the voltage increased, the diluted HzSOa in the air electrode is continuously supplied with dry air, so the H2SO4 in the air electrode is concentrated by water evaporation, resulting in a decrease in volume. The voltage gradually decreases due to the reduction, ie the reduction of the reaction field 8. In intermittent operation,
By repeating this process, a constant voltage is maintained in response to changes in operating conditions. On the other hand, in continuous operation, the dilution process of intermittent operation does not occur, and the voltage is eventually stabilized with the electrolyte balance maintained. Here, the above-mentioned concept of discharge will be explained using FIG. 6 in relation to the electrolyte (+12SO, concentration) balance, which is an index of the water repellency of the air electrode. Figure 6 shows the electrolyte balance when a commonly used air electrode and 1.5 MHz SO4 are used as the electrolyte. 17 is the change in infiltration of H2SO4 when a catalyst layer is suspended in an aqueous solution.
+SO, and H2S in the same way.
The figure shows changes in O emissions.

測定温度は、電池の作動温度である60℃である。The measurement temperature was 60° C., which is the operating temperature of the battery.

図中16にみられるごとく、空気極は時間経過とともに
吸収量は増大し、150時間後においてほぼ一定の値を
示す。一方、初期に強制的にH2SO,含浸した空気極
は、時間経過とともにH2SO4を排出し、吸収曲線と
ほぼ重なり合う点で平衡になる。以上のように、ある条
件で作製した空気極と一定濃度のH2SO4電解液の間
には、その吸収量が平衡になる値があり、この値を電解
液平衡吸収量と定義しておく。
As seen at 16 in the figure, the absorption amount of the air electrode increases over time, and shows a nearly constant value after 150 hours. On the other hand, the air electrode that is forcibly impregnated with H2SO at the beginning discharges H2SO4 over time and reaches equilibrium at a point where it almost overlaps with the absorption curve. As described above, there is a value at which the amount of absorption is balanced between the air electrode produced under certain conditions and the H2SO4 electrolyte of a constant concentration, and this value is defined as the equilibrium absorption amount of the electrolyte.

次に空気極中の電解液が濃縮したとき、空気極の電位が
どのように変化するかについて測定した結果について、
第7図を用いて説明する。第7図は空気極の単極電位を
測定するセルに電極をセントし、供給する乾燥空気の流
量を変化させたときの空気極電位を測定して示した。図
にみられるごとく、空気流量が約3 mZ/m1n−a
nt以下においては、高い電位でほぼ一定の値を示すが
、空気流量が増大するにつれ電位は低下する。このこと
は、前述したごとく、乾燥空気を大量導入すると、空気
極に含まれる電解液中の水分が蒸発し、第4囲いに示し
た反応の場8の面積が減少するためである。
Next, regarding the results of measuring how the potential of the air electrode changes when the electrolyte in the air electrode becomes concentrated,
This will be explained using FIG. FIG. 7 shows the air electrode potential measured when an electrode was placed in a cell for measuring the unipolar potential of the air electrode and the flow rate of dry air to be supplied was varied. As shown in the figure, the air flow rate is approximately 3 mZ/m1n-a
Below nt, the potential shows a nearly constant value at a high potential, but as the air flow rate increases, the potential decreases. This is because, as described above, when a large amount of dry air is introduced, the water in the electrolyte contained in the air electrode evaporates, and the area of the reaction field 8 shown in the fourth box decreases.

この減少は、第5図に示した14の現象を間接的に証明
するものである。
This decrease indirectly proves the 14 phenomena shown in FIG.

以上の実験事実をもとに電池電圧の低下を抑制する手段
として、空気極中の電解液の排出・希釈および濃縮に対
して、空気極の親水化により電解液の平衡吸収量を大き
くすること、運転において空気流量を最適化する又水の
移動速度や空気極−イオン交換膜界面の密着性の改善の
ため第4図■に示した10の間隙に電解液含をペースト
を挿入するなどの手段を講じて電池の安定化を図ってき
た。
Based on the above experimental facts, as a means to suppress the drop in battery voltage, the equilibrium absorption amount of the electrolyte can be increased by making the air electrode hydrophilic in response to the discharge, dilution, and concentration of the electrolyte in the air electrode. In order to optimize the air flow rate during operation and to improve the water movement speed and the adhesion between the air electrode and the ion exchange membrane interface, we introduced a paste containing electrolyte into the 10 gaps shown in Figure 4 (■). We have taken various measures to stabilize the battery.

ここで空気極の親水化という意味について考察しておく
Let us now consider the meaning of making the air electrode hydrophilic.

一般的なガス拡散電極は、カーボン粉末上へ微細なpt
粒子を高度に分散担持して活性を向上させた電極触媒と
IC水剤であるポリテトラフルオロエチレン(以下PT
FEと略記する)の混合物を多孔質導電性基板上へ塗布
・焼成して作製される。
A typical gas diffusion electrode uses fine PT on carbon powder.
Polytetrafluoroethylene (hereinafter referred to as PT) is an electrode catalyst with highly dispersed particles and improved activity, and an IC water agent.
It is manufactured by applying a mixture of FE (abbreviated as FE) onto a porous conductive substrate and baking it.

この種の電極においては、適度な撥水性を有し、反応の
場である液体−気体一固体の接する三相界面の面積の増
大と安定化を図る必要がある。
In this type of electrode, it is necessary to have appropriate water repellency and to increase and stabilize the area of the three-phase interface where liquid-gas-solid contact, which is the site of reaction.

電極の撥水性すなわち電解液との濡れ性は、電解液の平
衡吸収量を測定し、その値を濡れ性の指標の一つとする
ことができる。一方電極の濡れ性と電極性能の関係につ
いては、電極触媒層細孔容積を占める電解液量を細孔占
有率と定義し、この細孔占有率との関係で整理できる。
The water repellency of an electrode, that is, its wettability with an electrolytic solution, can be determined by measuring the equilibrium absorption amount of the electrolytic solution, and using the value as one of the wettability indicators. On the other hand, regarding the relationship between electrode wettability and electrode performance, the amount of electrolyte that occupies the pore volume of the electrode catalyst layer is defined as pore occupancy, and can be summarized in relation to this pore occupancy.

細孔占有率と空気極電位の関係をモデル的に第8図に示
す。第8図に示したごとく空気極電位は、細孔占有率が
ある範囲内で三相界面が理想的に形成されるため貰い性
能を示す。これに対し細孔占有率が小さい領域において
は、電解液による触媒層の濡れが不十分なためH゛移動
抵抗が大きくなり電位は低下する。逆に細孔占有率が大
きい所では、触媒層が電解液で十分覆われガスの拡散が
阻害される結果電位が低下することが予想される。
The relationship between pore occupancy and air electrode potential is shown in FIG. 8 as a model. As shown in FIG. 8, the air electrode potential shows the yield performance because the three-phase interface is ideally formed within a certain range of pore occupancy. On the other hand, in a region where the pore occupancy is small, the wetting of the catalyst layer by the electrolytic solution is insufficient, so the H transfer resistance increases and the potential decreases. On the other hand, in areas where the pore occupancy is large, the catalyst layer is sufficiently covered with the electrolytic solution and gas diffusion is inhibited, resulting in a decrease in potential.

したがって性能の安定した空気極を得るためには、電池
の運転条件の変化によっても電位の安定した細孔占有率
領域からはずれない触媒層構造にする必要がある。
Therefore, in order to obtain an air electrode with stable performance, it is necessary to have a catalyst layer structure that does not deviate from the pore occupancy region where the potential is stable even when the operating conditions of the battery change.

第8図18に示した空気極は、第6図に示した空気極に
ついて示したものであり、19はこれまでの検討結果に
より得られた親水化した空気極の値を示した。図中18
に示す空気極は、電極性能がクリティカルな位置に存在
し、電池運転条件によって大きく変化することが予想さ
れるのに対し、19に示した空気極では、性能のフラッ
トな部分に位置し、電池運転条件が多少変化しても空気
極性能が安定領域にあるのがわかる。
The air electrode shown in FIG. 8 and 18 is the same as the air electrode shown in FIG. 6, and 19 indicates the value of the hydrophilic air electrode obtained from the results of previous studies. 18 in the diagram
The air electrode shown in 19 is located at a critical position for electrode performance and is expected to vary greatly depending on battery operating conditions, whereas the air electrode shown in 19 is located at a flat area of performance and is expected to vary greatly depending on battery operating conditions. It can be seen that the air electrode performance remains in a stable region even if the operating conditions change slightly.

以上の結果をまとめて、電池電圧の経時変化で評価して
みた。ちなみに、第6図に示した親水化の改良がなされ
ていない空気極を用いた場合の性能も、比較する意味で
示す。
We summarized the above results and evaluated them based on changes in battery voltage over time. Incidentally, the performance when using the air electrode shown in FIG. 6 without the hydrophilic improvement is also shown for comparison.

第9図には、第6図に示した空気極を用いた電池の経時
変化を示すが、電池電圧は初期の値から掻く短時間で急
激に低下し、その後徐々に電圧は低下する傾向にある。
Figure 9 shows the change over time of a battery using the air electrode shown in Figure 6. The battery voltage drops rapidly from its initial value in a short period of time, and then the voltage tends to gradually drop. be.

これに対し、第8図19に示した性質をもつ親水化した
空気極を用いた電池電圧の経時変化を第10図に示す。
On the other hand, FIG. 10 shows the change in battery voltage over time using a hydrophilized air electrode having the properties shown in FIG. 8 and 19.

図にみられるごとく電圧変化は、従来までの傾向と異な
り、初期電圧は低い値を示すが時間経過とともに上昇し
、21で示したごとく約0.32Vで安定化する。図中
、2゜で示した破線は、空気極及びメタノール極それぞ
れの単極電位から求めた電位差を表わしており、理想的
な電池電圧は20とほぼ同じ電圧を示すものである。
As can be seen in the figure, the voltage change differs from the conventional trend in that the initial voltage shows a low value, but increases over time and stabilizes at about 0.32V as shown at 21. In the figure, the broken line shown at 2 degrees represents the potential difference determined from the monopolar potentials of the air electrode and the methanol electrode, and the ideal battery voltage is approximately the same voltage as 20.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べてきたごとく、先に出願済みの改良技術におい
て、従来型まれてきた電池電圧の安定化については達成
できたが、単極差の電圧を発現できないという問題があ
った。本発明ではこの原因が何に起因するかについて考
察し、電池電圧の安定化と向上を図ることにある。
As described above, although the previously applied improved technology was able to achieve the stabilization of battery voltage that had been achieved in the past, there was a problem in that it was unable to produce a voltage with a single pole difference. The present invention aims to consider what causes this and to stabilize and improve the battery voltage.

第10図で用いた空気極構造を第11図に示す。第4図
5では電極全体を空気極としたが、詳細にみれば第11
図に示すごとく、多孔質導電性基板1上に触媒層2が部
分的に基板上にくい込んだ形で形成されており、厚さ関
係は基板1が約400μmで触媒層は約100μmであ
る。このような電極構成において、触媒層の親水化の程
度を増大すると、触媒層中の電解液及び発電にともなう
空気極からの生成水が基板中細孔に凝集する結果、ガス
拡散が阻害され、電池電圧が低下する。そこで本発明者
らは、これらの問題点を解決するため、基板1にあらか
じめPTFE等の撥水性ポリマーを塗布し高温で焼成し
溶融させることによりPTFEの撥水性により、凝集を
抑制した。しかしながら、基板1のPTFE処理によっ
て↑Ω水性は強化されるが、基板の細孔の大きさはほと
んど変化していないことが判明した。これらの関係を未
処理基板と比較してみる。
FIG. 11 shows the air electrode structure used in FIG. 10. In Figure 4 and 5, the entire electrode is an air electrode, but if we look at the details, the 11th
As shown in the figure, a catalyst layer 2 is formed on a porous conductive substrate 1 so as to be partially embedded in the substrate, and the substrate 1 has a thickness of about 400 μm and the catalyst layer has a thickness of about 100 μm. In such an electrode configuration, when the degree of hydrophilization of the catalyst layer is increased, the electrolyte in the catalyst layer and the water generated from the air electrode during power generation aggregate in the pores in the substrate, thereby inhibiting gas diffusion. Battery voltage drops. Therefore, in order to solve these problems, the present inventors applied a water-repellent polymer such as PTFE to the substrate 1 in advance and baked and melted it at a high temperature, thereby suppressing agglomeration due to the water-repellent property of PTFE. However, it was found that although the ↑Ω aqueous property was strengthened by the PTFE treatment of the substrate 1, the pore size of the substrate was hardly changed. Let's compare these relationships with an untreated substrate.

表1 またPTFE処理基板のSEMの観察写真を第12図に
示す。観察結果は300倍である。図にみられるごとく
炭素繊維で三次元的に構成された基板にPTFEが溶融
してからみ合っている様がみられるが、比較的大きな細
孔が存在しているのがわかる。
Table 1 Further, an SEM observation photograph of the PTFE-treated substrate is shown in FIG. The observation result is 300 times larger. As seen in the figure, it can be seen that PTFE is melted and intertwined with a substrate made of three-dimensional carbon fibers, and it can be seen that there are relatively large pores.

以上のように撥水化した基板を用いて、触媒層を親水化
したとき、短時間においては、基板の撥水液で電解液の
バランスが保たれるが、基板の細孔が大きいことから、
触媒層中の電解液が、細孔をすり抜けるという現象が生
じ、触媒層の電解液の溢流による電解液体積の減少や、
基板をすり抜けた電解液がガス通路に濃縮し閉塞すると
いう問題があり、電池電圧の低下や性能の不安定さを引
き起こす原因となっていた。
When the catalyst layer is made hydrophilic using a water-repellent substrate as described above, the balance of the electrolyte is maintained by the water-repellent liquid on the substrate for a short time, but because the pores of the substrate are large, ,
A phenomenon occurs in which the electrolyte in the catalyst layer slips through the pores, and the electrolyte volume decreases due to overflow of the electrolyte in the catalyst layer.
There is a problem in that the electrolyte that has passed through the substrate condenses and blocks the gas passage, causing a drop in battery voltage and unstable performance.

しかるに本発明は、触媒層の電解液が基板をすり抜ける
現象をほぼ完全に阻止して、長期間電圧の安定した燃料
電池を提供しようとするものである。
However, the present invention aims to provide a fuel cell with stable voltage for a long period of time by almost completely preventing the electrolyte in the catalyst layer from slipping through the substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、前述の問題を解決するための技術的手段と
して、燃料電池のガス拡散電極において、基板の撥水化
処理に加えて、基板側に集電層をかね備えた電解液透過
阻止層を設けたことを。特徴とする。これは基板側のt
o水力の強化とともに、層の細孔を微小化し毛管力によ
り電解液の透過を阻止するものである。
In the present invention, as a technical means to solve the above-mentioned problem, in addition to water-repellent treatment of the substrate in a gas diffusion electrode of a fuel cell, an electrolyte permeation blocking layer that also has a current collecting layer on the substrate side is provided. that we have established Features. This is the t on the board side.
o In addition to strengthening hydraulic power, the pores in the layer are made smaller to prevent electrolyte from permeating through capillary force.

これにより空気極中の電解液は、常に定常に保たれるこ
とから、電池電圧が高く且つ安定した性能が得られる。
As a result, the electrolyte in the air electrode is always kept constant, resulting in high battery voltage and stable performance.

本発明の作用については後述するが、その電極構造を第
1図に、電解液透過阻止層の表面SEM写真を第2図に
示す。
The effect of the present invention will be described later, and the electrode structure thereof is shown in FIG. 1, and the surface SEM photograph of the electrolyte permeation blocking layer is shown in FIG. 2.

第1図において、3は電解液透過阻止層を表わし、基板
に部分的にくいこんでおり、厚みは約100μmである
。この電解液透過阻止層を設けた基板の物性値を表1と
対比して以下に示す。
In FIG. 1, numeral 3 represents an electrolyte permeation blocking layer, which is partially embedded in the substrate and has a thickness of approximately 100 μm. The physical property values of the substrate provided with this electrolyte permeation blocking layer are shown below in comparison with Table 1.

(来夏以下余白) 表2 表2に示した撥水化基板は、以下の手順で作製した。(Left below next summer) Table 2 The water-repellent substrate shown in Table 2 was produced by the following procedure.

多孔質炭素基板に8■/cdになるようにPTFEを含
浸し風乾後、基板1 cTA当り2.5 mg P T
 F Eと2,5■のアセチレンブラックの混合ペース
トを塗布した後、空気中370℃で0.5時間焼成した
A porous carbon substrate was impregnated with PTFE to a rate of 8 μ/cd, and after air drying, 2.5 mg PT/cTA per substrate.
After applying a mixed paste of FE and 2.5 μm of acetylene black, it was baked in air at 370° C. for 0.5 hour.

表2中、ta水性の評価を強力としたのは、第6図のよ
うな試験法を行ったとき、409時間浸漬後において電
解液透過阻止層への吸収量は微かに0.1■/calで
あることから推定した判定に基づくものである。電解液
透過阻止層の特徴は、この撥水力の強化と同時に細孔径
分布が0,1μmと非常に小さい方に移行したことにあ
り、これにより触媒層からの電解液のもれ出しが阻止さ
れるところにある。この層のSEM像を図15に示すが
、第12図に比し、非常に緻密な層が形成されているの
がわかる。なお観察倍率は、300倍である。
In Table 2, the reason why the ta aqueous property evaluation is strong is that when the test method shown in Figure 6 was carried out, the amount of absorption into the electrolyte permeation blocking layer after 409 hours of immersion was only 0.1 / This is based on the determination estimated from the fact that it is cal. The characteristic of the electrolyte permeation prevention layer is that at the same time as this water repellency is strengthened, the pore size distribution shifts to a very small 0.1 μm, which prevents the electrolyte from leaking out from the catalyst layer. It's located where you are. A SEM image of this layer is shown in FIG. 15, and it can be seen that a very dense layer is formed compared to FIG. 12. Note that the observation magnification is 300 times.

〔作 用〕[For production]

本発明技術の作用を、電池電圧が高く且つ安定化するた
め、空気極に必要な第1図の三層構造に関するそれぞれ
の性質について比較してみる。
The effect of the technology of the present invention will be compared with respect to each property of the three-layer structure shown in FIG. 1, which is necessary for the air electrode in order to increase and stabilize the battery voltage.

表3 表3には、三層構造電極のそれぞれの箇所の性質の相対
比較をした。これにより、電解液透過阻止層は名称の通
りの作用をし、基板の空隙は触媒層から電解液が排出さ
れる状態のときリザーバとして働き且つ触媒層の電解液
が不足のときは供給源としての作用をもつ。
Table 3 Table 3 shows a relative comparison of the properties of each location of the three-layer structure electrode. As a result, the electrolyte permeation blocking layer works as its name suggests, and the voids in the substrate act as a reservoir when the electrolyte is being drained from the catalyst layer, and as a supply source when the electrolyte in the catalyst layer is insufficient. It has the effect of

〔実施例〕〔Example〕

以下には本発明の実施例について記述するが、本発明は
以下の実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.

実施例1 本実施例では、各種三層構造電極の作製と60mA/d
の電流密度における空気極の単極電位を従来電極と比較
して示す。以下に三層構造電極の作製手順の代表例を記
す。
Example 1 In this example, we will fabricate various three-layer structure electrodes and
The monopolar potential of the air electrode at a current density of is compared with that of a conventional electrode. A typical example of the procedure for producing a three-layer structure electrode is described below.

導電性多孔質基板へ8■PTFE/cjになるようにポ
リフロンディスパージョンを含浸・風乾後、基板1c1
1当り(2,5wPTFEと2.5■アセチレンブラン
ク)になるように水ペーストを塗布風乾後、空気中にて
370℃−0,5時間焼成して電解液透過阻止層付基板
とする。その後(3■cat/cnl−4■PTFEエ
アロゾル/−)の混合ペーストを反対側に塗布し、風乾
後、空気中にて200℃−0,5時間焼成し空気極とし
た。このようにして作製した空気極について、1.5 
MH!SO4電解液中、60℃において60mA/co
!の電流密度のときの空気極電位を測定した。その結果
を表4に示す。
After impregnating the conductive porous substrate with Polyflon dispersion to a concentration of 8■PTFE/cj and air drying, the substrate 1c1
A water paste was applied in an amount of 1/2 (2.5 w PTFE and 2.5 w acetylene blank), air-dried, and then baked in air at 370° C. for 0.5 hours to obtain a substrate with an electrolyte permeation blocking layer. Thereafter, a mixed paste of (3■cat/cnl-4■PTFE aerosol/-) was applied to the opposite side, and after air drying, it was baked in air at 200°C for 0.5 hours to form an air electrode. Regarding the air electrode produced in this way, 1.5
MH! 60 mA/co at 60°C in SO4 electrolyte
! The air electrode potential was measured at a current density of . The results are shown in Table 4.

(来夏以下余白) 表4中、ABはアセチレンブラック、(CF)、。(Left below next summer) In Table 4, AB is acetylene black, (CF).

はフッ化黒鉛の略号である。フッ化黒鉛はPTFEより
撥水性の強い物質であり、層の撥水性を強化する目的で
添加した。また電極中触媒層中の白金量は0.9■/d
である。
is the abbreviation for fluorinated graphite. Graphite fluoride is a substance with stronger water repellency than PTFE, and was added for the purpose of strengthening the water repellency of the layer. In addition, the amount of platinum in the catalyst layer in the electrode is 0.9■/d
It is.

実施例2 実施例1で作製した空気極(表4中隘8)を用いてメタ
ノール極及びイオン交換膜を組合せた単位電池を構成し
、寿命試験を行ってみた。その結果を第3図に示す。第
3図において用いた電極の有効面積は13M、アノライ
トは1.5 MHzSO*  1MCH30Hで運転は
60℃で行った。
Example 2 A unit battery was constructed by combining a methanol electrode and an ion exchange membrane using the air electrode prepared in Example 1 (Table 4, middle column 8), and a life test was conducted. The results are shown in FIG. The effective area of the electrode used in FIG. 3 was 13 M, the anolyte was 1.5 MHz SO* 1 MCH30H, and the operation was performed at 60°C.

第3図によれば、電池電圧は、初期0.3Vから時間経
過とともに徐々に上昇し、約40時間からほぼ一定にな
り、0.38Vと貰い電圧を200時間以上に亘って維
持している。また、この電圧の維持は少なくとも500
時間まで確認されており、従来のものに比べて寿命は約
2.5倍以上のびている。なお、このときの電池の負荷
は、電流密度60mA/c+Jと一定放電したときの値
である。
According to Figure 3, the battery voltage gradually increased over time from an initial value of 0.3V, became almost constant after about 40 hours, and maintained the received voltage of 0.38V for over 200 hours. . Also, this voltage must be maintained for at least 500
It has been confirmed that the lifespan is approximately 2.5 times longer than that of conventional products. Note that the load on the battery at this time is the value when the battery is discharged at a constant current density of 60 mA/c+J.

実施例3 実施例1で作製した空気極(表4中45.6゜7、 9
.10.11及び12)を用いて、実施例2と同様、単
位電池の寿命評価を行ったところ、第3図とほぼ同様の
傾向を示し、電池電圧はいずれの場合においても0.3
8V±0.01 V (60mA/cnt)の範囲に落
ちつき、従来のものにくらべ少なくとも2.5倍の時間
安定した性能を示した。
Example 3 The air electrode prepared in Example 1 (45.6°7, 9 in Table 4)
.. 10.11 and 12) were used to evaluate the lifespan of the unit battery in the same manner as in Example 2. The results showed almost the same tendency as in Figure 3, and the battery voltage was 0.3 in both cases.
It settled in the range of 8V±0.01V (60mA/cnt) and showed stable performance for at least 2.5 times longer than the conventional one.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガス拡散電極触媒層に保持させた電解
液が、基板の外側に漏れ出すのを抑制すると同時に、触
媒層と電解液透過阻止層間の基板空隙が触媒層中の電解
液の溢流に対し、リザーバ効果を発揮するので、電池を
長期間に亘ワて安定して高い電圧を維持する効果がある
According to the present invention, the electrolytic solution held in the gas diffusion electrode catalyst layer is suppressed from leaking to the outside of the substrate, and at the same time, the substrate gap between the catalyst layer and the electrolytic solution permeation blocking layer is Since it exerts a reservoir effect against overflow, it has the effect of maintaining a stable high voltage of the battery over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による空気極の構造を示す図、第2図は
本発明による空気極の電解液透過阻止層の表面のSEM
像、第3図は本発明による空気極を用いた単位電池の経
時変化を示す図、第4図囚は、従来の単位電池の空気極
近傍の拡大図、■は水の移動のモデル図、第5図は電池
電圧の経時変化を示す図、第6図は空気極の電解液平衡
吸収量曲線を示す図、第7図は空気流量と空気極電位変
化の関係を示す図、第8図は空気極のもつ細孔占有率と
電位の関係を示す図、第9図は占有率の小さい空気極を
用いた単位電池の経時変化を示す図、第10図は占有率
の大きい空気極を用いた単位電池の経時変化を示す図、
第11図は従来の空気極の構造を示す図、第12図は従
来の基板側のSEM像である。 1・・・多孔質導電性基板、2・・・空気極触媒層、3
・・・電解液透過阻止層、4・・・本発明による三層構
造空気極を用いた単位電池電圧の経時変化、5・・・空
気極、6・・・イオン交換膜、7・・・アノライト、8
・・・空気極の反応の場、9・・・空気室、10・・・
空気極とイオン交換膜の空隙、11・・・電池の間欠運
転における電池電圧の経時変化、12・・・電池の連続
運転における電圧の経時変化、13・・・触媒層の電解
液の排出による電圧低下現象、14・・・触媒層中の電
解液の濃縮による体積の減少による電圧低下現象、15
・・・触媒層中の電解液の水の希釈による体積の増加に
よる電圧上昇現象、16・・・空気極の電解液吸収曲線
、17・・・空気極の電解液排出曲線、18・・・は電
解液細孔占有率の小さい空気極の特性、19・・・細孔
占有率の大きい空気極の特性、20・・・空気極及びメ
タノール極の電位差から求めた電圧、21・・・親水化
した空気極を用いた単位電池の電圧の経時変化。 特許出願人 株式会社日立製作所 代理人 弁理士 平 木 祐 輔 i−−−−一多孔質導電性基板 2−−−−一空気極触媒層 3−−−−一電解液透過阻止層 第2図 第3図 運転時間(h) 第4図 (A)       (B) U 5−一一一空気極 6−一一一 イオン交換膜 7−−−−7ノライト 8−一一一空気極の反応の場 9−一一一空気室 10−−−一空気極とイオン交換摸の空隙第5図 2    第6図 浸漬時間(h) 第7図 空気流量(ml/min−am2) 細孔占有率(’/、) 第9図 運転時間(h) 第1○図 運転時間(h) 第11図 1−一一一多孔質導電性基板 2−一一一空気極触媒層
FIG. 1 is a diagram showing the structure of the air electrode according to the present invention, and FIG. 2 is an SEM of the surface of the electrolyte permeation blocking layer of the air electrode according to the present invention.
Figure 3 is a diagram showing the change over time of a unit battery using the air electrode according to the present invention, Figure 4 is an enlarged view of the vicinity of the air electrode of a conventional unit battery, ■ is a model diagram of water movement, Fig. 5 shows the change in battery voltage over time, Fig. 6 shows the electrolyte equilibrium absorption curve of the air electrode, Fig. 7 shows the relationship between air flow rate and air electrode potential change, and Fig. 8 is a diagram showing the relationship between the pore occupancy of the air electrode and the potential, Figure 9 is a diagram showing the change over time of a unit battery using an air electrode with a small occupancy, and Figure 10 is a diagram showing the relationship between the air electrode with a large pore occupancy. A diagram showing the change over time of the unit battery used,
FIG. 11 is a diagram showing the structure of a conventional air electrode, and FIG. 12 is an SEM image of the conventional substrate side. 1... Porous conductive substrate, 2... Air electrode catalyst layer, 3
... Electrolyte permeation blocking layer, 4... Time-dependent change in unit cell voltage using the three-layer air electrode according to the present invention, 5... Air electrode, 6... Ion exchange membrane, 7... Anorite, 8
...Air electrode reaction field, 9...Air chamber, 10...
Gap between the air electrode and the ion exchange membrane, 11... Change in battery voltage over time during intermittent operation of the battery, 12... Change over time in voltage during continuous operation of the battery, 13... Due to discharge of electrolyte from the catalyst layer Voltage drop phenomenon, 14... Voltage drop phenomenon due to volume reduction due to concentration of electrolyte in catalyst layer, 15
... Voltage increase phenomenon due to volume increase due to dilution of water in electrolyte in catalyst layer, 16... Electrolyte absorption curve of air electrode, 17... Electrolyte discharge curve of air electrode, 18... is the characteristic of the air electrode with a small electrolyte pore occupancy, 19... the characteristic of the air electrode with a large pore occupancy, 20... the voltage determined from the potential difference between the air electrode and the methanol electrode, 21... hydrophilicity Voltage change over time of a unit battery using a modified air electrode. Patent applicant Hitachi, Ltd. Representative Patent attorney Yusuke Hiraki - Porous conductive substrate 2 - Air electrode catalyst layer 3 - Electrolyte permeation blocking layer 2nd Figure 3 Operating time (h) Figure 4 (A) (B) U 5-111 air electrode 6-111 Ion exchange membrane 7---7 Norite 8-111 air electrode reaction Field 9-111 Air chamber 10---1 Gap between air electrode and ion exchanger Figure 5 Figure 2 Figure 6 Immersion time (h) Figure 7 Air flow rate (ml/min-am2) Pore occupancy ('/,) Figure 9 Operating time (h) Figure 1○ Operating time (h) Figure 11 1-111 Porous conductive substrate 2-111 Air electrode catalyst layer

Claims (1)

【特許請求の範囲】 1、三次元的網目構造を有する基質を撥水性ポリマーで
処理し、該基質片側に集電層をかね備えた電解液阻止層
と前記基質他方に電極触媒−撥水性ポリマー混合物の触
媒層を配したことから成る三層構造を有するガス拡散電
極を用いたことを特徴とする燃料電池。 2、基質が炭素繊維からなることを特徴とする特許請求
の範囲第1項記載の燃料電池。 3、燃料電池が液体燃料電池であることを特徴とする特
許請求の範囲第1項記載の燃料電池。
[Claims] 1. A substrate having a three-dimensional network structure is treated with a water-repellent polymer, and one side of the substrate is treated with an electrolyte blocking layer that also includes a current collecting layer, and the other side of the substrate is provided with an electrocatalyst and a water-repellent polymer. A fuel cell characterized by using a gas diffusion electrode having a three-layer structure comprising a catalyst layer of a mixture. 2. The fuel cell according to claim 1, wherein the substrate is made of carbon fiber. 3. The fuel cell according to claim 1, wherein the fuel cell is a liquid fuel cell.
JP61155073A 1986-07-03 1986-07-03 Fuel cell using three-layer gas diffusion electrode Expired - Lifetime JPH0665039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155073A JPH0665039B2 (en) 1986-07-03 1986-07-03 Fuel cell using three-layer gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155073A JPH0665039B2 (en) 1986-07-03 1986-07-03 Fuel cell using three-layer gas diffusion electrode

Publications (2)

Publication Number Publication Date
JPS6313273A true JPS6313273A (en) 1988-01-20
JPH0665039B2 JPH0665039B2 (en) 1994-08-22

Family

ID=15598061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155073A Expired - Lifetime JPH0665039B2 (en) 1986-07-03 1986-07-03 Fuel cell using three-layer gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH0665039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775788A4 (en) * 2004-06-21 2009-11-11 Nissan Motor Gas diffusion electrode and solid polymer electrolyte fuel cell
CN110676465A (en) * 2018-07-03 2020-01-10 夏普株式会社 Air electrode, metal-air battery, and method for manufacturing air electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775788A4 (en) * 2004-06-21 2009-11-11 Nissan Motor Gas diffusion electrode and solid polymer electrolyte fuel cell
CN110676465A (en) * 2018-07-03 2020-01-10 夏普株式会社 Air electrode, metal-air battery, and method for manufacturing air electrode

Also Published As

Publication number Publication date
JPH0665039B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
Li et al. The role of electrode wettability in electrochemical reduction of carbon dioxide
CN104051750B (en) Micro cavity layer structures and gas diffusion layer assembly in Proton Exchange Membrane Fuel Cells
US6258476B1 (en) Porous carbon body with increased wettability by water
US5840414A (en) Porous carbon body with increased wettability by water
US9011667B2 (en) Nanotube assembly, bipolar plate and process of making the same
JP4323535B2 (en) Water electrolysis equipment
JP2003511829A (en) Gas diffusion electrode containing modified carbon products
JP6646704B2 (en) Improved gas diffusion electrode and method of manufacturing the same
JP2001057215A (en) Solid high polymer film type fuel cell and forming method for gas diffusion layer thereof
KR20040058330A (en) Electrophoretically deposited hydrophilic coatings for fuel cell diffuser/current collector
US8815335B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
JP2007012325A (en) Electrode for solid polymer fuel cell, and solid polymer fuel cell using this
EP1449270A2 (en) Fuel cell gas diffusion layer coating process and treated article
JP2008098066A (en) Gas diffusion substrate, method of manufacturing the same, gas diffusion layer, and solid polymer fuel cell
JPS6313273A (en) Fuel cell using three layer structure gas diffusion electrode
US8871294B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
JP2005100679A (en) Gas diffusion electrode, its manufacturing method, and solid polymer fuel cell using this
WO2019107241A1 (en) Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery
JP4487446B2 (en) Manufacturing method of gas diffusion layer for fuel cell
KR102526841B1 (en) Self-Supported Gas diffusion layer comprising microporous structure, and Fuel cell comprising the same
CN114181426B (en) Organic-inorganic composite membrane and preparation method and application thereof
DE102023205474A1 (en) Electrochemical cell catalyst layers
JP2022063055A (en) Alkaline water electrolysis diaphragm, and production method thereof
KR20230150210A (en) Separator and electrochemical conversion cell comprising same
JPH01243379A (en) Liquid fuel cell