JPH11167930A - Layered secondary battery using thin electrode - Google Patents

Layered secondary battery using thin electrode

Info

Publication number
JPH11167930A
JPH11167930A JP9335834A JP33583497A JPH11167930A JP H11167930 A JPH11167930 A JP H11167930A JP 9335834 A JP9335834 A JP 9335834A JP 33583497 A JP33583497 A JP 33583497A JP H11167930 A JPH11167930 A JP H11167930A
Authority
JP
Japan
Prior art keywords
electrode
active material
separator
electrodes
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP9335834A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9335834A priority Critical patent/JPH11167930A/en
Publication of JPH11167930A publication Critical patent/JPH11167930A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To reduce connecting places between electrodes, to reduce internal resistance, and to improve an output characteristics by arranging active material layers in two plates by sandwiching an active material nonexistent solid-color part, housing the entire electrodes in a bag-like separator, and bending the electrodes in a solid color part, so that the active material layers of two places are positioned opposite to active material layers of electrode having the other polarity. SOLUTION: In at least one polarity electrode of a thin plate-like positive electrode and a negative electrode, positive electrode active material layers 3 are arranged in two places by sandwiching an active material nonexistent solid-color part. A U-shaped electrode 4 is formed by bending a positive electrode base substance 1, a positive electrode terminal 2 and the positive electrode active material layers 3 along a broken line AB. A separator 5 containing U-shaped electrode 4 is formed by wrapping this U-shaped electrode 4 by a separator 5. In a peripheral edge part of the separator 5, an electrolyte is permeated sufficiently into an electrode group, while preventing a short circuit between the electrodes by a movement of the electrodes or a falling-out active material by intermittently adhering the separator 5 by operation such as thermal fusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属箔状の電極基
体を用いて形成された薄型電極を用いた積層式電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated battery using thin electrodes formed using a metal foil-shaped electrode substrate.

【0002】[0002]

【従来の技術】二次電池の電極構造には、一般には平板
状の正極と負極をセパレータを介して渦巻状に捲回した
捲回式と、平板状の正極と負極をセパレータを介して積
層した積層式とがある。両方式にはそれぞれ一長一短が
あり、それぞれの用途に応じて適用されている。一般に
は、捲回式は小型民生用二次電池に多く利用されてお
り、積層式は鉛蓄電池を中心に大型二次電池に適用され
ている。近年実用化されたリチウムイオン二次電池は、
これまでのところ小型民生用が開発の中心であったこと
と100μm〜200μmの薄型電極を採用しているこ
とから、捲回式の構造が一般に採用されている。しか
し、この電池を大型の用途へ適用するには、たとえば、
特開平7−302616号公報に開示されているよう
に、角形の構造も十分に検討に値する。なぜなら、円筒
形に比べ、角形は多数個の電池からなる組電池を構成す
る際の体積効率に優れるからである。リチウム二次電池
は、有機電解液などの水溶液電解液に比べ電気伝導度の
低い電解液系を用いるため、電極の薄型化による極間距
離の縮小と電極面積の拡大による内部抵抗と電流密度の
低減は不可避である。そのため、角形積層式電池では、
多数枚の電極を積層する工程の改良工夫が技術の要点の
一つとなる。金属箔状の電極基体を用いて形成された薄
型電極を用いる角形積層式電池では、多数枚の電極を積
層する工程の改良工夫が技術の要点の一つとなる。その
一つの提案が、特開平9−129211号公報に示され
ている。そこでは、正負極の少なくとも一方を袋状セパ
レータに挿入する方式が開示されている。これにより、
多数枚の電極を積層する構造において、電極相互の微妙
な位置ずれによる短絡を回避できる。
2. Description of the Related Art Generally, a secondary battery has an electrode structure in which a plate-shaped positive electrode and a negative electrode are spirally wound with a separator interposed therebetween, and a plate-shaped positive electrode and a negative electrode are stacked with a separator interposed therebetween. There is a stacked type. Both types have their advantages and disadvantages, and are applied according to their respective uses. Generally, the wound type is widely used for small consumer secondary batteries, and the stacked type is applied to large secondary batteries, mainly lead storage batteries. In recent years, lithium-ion secondary batteries that have been put into practical use
Until now, small-sized consumer use has been the main focus of development, and since thin electrodes of 100 μm to 200 μm have been adopted, a wound type structure is generally adopted. However, to apply this battery to large applications, for example,
As disclosed in Japanese Patent Application Laid-Open No. 7-302616, a rectangular structure is also worthy of consideration. This is because, compared to a cylindrical shape, a square shape is more excellent in volumetric efficiency when forming an assembled battery including a large number of batteries. Lithium secondary batteries use an electrolyte system with lower electrical conductivity than aqueous electrolytes such as organic electrolytes.Thus, the distance between electrodes is reduced by thinning the electrodes and the internal resistance and current density are reduced by increasing the electrode area. Reduction is inevitable. Therefore, in the case of prismatic stacked batteries,
One of the key points of the technology is to improve the process of laminating a large number of electrodes. In the case of a rectangular stack type battery using thin electrodes formed using a metal foil-shaped electrode substrate, one of the main points of the technology is to improve the process of stacking a large number of electrodes. One such proposal is disclosed in Japanese Patent Application Laid-Open No. 9-129211. There, a method of inserting at least one of the positive and negative electrodes into a bag-like separator is disclosed. This allows
In a structure in which a large number of electrodes are stacked, it is possible to avoid a short circuit due to a slight displacement between the electrodes.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記特
開平9−129211号公報に示した技術においても、
電池部品点数の低減という観点の考慮はされておらず、
薄型電極を多数枚を取り扱うことによる電池製造工程の
煩雑さは解決されていない。本発明が解決しようとする
課題は、多数枚の電極を積層する構造の電池において、
電極相互の微妙な位置ずれによる短絡を回避しつつ、部
品点数を低減し、電池製造工程を簡略にすることであ
る。
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 9-129211,
No consideration was given to reducing the number of battery parts,
The complexity of the battery manufacturing process due to handling a large number of thin electrodes has not been solved. The problem to be solved by the present invention is a battery having a structure in which a large number of electrodes are stacked,
An object of the present invention is to reduce the number of components and simplify the battery manufacturing process while avoiding a short circuit due to a slight displacement between electrodes.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明の正極と負極が、それぞれ金属箔の電極基体
の上に活物質層を有した薄型平板状であり、当該正極と
負極をセパレータを介して積層してなる積層式二次電池
は、少なくとも一方の極性の電極は、活物質層が活物質
の存在しない無地部分を挟んで2箇所に配置され、該電
極全体が袋状セパレータ内に収容され、前記2箇所の活
物質層が他方の極性の電極の活物質層と対向して位置す
るよう、前記電極が無地部分で(断面UやV字形に)折
り曲げられてなることを特徴とする。上記1枚の金属箔
状の電極基体の上に活物質無地部分を挟んで2箇所の活
物質層を有する電極(以下、U字形電極と記す。仮に活
物質無地部分で折り曲げられていなくても便宜上U字形
電極と記す。)を有する積層式電池は、それ1枚が従来
の積層式電池の電極2枚分の役割をするため、結果とし
て電極枚数を減らすことができる。またセパレータの枚
数(個数)も減らすことができる。結果として本発明を
採用することにより電池の部品点数を低減可能となる。
そのため、電池製作工程は簡略化される。このことは、
多数枚の薄型電極を積層することが不可欠な積層式角形
リチウム二次電池においては特に重要である。このこと
により電池製造コストの低減に寄与することになり、実
用上の意味は大きい。
In order to solve the above problems, the positive electrode and the negative electrode of the present invention are each a thin flat plate having an active material layer on a metal foil electrode substrate. In a stacked secondary battery formed by stacking a separator, an electrode of at least one polarity is disposed at two positions with a solid portion where an active material layer does not exist in which an active material is not present. The electrode is bent at a plain portion (in a U-shaped or V-shaped cross section) so that the two active material layers are positioned opposite to the active material layer of the other polarity electrode. Features. An electrode (hereinafter referred to as a U-shaped electrode) having two active material layers sandwiching an active material uncoated portion on the single metal foil electrode substrate (even if it is not bent at the active material uncoated portion) A stacked battery having a U-shaped electrode for convenience) serves as two electrodes of a conventional stacked battery, so that the number of electrodes can be reduced as a result. Also, the number (number) of separators can be reduced. As a result, the number of battery components can be reduced by employing the present invention.
Therefore, the battery manufacturing process is simplified. This means
This is particularly important in a stacked prismatic lithium secondary battery in which it is essential to stack a large number of thin electrodes. This contributes to a reduction in battery manufacturing cost, and is of great practical significance.

【0005】さらにU字形電極を採用することで、溶接
等による電極間接続箇所が低減し、さらなる電池製造工
程の簡略化が見込める上に、接続による極間抵抗の増加
を抑制でき、電池内部抵抗が小さくなり、出力特性が改
善される。そのため大出力を要求される用途に有利とな
る。また本発明では袋状セパレータを採用しているた
め、多数枚の薄型電極積層電池での電極の微妙なずれに
よる短絡を抑制できる。また活物質の脱落による短絡の
おそれを低減できる。つまり前述した従来の技術(特開
平9−129211号公報)での効果を同様に得られ
る。
Further, by employing a U-shaped electrode, the number of connection points between electrodes by welding or the like is reduced, further simplifying the battery manufacturing process can be expected, and an increase in inter-electrode resistance due to connection can be suppressed, and the internal resistance of the battery can be reduced. And the output characteristics are improved. This is advantageous for applications requiring a large output. In addition, since a bag-shaped separator is employed in the present invention, short-circuiting due to subtle displacement of electrodes in a large number of thin electrode laminated batteries can be suppressed. In addition, the risk of short circuit due to falling of the active material can be reduced. That is, the effect of the above-described conventional technique (Japanese Patent Application Laid-Open No. 9-129211) can be similarly obtained.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図面に従
い、さらに詳細に説明する。図2は本発明に係るU字形
電極4である。図において1は厚さ10〜30μmのア
ルミニウム箔からなる正極基体、2は正極端子、3はコ
バルト酸リチウム、マンガンリ酸チウムなどの正極活物
質、炭素粉末などの導電剤、およびポリフッ化ビニリデ
ンなどの結着剤からなる正極活物質層である。同図破線
ABに沿って折り曲げるとU字形電極4が形成される。
このU字形電極4をセパレータで包んで袋状セパレータ
に納めた状態を図1に示す。図において、5がセパレー
タであり、破線A´B´に沿って折り曲げると袋状セパ
レータ5入りU字形電極4が形成される。セパレータ5
にはポリエチレン、ポリプロピレンナなどのポリオレフ
ィン系あるいはその他の高分子材料の微孔膜からなり、
その厚さは20〜60μmのものが用いられる。また、
セパレータ5の周縁部はセパレータ5を袋状にして電極
の移動あるいは脱落した活物質による電極間の短絡を阻
止しながら、かつ電解液の電極群への浸透を十分にする
ために、熱溶着などの操作により間欠的に接着が施され
ている。この袋状セパレータ5入りU字形電極4を用い
て構成した積層式電極群の例として、その断面図を図3
と図4に示す。図3、図4は電極群の横断面図のため、
電極端子が図面の垂直方向に伸びており、図中には示さ
れていない。図3は図1および図2に示したように正極
を袋状セパレータ5入りU字形電極4とする場合の縦断
面図を示している。図において、6は厚さ8〜35μm
の銅箔からなる負極基体、7は炭素系あるいは金属酸化
物系などの負極活物質、およびポリフッ化ビニリデンな
どの結着剤からなる負極活物質層であり、負極基体6と
負極活物質層7から負極8が構成される。負極8をU字
形電極4の内側および外側に配して、積層電極群が構成
される。
Embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 2 shows a U-shaped electrode 4 according to the present invention. In the figure, 1 is a positive electrode substrate made of an aluminum foil having a thickness of 10 to 30 μm, 2 is a positive electrode terminal, 3 is a positive electrode active material such as lithium cobalt oxide and titanium manganate, a conductive agent such as carbon powder, and polyvinylidene fluoride and the like. This is a positive electrode active material layer made of a binder. When bent along the broken line AB in the figure, the U-shaped electrode 4 is formed.
FIG. 1 shows a state in which the U-shaped electrode 4 is wrapped with a separator and stored in a bag-like separator. In the figure, reference numeral 5 denotes a separator, which is folded along a broken line A′B ′ to form a U-shaped electrode 4 containing a bag-shaped separator 5. Separator 5
Consists of microporous membranes of polyolefin or other polymer materials such as polyethylene, polypropylene,
Its thickness is 20 to 60 μm. Also,
In order to prevent the movement of the electrodes or the short-circuit between the electrodes due to the dropped active material, and to make the electrolyte sufficiently penetrate into the electrode group, the peripheral portion of the separator 5 is formed into a bag shape by heat welding. The operation is intermittently performed by the above operation. FIG. 3 is a cross-sectional view of an example of a stacked electrode group configured using the U-shaped electrode 4 containing the bag-shaped separator 5.
FIG. 3 and 4 are cross-sectional views of the electrode group.
The electrode terminals extend in the vertical direction of the drawing and are not shown in the drawing. FIG. 3 is a longitudinal sectional view when the positive electrode is a U-shaped electrode 4 containing a bag-shaped separator 5 as shown in FIGS. 1 and 2. In the figure, 6 is 8 to 35 μm in thickness
The negative electrode substrate 7 is made of a copper foil, and the negative electrode active material layer 7 is made of a carbon-based or metal oxide-based negative electrode active material and a binder such as polyvinylidene fluoride. Constitutes the negative electrode 8. The negative electrode 8 is disposed inside and outside the U-shaped electrode 4 to form a stacked electrode group.

【0007】図4は負極もU字形電極とする場合の電極
群横断面図である。ここではU字形負極8’が袋状セパ
レータ入りU字形電極4(正極)と組み合わされて配置
されている。この構造の場合は、正極と負極両方がU字
形電極構造になっているため、部品点数減と、極間接続
の抵抗損失が低減する効果が大きい。また、同図におい
ては、U字形負極8’は袋状セパレータ5に収容されて
いないが、袋状セパレータ5に収容する構造とすること
も可能である。
FIG. 4 is a cross-sectional view of an electrode group when the negative electrode is also a U-shaped electrode. Here, a U-shaped negative electrode 8 'is arranged in combination with a U-shaped electrode 4 (positive electrode) containing a bag-shaped separator. In the case of this structure, since both the positive electrode and the negative electrode have a U-shaped electrode structure, the effect of reducing the number of parts and the resistance loss of the connection between the electrodes is great. Although the U-shaped negative electrode 8 ′ is not housed in the bag-like separator 5 in the same figure, a structure in which the U-shaped negative electrode 8 ′ is housed in the bag-like separator 5 is also possible.

【0008】[0008]

【実施例】本発明の電池(A)と従来の電池(B)を比
較検討した。図1、図2に示した構造のU字形電極4を
用いて、本発明の図3の構造の電池(A)を5個組み立
てた。電池の大きさは、高さ150mm、幅163m
m、厚さ43mmであり、電池容量は55Ahとした。
正極にはマンガン酸リチウム、負極には黒鉛系材料、セ
パレータは厚さ25μmのポリエチレン系の微孔膜を、
電解液はエチレンカーボネートとジメチルカーボネート
の体積比1:1の混合溶媒に濃度が1mol/lになる
ようにヘキサフルオロリン酸リチウム(LiPF6)を
溶解した溶液である。電池容器は厚さ0.3mmのステ
ンレス鋼とした。上記5個の電極群を積層するのに要し
た手作業時間は、16時間・人であった。図3の構造の
電極群を電池容器に挿入後、電極端子を接続し、ふたを
封口し、その後に真空乾燥器で十分に乾燥し、電解液を
所定量注入し、注液口を密閉した。なお、電極端子の溶
接には超音波溶接を、電池容器の封口と密閉にはレーザ
ー溶接の技術をそれぞれ適用した。
EXAMPLES The battery (A) of the present invention and the conventional battery (B) were compared and studied. Using the U-shaped electrode 4 having the structure shown in FIGS. 1 and 2, five batteries (A) having the structure shown in FIG. 3 of the present invention were assembled. The size of the battery is 150mm high and 163m wide
m, the thickness was 43 mm, and the battery capacity was 55 Ah.
Lithium manganate for the positive electrode, graphite-based material for the negative electrode, polyethylene microporous membrane with a thickness of 25 μm for the separator,
The electrolytic solution is a solution in which lithium hexafluorophosphate (LiPF6) is dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 so that the concentration becomes 1 mol / l. The battery container was made of stainless steel having a thickness of 0.3 mm. The manual time required to stack the five electrode groups was 16 hours per person. After the electrode group having the structure shown in FIG. 3 was inserted into the battery container, the electrode terminals were connected, the lid was sealed, and then the sample was sufficiently dried with a vacuum dryer, a predetermined amount of electrolyte was injected, and the injection port was sealed. . In addition, ultrasonic welding was applied to welding of the electrode terminals, and laser welding technology was applied to sealing and sealing of the battery container.

【0009】得られた密閉式角形電池2個を立ち上げ運
転後、0.2CAで5時間充電し、1時間休止後に、
0.2CAで電池電圧が3.0Vになるまで放電した。
なお、立ち上げ運転では、充電0.1CAで10時間充
電−1時間休止−0.1CAで電池電圧が3.0Vにな
るまで放電−1時間休止のサイクルを3サイクル繰り返
した。次いで同様に0.2CAで5時間充電したのち、
0.5CA、1.0CA、および3.0CAで順次放電
し、放電率特性を評価した。その結果を表1に示す。表
より3.0CAにおいても、0.2CA放電の90%以
上の放電容量が得られている。
After the two sealed prismatic batteries thus obtained were started up and operated, they were charged at 0.2 CA for 5 hours.
The battery was discharged at 0.2 CA until the battery voltage reached 3.0 V.
In the start-up operation, three cycles of charging and discharging for one hour and charging for one hour and resting for one hour until the battery voltage became 3.0 V at 0.1 CA were repeated three times. Next, after similarly charging at 0.2 CA for 5 hours,
Discharge was sequentially performed at 0.5 CA, 1.0 CA, and 3.0 CA, and discharge rate characteristics were evaluated. Table 1 shows the results. From the table, at 3.0 CA, a discharge capacity of 90% or more of 0.2 CA discharge is obtained.

【0010】一方、得られた電池の3個を上記と同様に
立ち上げ運転後、0.2CAで5時間充電し、1時間休
止後に、0.2CAで電池電圧が3.0Vになるまで放
電した。そののち、さらに0.2CAで5時間充電し
た。この電池を80cmの高さからコンクリートの床面
に10回落下させた。そののち回路電圧を測定(微小短
絡短絡の確認)し、さらに0.2CAで電池電圧が3.
0Vになるまで放電した。結果を表2に示す。表より明
らかなように、試験した3個の電池のうち、落下試験に
より開回路電圧の変化したものはなく、また、放電容量
の変化もわずかであった。
On the other hand, three of the obtained batteries were started up in the same manner as described above, charged at 0.2 CA for 5 hours, and after a 1-hour pause, discharged at 0.2 CA until the battery voltage reached 3.0 V. did. Thereafter, the battery was further charged at 0.2 CA for 5 hours. The battery was dropped 10 times from a height of 80 cm onto a concrete floor. After that, the circuit voltage was measured (a minute short-circuit and short-circuit was confirmed).
Discharge was performed until the voltage reached 0V. Table 2 shows the results. As is clear from the table, of the three batteries tested, none of the three batteries had a change in the open circuit voltage due to the drop test, and only a small change in the discharge capacity.

【0011】上記本発明の電池(A)と同一仕様の55
Ah電池(B)を5個製作した。ただし、正極にはU字
形電極を用いず、袋状セパレータに収納した構造とし
た。その断面模式図を図5に示す。図において、10が
袋状セパレータ入り正極である。なお、本電池5個の電
極群を積層するのに要した手作業時間は、20時間・人
であった。この電池を用いて実施例1と同様の試験をし
た結果を表1と表2に示す。表1から電池(B)では、
3.0CA放電放電容量が、0.2CA放電の83%で
あり、電池(A)より約7%低く、電池(A)の方が放
電率特性に優れることを示している。また、表2から落
下試験後の電池(B)は開回路電圧はほとんど変化しな
いが放電容量のばらつきが大きくなっていることを示し
ている。
A battery having the same specifications as the battery (A) of the present invention
Five Ah batteries (B) were produced. However, a U-shaped electrode was not used for the positive electrode, and the positive electrode was housed in a bag-shaped separator. FIG. 5 shows a schematic sectional view thereof. In the drawing, reference numeral 10 denotes a positive electrode containing a bag-shaped separator. The manual operation time required for laminating the five electrode groups of the present battery was 20 hours / person. Tables 1 and 2 show the results of the same test as in Example 1 using this battery. From Table 1, in battery (B),
The 3.0 CA discharge capacity was 83% of the 0.2 CA discharge, which was about 7% lower than the battery (A), indicating that the battery (A) had better discharge rate characteristics. Further, Table 2 shows that the battery (B) after the drop test has almost no change in the open circuit voltage, but has a large variation in discharge capacity.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】本発明の電池は、従来の電池よりも高率
放電特性に優れ、落下試験後の放電容量も安定している
ことが示された。これは、本発明になる袋状セパレータ
入りU字形電極が電極間の抵抗が少なく、缶挿入時ある
いは密閉後の衝撃等による電極間のズレが生じにくいこ
とを反映している。また、袋状セパレータ入りU字形電
極を採用することによる部品点数の低減と、それによる
作業効率の向上も顕著であった。
It has been shown that the battery of the present invention is more excellent in high-rate discharge characteristics than the conventional battery and has a stable discharge capacity after the drop test. This reflects the fact that the U-shaped electrode containing the bag-shaped separator according to the present invention has a low resistance between the electrodes, and is unlikely to cause a displacement between the electrodes due to an impact when the can is inserted or after sealing. In addition, the adoption of the U-shaped electrode containing the bag-shaped separator significantly reduced the number of components and thereby improved the work efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る袋状セパレータ入り電極を示す図
である。
FIG. 1 is a view showing a bag-shaped separator-containing electrode according to the present invention.

【図2】本発明に係る電極を示す図である。FIG. 2 is a diagram showing an electrode according to the present invention.

【図3】本発明に係る積層式電極群を示す縦断面構成図
である。
FIG. 3 is a longitudinal sectional view showing a stacked electrode group according to the present invention.

【図4】本発明に係る積層式電極群を示す縦断面構成図
である。
FIG. 4 is a longitudinal sectional view showing a stacked electrode group according to the present invention.

【図5】従来の積層式電極群を示す縦断面構成図であ
る。
FIG. 5 is a longitudinal sectional configuration diagram showing a conventional stacked electrode group.

【符号の説明】[Explanation of symbols]

1.正極基体 2.正極端子 3.正極活物質層 4.U字形電極 5.セパレータ 6.負極基体 7.負極活物質層 8.負極 1. 1. positive electrode substrate Positive electrode terminal 3. Positive electrode active material layer 4. U-shaped electrode5. Separator 6. Negative electrode substrate 7. Negative electrode active material layer 8. Negative electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と負極が、それぞれ金属箔の電極基体
の上に活物質層を有した薄型平板状であり、当該正極と
負極をセパレータを介して積層してなる積層式二次電池
において、 少なくとも一方の極性の電極は、活物質層が活物質の存
在しない無地部分を挟んで2箇所に配置され、該電極全
体が袋状セパレータ内に収容され、 前記2箇所の活物質層が他方の極性の電極の活物質層と
対向して位置するよう、前記電極が無地部分で折り曲げ
られてなることを特徴とする積層式二次電池。
1. A stacked secondary battery in which a positive electrode and a negative electrode are each a thin flat plate having an active material layer on a metal foil electrode substrate, and the positive electrode and the negative electrode are laminated with a separator interposed therebetween. The electrodes of at least one polarity are arranged at two places with the active material layer sandwiching a solid portion where no active material is present, and the whole electrode is accommodated in a bag-shaped separator. Wherein the electrode is bent at a plain portion so as to be opposed to the active material layer of the electrode having the following polarity:
JP9335834A 1997-12-05 1997-12-05 Layered secondary battery using thin electrode Abandoned JPH11167930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335834A JPH11167930A (en) 1997-12-05 1997-12-05 Layered secondary battery using thin electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335834A JPH11167930A (en) 1997-12-05 1997-12-05 Layered secondary battery using thin electrode

Publications (1)

Publication Number Publication Date
JPH11167930A true JPH11167930A (en) 1999-06-22

Family

ID=18292934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335834A Abandoned JPH11167930A (en) 1997-12-05 1997-12-05 Layered secondary battery using thin electrode

Country Status (1)

Country Link
JP (1) JPH11167930A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029918A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd Electrode for lithium secondary cell and lithium secondary cell
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US6585846B1 (en) 2000-11-22 2003-07-01 3M Innovative Properties Company Rotary converting apparatus and method for laminated products and packaging
JP2003523061A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Multiple superimposed electrochemical cell and method of manufacturing the same
JP2003523059A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell and method of manufacturing the same
US6830846B2 (en) 2001-11-29 2004-12-14 3M Innovative Properties Company Discontinuous cathode sheet halfcell web
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2008282739A (en) * 2007-05-11 2008-11-20 Tdk Corp Electrochemical device, and its manufacturing method
US8329326B2 (en) 2008-03-11 2012-12-11 Tdk Corporation Electrochemical device
WO2013018563A1 (en) * 2011-08-02 2013-02-07 株式会社Gsユアサ Electrode plate, stacked electrode assembly, and batteries
US8409751B2 (en) 2008-03-18 2013-04-02 Tdk Corporation Electrochemical device
JP2014120441A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
JP2014120442A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
US8974956B2 (en) 2009-12-18 2015-03-10 Samsung Sdi Co., Ltd. Secondary battery and method for manufacturing electrode assembly thereof
JP2019096465A (en) * 2017-11-22 2019-06-20 株式会社Gsユアサ Storage element
CN110649229A (en) * 2018-06-26 2020-01-03 北京好风光储能技术有限公司 Electrode plate of slurry battery and slurry battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244164A4 (en) * 1999-10-22 2007-11-14 Sanyo Electric Co Electrode for lithium secondary cell and lithium secondary cell
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
EP1244164A1 (en) * 1999-10-22 2002-09-25 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001029918A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd Electrode for lithium secondary cell and lithium secondary cell
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
JP2003523061A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Multiple superimposed electrochemical cell and method of manufacturing the same
JP2003523059A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell and method of manufacturing the same
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US6585846B1 (en) 2000-11-22 2003-07-01 3M Innovative Properties Company Rotary converting apparatus and method for laminated products and packaging
US6830846B2 (en) 2001-11-29 2004-12-14 3M Innovative Properties Company Discontinuous cathode sheet halfcell web
JP2008282739A (en) * 2007-05-11 2008-11-20 Tdk Corp Electrochemical device, and its manufacturing method
US8329326B2 (en) 2008-03-11 2012-12-11 Tdk Corporation Electrochemical device
US8409751B2 (en) 2008-03-18 2013-04-02 Tdk Corporation Electrochemical device
US8974956B2 (en) 2009-12-18 2015-03-10 Samsung Sdi Co., Ltd. Secondary battery and method for manufacturing electrode assembly thereof
JPWO2013018563A1 (en) * 2011-08-02 2015-03-05 株式会社Gsユアサ Electrode plate, stacked electrode group and battery
EP2741346A1 (en) * 2011-08-02 2014-06-11 GS Yuasa International Ltd. Electrode plate, stacked electrode assembly, and batteries
WO2013018563A1 (en) * 2011-08-02 2013-02-07 株式会社Gsユアサ Electrode plate, stacked electrode assembly, and batteries
CN103718340A (en) * 2011-08-02 2014-04-09 株式会社杰士汤浅国际 Electrode plate, stacked electrode assembly, and batteries
EP2741346A4 (en) * 2011-08-02 2015-04-22 Gs Yuasa Int Ltd Electrode plate, stacked electrode assembly, and batteries
CN103718340B (en) * 2011-08-02 2016-10-05 株式会社杰士汤浅国际 Cylindrical battery and manufacture method thereof
US20170084945A1 (en) * 2011-08-02 2017-03-23 Gs Yuasa International Ltd. Electrode plate, layered electrode group, and battery
US10468711B2 (en) 2011-08-02 2019-11-05 Gs Yuasa International Ltd. Electrode plate, layered electrode group, and battery
JP2014120441A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
JP2014120442A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
JP2019096465A (en) * 2017-11-22 2019-06-20 株式会社Gsユアサ Storage element
CN110649229A (en) * 2018-06-26 2020-01-03 北京好风光储能技术有限公司 Electrode plate of slurry battery and slurry battery
CN110649229B (en) * 2018-06-26 2021-01-26 北京好风光储能技术有限公司 Electrode plate of slurry battery and slurry battery

Similar Documents

Publication Publication Date Title
US6709785B2 (en) Stacked electrochemical cell and method for preparing the same
US8574736B2 (en) Hybrid-typed electrode assembly of capacitor-battery structure
JPH11167930A (en) Layered secondary battery using thin electrode
JP4293501B2 (en) Electrochemical devices
US20020160258A1 (en) Multiply stacked electrochemical cell and method for preparing the same
JP3822445B2 (en) Electrochemical devices
US9692027B2 (en) Electrode assembly and lithium secondary battery including the same
JPH09199179A (en) Lithium ion cell
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP2006012703A (en) Secondary battery
JPH11224699A (en) Energy storage element
JPH10116632A (en) Non-aqueous electrolyte secondary battery
JP2002252145A (en) Electrochemical device
JP2006134697A (en) Lithium-ion rechargeable battery
JP3555298B2 (en) Sealed secondary battery
JP2002231312A (en) Nonaqueous electrolyte secondary battery
JP2000251940A (en) Nonaqueous secondary battery and its manufacture
WO2003100901A1 (en) Lithium secondary battery and its fabrication
JPH07245092A (en) Secondary battery
JP4594540B2 (en) Non-aqueous secondary battery charge / discharge method
JP2004014189A (en) Non-aqueous electrolyte secondary battery
JP2012129039A (en) Nonaqueous electrolytic solution secondary battery
JP2000285880A (en) Nonaqueous electrolyte secondary battery
JPH10208711A (en) Battery and battery pack
JPH07153491A (en) Battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040304