JPS63126177A - Organic electrolytic solution battery and its manufacture - Google Patents

Organic electrolytic solution battery and its manufacture

Info

Publication number
JPS63126177A
JPS63126177A JP60081000A JP8100085A JPS63126177A JP S63126177 A JPS63126177 A JP S63126177A JP 60081000 A JP60081000 A JP 60081000A JP 8100085 A JP8100085 A JP 8100085A JP S63126177 A JPS63126177 A JP S63126177A
Authority
JP
Japan
Prior art keywords
separator
polymer layer
negative electrode
battery
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60081000A
Other languages
Japanese (ja)
Other versions
JPH0564430B2 (en
Inventor
Takakiyo Umeda
梅田 孝清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP60081000A priority Critical patent/JPS63126177A/en
Publication of JPS63126177A publication Critical patent/JPS63126177A/en
Publication of JPH0564430B2 publication Critical patent/JPH0564430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve charge/discharge cycle numbers and a discharge time also to simplify a forming process and a laminating process by making a polymer layer to be a separator. CONSTITUTION:A separator 2 in a film state is formed by making a solvent to be evaporated, dried, and solidified after aryl acetylene polymer dissolved in the solvent is applied to the facing surface of a positive electrode 1 formed in a sheet state to a negative electrode 3. An element battery 8 is manufactured by placing the negative electrode 3 on the separator 2, also a conductive membrane 4 is interposed in the other surface and laminated, and submerged in an electrolytic solution 6 of a battery jar 9 with the end part held by a current collecting body 5, then a terminal 7 is glass hermetically sealed, and closed. This eliminates occurrences of a dislocation of the separator 2 in the time of manufacturing, enables an easy process, eliminates occurrences of a short circuit caused by the process, and enables a charge/discharge by a large current.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機電解液電池とその製造法に関するもので、
さらに詳しく言えば大容量が得られる充電可能な有機電
解液電池とその製造法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an organic electrolyte battery and a method for manufacturing the same.
More specifically, the present invention relates to a rechargeable organic electrolyte battery with a large capacity and a method for manufacturing the same.

従来技術とその問題点 リチウムを負極活物質とする一次電池は、正極に二酸化
マンガン、フッ化炭素を、電解液に有機溶媒を用いるも
のが実用化されているが、二次電池については、充電の
際〜負極活物質であるリチウムが負極表面上に樹枝状に
生長し、セパレータを破壊して内部短絡を発生したり、
有機溶媒と反応して絶縁性の皮膜を形成して不動態化す
るなどの原因により限られた充放電サイクルしか得られ
ず、実用化には至っていない。
Conventional technology and its problems Primary batteries that use lithium as the negative electrode active material have been put into practical use, with manganese dioxide and carbon fluoride used as the positive electrode, and organic solvents used as the electrolyte. During ~ Lithium, which is the negative electrode active material, grows in a dendritic manner on the negative electrode surface, destroying the separator and causing internal short circuits.
Due to factors such as reaction with organic solvents and passivation by forming an insulating film, only a limited charge/discharge cycle can be obtained, and it has not been put into practical use.

上記欠点を解消するものとして、特開昭59−3157
3号公報には、負極活物質としてのリチウムをエチレン
カーボネイトで表面処理することにより、リチウムイオ
ン伝導性の保護膜を形成することが記載されている。ま
た特開昭59−173977号公報には、負極とセパレ
ータとの界面にリチウムイオンを含むポリマー層を介在
させることにより、リチウムが樹枝状に生長することを
抑制することが記載されている。
As a solution to the above drawbacks, Japanese Patent Application Laid-Open No. 59-3157
Publication No. 3 describes that a lithium ion conductive protective film is formed by surface treating lithium as a negative electrode active material with ethylene carbonate. Further, JP-A-59-173977 describes that dendritic growth of lithium is suppressed by interposing a polymer layer containing lithium ions at the interface between the negative electrode and the separator.

しかしながら両者とも電解液を含浸させるセパレータま
たは電解液保持層が、負極表面上に樹枝状に生長するリ
チウムにより容易に破壊されて内部短絡を生じるため、
大電流による充放電を可能ならしめるまでには至ってい
ない。さらにリチウム−アルミニウム合金を負極として
大容量化を図ることも知られているが、実用化には至っ
ていない。
However, in both cases, the separator or electrolyte holding layer that is impregnated with electrolyte is easily destroyed by lithium that grows like a tree on the negative electrode surface, causing an internal short circuit.
It has not yet been possible to charge and discharge with a large current. Furthermore, it is known that a lithium-aluminum alloy can be used as a negative electrode to increase capacity, but this has not been put to practical use.

発明の目的 本発明は上記欠点を解消するもので、大電流による充放
電が可能な大容量の有機電解液電池とその製造法を提供
することを目的とするものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks, and aims to provide a large-capacity organic electrolyte battery that can be charged and discharged with a large current, and a method for manufacturing the same.

発明の構成 本発明は、七パレータや電解液保持層が樹枝状に生長す
るリチウムによって破壊されやすく、またポリマー層が
セパレータとしての機能を果たしうろことに着目してな
されたものである。すなわちシート状に成型した負極、
正極の少なくとも一方の面にポリマー層からなるセパレ
ータを形成し、該セパレータを介して密着させた素電池
を導電性膜を介して積層し、端部に集電体を配して挾持
させるとともに流動性の有機溶媒を主体とする電解液に
浸漬し\密閉してなる有機電解液電池である。
Structure of the Invention The present invention was made with the focus on the fact that the 7-parter and the electrolyte holding layer are easily destroyed by lithium that grows in a dendritic manner, and that the polymer layer also functions as a separator. In other words, a negative electrode molded into a sheet,
A separator made of a polymer layer is formed on at least one surface of the positive electrode, and the unit cells that are brought into close contact with each other through the separator are laminated with a conductive film interposed therebetween, and a current collector is arranged at the end to sandwich and flow. This is an organic electrolyte battery that is immersed in an electrolyte mainly composed of a sterile organic solvent and sealed.

実施例 以下実施例により説明する。第1図は本発明の有機電解
液電池の断面図で、1はシート状に成型した二酸化マン
ガンを主体とする正極、2は本発明のポリマー層からな
る七パレータ、3はシート状に成型したリチウムからな
る負極・4は導電性膜、5は正極および負極を端子7に
電気的に接続するための集電体、6はプロピレンカーボ
イ・イトとジメトキシエタンとの混合溶媒に過塩素酸リ
チウムを溶解させた電解液で、電槽9内に収容されると
ともに正極1と負極6とを七パレータ2を介して密着さ
せてなる素電池8が導電性膜4を介在させて積層され、
端部を集電体5で挾持されて該電解液9に浸漬され、該
電槽が密閉されてなる。
EXAMPLES The present invention will be explained below using examples. FIG. 1 is a cross-sectional view of an organic electrolyte battery of the present invention, in which 1 is a positive electrode mainly made of manganese dioxide molded into a sheet, 2 is a seven-palate consisting of a polymer layer of the present invention, and 3 is a positive electrode molded into a sheet. Negative electrode made of lithium; 4 is a conductive film; 5 is a current collector for electrically connecting the positive and negative electrodes to terminal 7; 6 is lithium perchlorate in a mixed solvent of propylene carboide and dimethoxyethane; A unit cell 8, which is housed in a battery container 9 with a dissolved electrolyte and has a positive electrode 1 and a negative electrode 6 in close contact with each other via a seven-part plate 2, is laminated with a conductive film 4 interposed therebetween.
The ends are held between current collectors 5 and immersed in the electrolytic solution 9, and the container is sealed.

本発明に関るポリマー層からなるセパレータ2は、正極
1の負極5との対向面にアリールアセチレンポリマーを
塗布し、乾燥、固化させたものであるため、有機電解液
電池のセパレータとして広く用いられている親水性のな
い、リチウムなどの負極活物質に対して反応しないぎり
エチレン、ポリプロピレン不織布のように、該負極活物
質が樹枝状に生長するようなことがあっても容易に破壊
されることはない。
The separator 2 made of a polymer layer according to the present invention is obtained by applying an arylacetylene polymer to the surface of the positive electrode 1 facing the negative electrode 5 and drying and solidifying it, so that it is widely used as a separator for organic electrolyte batteries. As long as it does not react with the negative electrode active material such as lithium, which has no hydrophilic properties, it will be easily destroyed even if the negative electrode active material grows in a dendritic shape, such as with ethylene or polypropylene nonwoven fabric. There isn't.

上記アリ−ルア七チレンボリマーは次の一般式で示され
る。
The above aryl 7-ethylene polymer is represented by the following general formula.

上記一般式において、XはHまたはノλロゲン基、シア
ノ基、Aはアルキル基、アリール基、アルコキシ基、了
り−ルオキシ基、ニトロ基、シアノ基、アミ7基または
ハロゲン原子である。nはO〜5の整数で、0または1
であるのが好ましい。mはポリマーの分子量が5,00
0以上になる数で、10.ODD〜1,000,000
であるのが好ましい。またXのハロゲン基としてはF、
 C(1,Br、 Iで、特にC1が好ましい。
In the above general formula, X is H or a halogen group, a cyano group, and A is an alkyl group, an aryl group, an alkoxy group, an aryloxy group, a nitro group, a cyano group, an amide group, or a halogen atom. n is an integer from 0 to 5, 0 or 1
It is preferable that m is the molecular weight of the polymer 5,00
A number greater than or equal to 0, 10. ODD~1,000,000
It is preferable that In addition, the halogen group of X is F,
C(1, Br, I, particularly C1 is preferred.

Aのアルキル基としては、メチル基、イソプロピル基、
ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシ
ル基などの直鎖または側鎖を有する炭素数が1〜18の
もので、特に炭素数が1〜4のものが好ましい。また了
り−ル基としては、フェニル基、ナフチル基H3 素数1〜6のアルキレン基である。またこのアルキル基
は前述のAと同様のものである。
As the alkyl group of A, methyl group, isopropyl group,
Those having 1 to 18 carbon atoms and having a linear or side chain such as a butyl group, hexyl group, octyl group, nonyl group, or dodecyl group, and particularly preferably one having 1 to 4 carbon atoms. Examples of the aryl group include a phenyl group, a naphthyl group, and an alkylene group having a prime number of 1 to 6. Further, this alkyl group is the same as A described above.

上記においてポリマーの分子量をs、ooo以上とする
のは、ホ“リマ一層の強度を得るためである。またこの
ようなポリマー層)まりチウムなどのアルカリ金属イオ
ンの透過性にすぐれていて、有機電解液に対して劣化を
受けることもなく、後述するように厚みについても電気
抵抗が問題になることもなく、セパレータとしての機能
を十分果たしうるちのである。
The reason why the molecular weight of the polymer is set to s, ooo or more in the above is to obtain the strength of a polymer layer.Also, such a polymer layer has excellent permeability to alkali metal ions such as maritium, and It is not degraded by the electrolytic solution, and as described later, the thickness and electrical resistance do not become a problem, and it can fully fulfill its function as a separator.

次にこの有機電解液電池の製造法について説明する。シ
ート状に成型された正極1の負極6との対向面に、溶剤
に溶解させたアリールアセチレンポリマーを塗布した後
、溶剤を蒸発、乾燥、固化させるとフィルム状のセパレ
ータ2が形成される。この時溶剤は完全に除去されてい
なくても実用上間型にはならない。この七パレータ2上
に負極乙を載置して素電池8を製作するとともに他方の
面に導電性膜4を介在させて積層し、端部を集電体5で
挾持させて電槽9内の電解液6に浸漬して端子7をガラ
スハーメチックシールして密閉するものである。
Next, a method for manufacturing this organic electrolyte battery will be explained. After applying an arylacetylene polymer dissolved in a solvent to the surface of the positive electrode 1 formed into a sheet facing the negative electrode 6, the solvent is evaporated, dried, and solidified to form a film-like separator 2. Even if the solvent is not completely removed at this time, it will not become a mold in practical terms. A unit cell 8 is manufactured by placing a negative electrode (B) on this seventh pallet (2), and the conductive film (4) is interposed on the other surface of the battery, and the ends are held between the current collectors (5) and placed in a battery case (9). The terminal 7 is immersed in an electrolytic solution 6 and hermetically sealed with a glass hermetic seal.

こうして製造された有機電解液電池においては、製造時
にセパレータ2のずれが生ずることはなく、工程を簡易
にすることができる。
In the organic electrolyte battery manufactured in this way, the separator 2 does not shift during manufacturing, and the process can be simplified.

またこのことによる短絡も発生することもない。またこ
うして形成したセパレータ2は、む 塗布ならによって発生する正極1と負極5との短絡を防
止する必要性から、ある程度の厚みが必要であることは
言うまでもないが、実験から乾燥、固化させた時点でo
、oosmi以上あれば、微短絡による不良を防止でき
ることが判明した。そしてまたこの程度の厚みは電気抵
抗も問題とはならず、セパレータとしての機能を果たし
うる。
Furthermore, no short circuit occurs due to this. It goes without saying that the separator 2 thus formed needs to have a certain thickness in order to prevent short circuits between the positive electrode 1 and the negative electrode 5 that would occur due to uncoated coating. Deo
, oosmi or more, it was found that defects due to minute short circuits could be prevented. Further, with such a thickness, electrical resistance is not a problem and the film can function as a separator.

次にこうして製造された本発明電池(4)と不織布を七
パレータとした従来電池CB)とを比較するために、同
一形状の正極、負極を用いて素電池8を製作したところ
、同一容量の素電池においては容積が10%減少した。
Next, in order to compare the battery of the present invention (4) manufactured in this way with the conventional battery CB in which seven pallets were made of non-woven fabric, a unit cell 8 was manufactured using positive and negative electrodes of the same shape. In the unit cell, the volume decreased by 10%.

またこの素電池8を積層して同体積の有機電解液電池を
製作したところ、積層できる素電池8の数が増加したた
め、容量が10%増加した。
Furthermore, when an organic electrolyte battery with the same volume was manufactured by stacking these unit cells 8, the capacity increased by 10% because the number of unit cells 8 that could be stacked increased.

さらに同一容量の本発明電池(4)と従来電池(B)と
について、充放電サイクル特性および10サイクル目に
おける放電特性を比較し、結果を第2図、第5図に示す
。なお試験条件は、充電電流が0.5Aで、充電終止電
圧を4vとし、放電電流が0.5Aで、放電終止電圧を
2Vとした。
Further, the charge/discharge cycle characteristics and the discharge characteristics at the 10th cycle were compared between the battery of the present invention (4) and the conventional battery (B) having the same capacity, and the results are shown in FIGS. 2 and 5. Note that the test conditions were a charging current of 0.5 A, a charging end voltage of 4 V, a discharging current of 0.5 A, and a discharging end voltage of 2 V.

第2図から従来電池(B)では充放電サイクルが15サ
イクル目において放電容量が80%に低下してしまうの
に対し、本発明電池(んでは55サイクル目まで80%
の放電容量が確保できた。また第6図から従来電池CB
)では放電開始後16時間で放電終止電圧2vに低下し
てしまうのに対し、本発明電池囚では21時間以上であ
った。さらに放電開始時の電圧も七パレータ2の電気抵
抗が小さいため、0.1V上昇した。
Figure 2 shows that in the conventional battery (B), the discharge capacity decreases to 80% at the 15th charge/discharge cycle, whereas in the battery of the present invention (80%) by the 55th cycle.
We were able to secure a discharge capacity of . Also, from Figure 6, conventional battery CB
), the discharge end voltage decreased to 2V 16 hours after the start of discharge, whereas in the battery of the present invention, it took more than 21 hours. Furthermore, the voltage at the start of discharge increased by 0.1V because the electrical resistance of the seven-parameter 2 was small.

なお上記実施例において、ポリマー層を形成させるのは
正極1の表面に限定するものではない。そしてその形状
も対向面に限定するものではなく、周縁部にはみ出させ
るように形成させたり、形成させない側の極の外径を小
さくすることにより端部における微短絡を防止すること
も本発明の一部であることは言うまでもない。またポリ
マー層についてもアリールアセチレンポリマーに限定す
るものではなく、正極活物質についても二酸化マンガン
以外にニッケル、モリブデン、銅、鉄、銀。
In the above embodiments, the polymer layer is not limited to be formed on the surface of the positive electrode 1. Furthermore, the shape of the pole is not limited to the opposing surfaces, but the present invention can also prevent micro-short circuits at the ends by forming it so as to protrude to the peripheral edge, or by reducing the outer diameter of the pole on the side where it is not formed. Needless to say, it is a part of it. Furthermore, the polymer layer is not limited to arylacetylene polymers, and the positive electrode active materials include nickel, molybdenum, copper, iron, and silver in addition to manganese dioxide.

バナジウムなどのハロゲン化物、酸化物、硫化物が使用
できることは言うまでもない。
It goes without saying that halides, oxides, and sulfides such as vanadium can be used.

発明の効果 実施例において詳述した如く、本発明の有機電解液電池
は、ポリマー層を七パレータとすることにより、大電流
による充放電の反復に対しても樹枝状に生長するリチウ
ムによって破壊されることはなく、充放電サイクル数、
放電時間も大幅に向上させることができる。
Effects of the Invention As described in detail in the Examples, the organic electrolyte battery of the present invention has a seven-parameter polymer layer, so that it is not destroyed by the lithium that grows in a dendritic shape even after repeated charging and discharging with a large current. without charge/discharge cycle number,
Discharge time can also be significantly improved.

またその製造法は七パレータとしてのポリマー層を電極
に密着させて形成しているので、形成する工程およびこ
れらを積層する工程も簡易化することができる。
In addition, since the manufacturing method involves forming a polymer layer as a heplayer in close contact with an electrode, the forming process and the process of laminating these can also be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機電解液電池の断面図、第2図、第
3図は本発明電池と従来電池との充放電サイクル数、放
電特性を比較した図である。
FIG. 1 is a sectional view of an organic electrolyte battery of the present invention, and FIGS. 2 and 3 are diagrams comparing the number of charge/discharge cycles and discharge characteristics of the battery of the present invention and a conventional battery.

Claims (5)

【特許請求の範囲】[Claims] (1)シート状に成型した負極、正極を、少なくとも一
方の面に形成したポリマー層からなるセパレータを介し
て密着させてなる素電池が、導電性膜を介して積層され
、端部を集電体で挾持させるとともに流動性の有機溶媒
を主体とする電解液に浸漬し、密閉してなることを特徴
とする有機電解液電池。
(1) A unit cell is made up of a negative electrode and a positive electrode molded into sheets that are brought into close contact with each other through a separator made of a polymer layer formed on at least one surface, and the cells are stacked with a conductive film interposed therebetween, and the ends are used to collect current. An organic electrolyte battery characterized by being sandwiched between bodies, immersed in an electrolyte mainly composed of a fluid organic solvent, and sealed tightly.
(2)ポリマー層はアリールアセチレンポリマーからな
ることを特徴とする特許請求の範囲第1項記載の有機電
解液電池。
(2) The organic electrolyte battery according to claim 1, wherein the polymer layer is made of an arylacetylene polymer.
(3) ポリマー層は正極または負極の少なくとも一方
の周縁部にはみ出させるように形成したことを特徴とす
る特許請求の範囲第1、2項記載の有機電解液電池。
(3) The organic electrolyte battery according to Claims 1 and 2, wherein the polymer layer is formed so as to protrude from the periphery of at least one of the positive electrode and the negative electrode.
(4)ポリマー層を形成させない極の外径が形成させた
極の外径より小であることを特徴とする特許請求の範囲
第1〜3項記載の有機電解液電池。
(4) The organic electrolyte battery according to any one of claims 1 to 3, wherein the outer diameter of the pole on which no polymer layer is formed is smaller than the outer diameter of the pole on which a polymer layer is formed.
(5)シート状に成型された負極および正極の少なくと
も一方の、他方の極との対向面に、溶剤に溶解させたポ
リマーを塗布した後、乾燥、固化させて形成したセパレ
ータとしてのポリマー層の上に、他方の極を載置して素
電池とし、該素電池を導電性膜を介して積層し、端部を
集電体で挾持させて電槽内の流動性の有機溶媒を主体と
する電解液に浸漬するとともに該電槽を密閉することを
特徴とする有機電解液電池の製造法。
(5) A polymer layer as a separator is formed by applying a polymer dissolved in a solvent to the surface of at least one of a negative electrode and a positive electrode molded into a sheet that faces the other electrode, and then drying and solidifying the polymer. The other electrode is placed on top to form a unit cell, and the unit cells are stacked with a conductive film interposed between them, and the ends are sandwiched between current collectors, so that the liquid organic solvent in the battery case is the main component. A method for producing an organic electrolyte battery, which comprises immersing the battery in an electrolyte and sealing the battery.
JP60081000A 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture Granted JPS63126177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60081000A JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081000A JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS63126177A true JPS63126177A (en) 1988-05-30
JPH0564430B2 JPH0564430B2 (en) 1993-09-14

Family

ID=13734221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081000A Granted JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS63126177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163188A (en) * 1982-03-23 1983-09-27 Matsushita Electric Ind Co Ltd Organic electrolyte secondary cell
JPS59173977A (en) * 1983-03-20 1984-10-02 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163188A (en) * 1982-03-23 1983-09-27 Matsushita Electric Ind Co Ltd Organic electrolyte secondary cell
JPS59173977A (en) * 1983-03-20 1984-10-02 Hitachi Maxell Ltd Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
US6287720B1 (en) 1995-08-28 2001-09-11 Asahi Kasei Kabushiki Kaisha Nonaqueous battery having porous separator and production method thereof

Also Published As

Publication number Publication date
JPH0564430B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US8023251B2 (en) Hybrid energy storage device and method of making same
JP3819785B2 (en) Battery
KR100354947B1 (en) Nonaqueous electrolyte secondary battery
EP2899791B1 (en) Electrode assembly and electrochemical device including same
US6299653B1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
KR102045246B1 (en) Method for Preparing Secondary Battery Having Improved Performance of Degassing Process
US6343003B1 (en) Capacitor element and battery cell
JP3589021B2 (en) Lithium ion secondary battery
US3920477A (en) Compact battery
JPH11167930A (en) Layered secondary battery using thin electrode
WO2022000308A1 (en) Bipolar current collector, electrochemical device, and electronic device
JPH11154534A (en) Lithium ion secondary battery element
JPH1167273A (en) Lithium secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPS63126177A (en) Organic electrolytic solution battery and its manufacture
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JP2874529B2 (en) Lithium battery
JPH02199769A (en) Battery with overcharge preventing function
JPH11297299A (en) Thin secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
KR20190082823A (en) Electrode assembly for battery cell and battery cell
CN113036225B (en) Method for manufacturing lithium ion battery
JPH0887995A (en) Organic electrolyte battery
JP2874527B2 (en) Lithium battery