JPS63120741A - Composite composition of carbon fiber high-molecular material - Google Patents

Composite composition of carbon fiber high-molecular material

Info

Publication number
JPS63120741A
JPS63120741A JP26564586A JP26564586A JPS63120741A JP S63120741 A JPS63120741 A JP S63120741A JP 26564586 A JP26564586 A JP 26564586A JP 26564586 A JP26564586 A JP 26564586A JP S63120741 A JPS63120741 A JP S63120741A
Authority
JP
Japan
Prior art keywords
carbon fiber
molecular material
carbon fibers
polymer
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26564586A
Other languages
Japanese (ja)
Inventor
Yasusuke Hirao
平尾 庸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26564586A priority Critical patent/JPS63120741A/en
Publication of JPS63120741A publication Critical patent/JPS63120741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title compsn. having excellent flexural strength, flexural modulus, adhesion between carbon fiber and a high-molecular material, etc., consisting of carbon fiber where acid groups on its surface is in the form of an alkali metal salt and a specified high-molecular material. CONSTITUTION:Carbon fiber is brought into contact with an alkaline material (e.g., NaOH), washed with water and dried to obtain carbon fiber where acid groups on its surface is in the form of an alkali metal salt. Said carbon black is blended with 99-90% high-molecular component consisting of 1-100% high- molecular material having epoxy groups in its main chain or on its side chain (e.g., epoxidized PP) and 99-0% high-molecular material (e.g., an ethylene/vinyl acetate copolymer).

Description

【発明の詳細な説明】 (産業上の利用分野) (従来の技術) 炭素繊維で補強された樹脂等の複合材料はスポーツ用品
、レジャー用品、宇宙航空用材料、電磁波シールド用材
料等幅広い分野にわたってその用途開発が進められてい
る。
[Detailed description of the invention] (Industrial application field) (Prior art) Composite materials such as resins reinforced with carbon fibers are used in a wide range of fields such as sports goods, leisure goods, aerospace materials, and electromagnetic shielding materials. Development of its use is progressing.

炭素繊維のもつ優れた特性としての比強度、比弾性率を
生かした分野、また優れた電気伝導性を生かした分野等
今後更にその用途は広がっていくことが予想される。
It is expected that its applications will further expand in the future, including fields that take advantage of carbon fiber's excellent properties such as specific strength and specific modulus, and fields that take advantage of its excellent electrical conductivity.

しかし複合化時、マトリックスとの接着強度が弱く、素
材のもつ特性を十分に生かしきれ℃いないことは現在こ
の分野におい℃克服すべき最大の問題点であり、この改
善を計るため種々の提案がなされている。
However, when compounding, the adhesive strength with the matrix is weak and the characteristics of the material cannot be fully utilized. This is currently the biggest problem to be overcome in this field, and various proposals are being made to improve this. being done.

炭素繊維の改質としては酸化処理が代表的な手法として
挙げられる。酸化処理法としては気相酸化法、薬品によ
る液相酸化法、炭素繊維の電気伝導性を利用した電解酸
化法等があり、商業プラントにおいては効率性、制御性
から電解法が最も広く採用されている。
Oxidation treatment is a typical method for modifying carbon fibers. Oxidation treatment methods include gas phase oxidation, liquid phase oxidation using chemicals, and electrolytic oxidation that utilizes the electrical conductivity of carbon fibers.In commercial plants, electrolysis is the most widely adopted method due to its efficiency and controllability. ing.

(発明が解決しようとする問題点) 上記いずれの処理法を採用しても過度の酸化処理は炭素
材料そのものの劣化をもたらすためおのずからその処理
には限度があり、酸化処理後、す子材料と複合化しても
必ずしも高分子材料との良好な接着性を示さない。例え
ばマトリックスとしてポリオンフィンを用いた場合、接
着性が悪く、引張り破断後の断面観察ではマ) IJフ
ックスフィラーの界面でのすっぽ抜は現象が頻繁に見ら
れ、個々のもつ特性から期待されるコンポジット性能を
大きく下回る特性しか得られていない。その他の種々の
、マ) IJフックスなシ得る高分子材料に対しても、
素材に応じ期待されるコンポジット特性の達成度は異な
るがいずれにしても十分満足なものとはいい難い。
(Problems to be Solved by the Invention) No matter which treatment method is adopted, excessive oxidation treatment will cause deterioration of the carbon material itself, so there is a limit to the treatment. Even when composited, it does not necessarily show good adhesion with polymeric materials. For example, when polyion fins are used as a matrix, the adhesion is poor, and cross-sectional observation after tensile rupture shows that the phenomenon of IJ hook filler slipping out at the interface is frequently observed, which is expected from the characteristics of each filler. The properties obtained are far below those of composites. For various other polymeric materials such as IJ hooks,
The degree of achievement of the expected composite properties varies depending on the material, but in any case, it is difficult to say that it is fully satisfactory.

ここにいうコンポジット特性の達成度の指標としては例
えば引張強度については長繊維の場合、体積含有率比に
よる加成性での評価が一般的に使用され、また短繊維の
場合には更に複雑であり、Kelly −Tysonの
式等が用いられる。
As an indicator of the degree of achievement of the composite properties mentioned here, for example, regarding tensile strength, in the case of long fibers, evaluation of additivity based on volume content ratio is generally used, and in the case of short fibers, it is more complicated. Yes, and the Kelly-Tyson equation is used.

以上に述べたように従来の技術では炭素繊維の表面改質
のみでは十分な接着性を得るに至らないため、マトリッ
クスがポリオレフィンの場合、複合化にあたり変性ポリ
マーを組成の一部として加えることも試みられている。
As mentioned above, with conventional techniques, it is not possible to obtain sufficient adhesion only by surface modification of carbon fibers, so when the matrix is polyolefin, attempts have also been made to add modified polymers as part of the composition when making composites. It is being

例えばオレフィンと、ラジカル共重合し得るエポキシ基
を有する不飽和モノマーとの共重合体、又はグラフト重
合体或いはオレフィンと、不飽和ジカルボン酸またはそ
の無水物との共重合体又はグラフト重合体等の変性ポリ
オレフィンである。
For example, modification of a copolymer of an olefin and an unsaturated monomer having an epoxy group capable of radical copolymerization, or a graft polymer, or a copolymer or graft polymer of an olefin and an unsaturated dicarboxylic acid or its anhydride. It is a polyolefin.

これらの組み合わせ、即ち酸化処理後サイジング処理或
いはカッブリング剤処理をした市販炭素繊維と変性ポリ
オレフィン及びマトリックスとなるポリオレフィンの単
独或いはコポリマーとの組み合わせによシ得られる複合
材料ではこれらの処理を施さない場合と比較すれば力学
的評価での向上がみられる場合もあるが素材の特性から
期待できるものて対しては低いものであり、破断面観察
結果でも依然としてすっぽ抜は状態が多くみられる等ま
だ改善の余地は大きい。
A composite material obtained by a combination of these, that is, a combination of a commercially available carbon fiber that has been subjected to an oxidation treatment, a sizing treatment, or a coupling agent treatment, a modified polyolefin, and a polyolefin as a matrix alone or in combination with a copolymer, does not undergo these treatments. When compared, there may be improvements in mechanical evaluation, but they are still low compared to what can be expected from the characteristics of the material, and even in the fracture surface observation results, there are still many cases where the bottom is pulled out, so there is still improvement. There is a lot of room for this.

1だその他の炭素繊維表面の改質方法としては、各種ポ
リマーのグラフト或いは被覆等種々提案されているもの
の、工程の複雑化等によるコスト面、及びその処理によ
る効果面から広く採用されるまでには至っていない。
1. Various other methods for modifying the surface of carbon fibers, such as grafting or coating with various polymers, have been proposed, but they have not been widely adopted due to the cost of complicating the process and the effectiveness of the treatment. has not yet been reached.

本発明者は炭素繊維の特性を低下させることなく、容易
な処理と既存物質との組み合わせにより優れた特性を示
す複合材を得ることを目的として鋭意検討した結果、本
発明に到達したものである。
The present inventor has arrived at the present invention as a result of intensive studies aimed at obtaining a composite material that exhibits excellent properties through easy processing and combination with existing materials without degrading the properties of carbon fiber. .

(問題点を解決するための手段) 本発明は炭素繊維と高分子との複合組成物であるが、炭
素繊維としてはその表面に酸性基をつけ、これをアルカ
リ金属塩としたものを用い、高分子としては直鎖中もし
くは分岐鎖中にエポキシ基をもつものを少なくとも1部
含む高分子を用いることを特徴とする。
(Means for Solving the Problems) The present invention is a composite composition of carbon fibers and polymers. The polymer used herein is characterized in that it contains at least a portion of the polymer having an epoxy group in its linear or branched chain.

本発明によれば炭素繊維の特性を低下させることなく炭
素繊維と高分子材料との接着性を向上させることにより
、優れた特性を示す炭素繊維強化高分子複合材料を得る
ことができる。
According to the present invention, a carbon fiber-reinforced polymer composite material exhibiting excellent properties can be obtained by improving the adhesion between carbon fibers and a polymer material without reducing the properties of the carbon fibers.

この複合材料は熱硬化性の場合には層間剪断強度(IL
SS )等によシ接着力を評価することができ、熱可塑
性の場合にはILSS等で直接の評価はできないものの
得られた組成物の機械的特性の向上をみればそれが接着
性向上によることは明らかである。
When this composite material is thermosetting, the interlaminar shear strength (IL)
SS) etc. can be used to evaluate the adhesion strength, and in the case of thermoplastics, ILSS etc. cannot be used to directly evaluate the adhesive strength. That is clear.

炭素繊維の表面に生成する酸性基とは−C0OH1−O
H1=O1及びそれらの複合したラクトン型等である。
The acidic group generated on the surface of carbon fiber is -C0OH1-O
These include H1=O1 and their combined lactone type.

炭素繊維の表面にこれらの酸性基をつけるには炭素繊維
を気相(例えば空気)酸化、電解酸化、液相酸化等の処
理を行なえばよい。
In order to attach these acidic groups to the surface of carbon fibers, carbon fibers may be subjected to treatments such as gas phase (for example, air) oxidation, electrolytic oxidation, liquid phase oxidation, and the like.

炭素繊維の表面には表面処理としての酸化処理を施す前
にも少量ではあるが酸性基が存在していることは文献(
「炭素繊維」犬谷杉部編P222昭和58年近代編集社
刊)でも報告されている。しかし、自然に生ずる酸性基
はわずかであるので、一般的には前記したような方法で
酸化処理を行なう。そして望ましくは10 当量15’
(CF)以上の酸性基をつける(CFとは炭素繊維の英
名略称)。
It is reported in the literature that a small amount of acidic groups exist on the surface of carbon fibers even before oxidation treatment as a surface treatment.
It is also reported in "Carbon Fiber" edited by Inutani Sugibe, P222 (1981, published by Kindai Editorial Company). However, since there are only a few naturally occurring acidic groups, oxidation treatment is generally performed by the method described above. and preferably 10 equivalents 15'
(CF) or higher acidic groups are attached (CF is the English abbreviation for carbon fiber).

その上限は炭素繊維の種類によって異なるが、繊維の損
傷による機械的強度の低下をもたらさない程度で処理を
停止すべきであシ、例えばPAN系では5×10 当量
/g(CF)程度である。
The upper limit varies depending on the type of carbon fiber, but the treatment should be stopped at a level that does not cause a decrease in mechanical strength due to damage to the fiber, for example, for PAN type, it is about 5 × 10 equivalents/g (CF). .

使用される炭素繊維はPAN系、ピンチ系、気相成長系
等公知のすべての炭素Wj、維であり、これらは炭素繊
維、黒鉛化繊維等熱処理条件の如何にかかわらず使用す
ることができる。
The carbon fibers used are all known carbon fibers such as PAN type, pinch type, and vapor growth type, and these can be used regardless of heat treatment conditions such as carbon fibers and graphitized fibers.

炭素繊維の表面の酸性基をアルカリ金属塩にするにはこ
の炭素繊維とアルカリ性物質(NaOH1KOH等)を
接触させればよく、アルカリ性物質を含む雰囲気下に炭
素繊維を存在させて実施する気相法、液中に炭素繊維を
浸漬、あるいは塗布して実施する方法等表面の酸性基の
中和が達成できるならばいずれの方法も用いることがで
きる。液中処理したものはその後水洗、乾燥して使用す
る。
In order to convert the acidic groups on the surface of carbon fibers into alkali metal salts, it is sufficient to bring the carbon fibers into contact with an alkaline substance (such as NaOH1KOH), and this method is carried out using a gas phase method in which the carbon fibers are placed in an atmosphere containing an alkaline substance. Any method can be used as long as the acidic groups on the surface can be neutralized, such as by dipping or coating the carbon fibers in a solution. Those treated in liquid are then washed with water and dried before use.

本発明はこのように表面処理した炭素繊維と高分子との
複合材であるが、高分子として少なくともその中の1部
にエポキシ基をもつ高分子を含める必要がある。エポキ
シ基は直鎖中にあってもよく、分岐鎖中にあってもよい
。高分子はエポキシ基をもつものが100%でおっても
よいが、他の高分子中に一部加えても効果を発揮する。
The present invention is a composite material of carbon fibers and polymers that have been surface-treated in this way, but it is necessary to include a polymer having an epoxy group in at least a portion thereof. The epoxy group may be in a straight chain or in a branched chain. Although 100% of the polymer may have epoxy groups, the effect can be exerted even if a portion is added to other polymers.

この場合エポキシ基の作用を十分に発現するためにはエ
ポキシを有する高分子が1チ以上存在すれば良い。
In this case, in order to fully exhibit the effect of the epoxy group, it is sufficient that one or more epoxy-containing polymers are present.

エポキシ基を有する高分子としてはこれを単独で使用さ
れる場合ビスフェノールA系の他エポキシ樹脂とじ粗製
造、市販されているものは好適に用いられ、垣内弘編「
エポキシ樹脂」(昭晃堂昭和54年6月発行)第51頁
ないし第105頁に製造方法、用途などが示されている
。他の高分子と併用して用いる場合はそれとのなじみを
考えて、他の高分子と類似の構造をもつものが好ましく
、特に他の高分子を改質してエポキシ基を含有する構造
にしたものが好適である。例えば他の高分子がポリエチ
レンの場合、エポキシ基をもつ高分子としてはポリエチ
レンとラジカル共重合又はグラフト重合し得る不飽和モ
ノマーとの共重合体が適しており、市販され工いる商品
とし℃は商漂名ピントファースト(注文化学(株)製)
を挙げることができる。
When used alone as a polymer having an epoxy group, those based on bisphenol A and other epoxy resins that are crudely manufactured and commercially available are preferably used.
Manufacturing methods, uses, etc. are shown on pages 51 to 105 of "Epoxy Resin" (published by Shokodo in June 1974). When used in combination with other polymers, it is preferable to use one with a structure similar to that of the other polymer in consideration of compatibility with the other polymer, especially those with a structure containing an epoxy group by modifying the other polymer. Preferably. For example, when the other polymer is polyethylene, a copolymer of polyethylene and an unsaturated monomer capable of radical copolymerization or graft polymerization is suitable as the polymer with epoxy groups. Zenai Pinto First (manufactured by Custom Chemical Co., Ltd.)
can be mentioned.

エポキシ基を有する高分子と併用される他の高分子とし
てはポリオレフィン、その共重合体、例えばエチレン−
酢ビ共重合体(EVA )などが挙げられる。
Other polymers used in combination with polymers having epoxy groups include polyolefins and copolymers thereof, such as ethylene-
Examples include vinyl acetate copolymer (EVA).

これらの炭素繊維、高分子から複合組成物をつくるには
熱可塑性高分子の場合、炭素繊維、エポキシ基を有する
高分子、他の高分子をトライブレンド後混練押出機を用
いて複合化し、Kノット化又は射出成型するのが一般的
であるが、エポキシ含有不飽和上ツマ−と他の高分子を
重合し得る条件で混練しつつ、同時に又は重合に引き続
き連続的に複合化することもできる。
To make a composite composition from these carbon fibers and polymers, in the case of thermoplastic polymers, carbon fibers, polymers with epoxy groups, and other polymers are triblended and then composited using a kneading extruder. Generally, knotting or injection molding is performed, but it is also possible to knead the epoxy-containing unsaturated polymer and other polymers under conditions that allow polymerization, and to compound them simultaneously or continuously after polymerization. .

また熱硬化性高分子の場合、トライブレンド後熱硬化す
る方法の他に、−旦グリプレグとした後望まれる形状と
なし熱硬化することもできる。
In addition, in the case of thermosetting polymers, in addition to the method of triblending and then thermosetting, it is also possible to form the glypreg into a desired shape and then thermosetting.

(作用) 本発明によって接着性が向上する要因は明らかではない
が炭素繊維表面の酸性基をアルカリ処理によってアルカ
リ金属塩とすることによシ、エポキシ環を開環して反応
し易くなシ、これを介し炭素繊維と高分子材料が化学的
に結合した効果であると推測される。従って例えば有機
酸のアルカリ金属塩を別につくり、これを炭素繊維の表
面に付着させても本発明のような効果は得られない。
(Function) The reason why the adhesiveness is improved by the present invention is not clear, but by converting the acidic group on the surface of the carbon fiber into an alkali metal salt by alkali treatment, the epoxy ring does not easily open and react. It is presumed that this is the effect of chemical bonding between the carbon fiber and the polymer material. Therefore, for example, even if an alkali metal salt of an organic acid is prepared separately and attached to the surface of carbon fibers, the effects of the present invention cannot be obtained.

(効果) 本発明によれば炭素繊維の特性を低下させることなく、
簡単な処理及び特定高分子の組合せにより、後に実施例
に示すように曲げ強さ、曲げ弾性率等の機械的特性を向
上することができる。
(Effect) According to the present invention, without deteriorating the characteristics of carbon fiber,
By simple processing and combination of specific polymers, mechanical properties such as flexural strength and flexural modulus can be improved as shown in Examples later.

以下実施例を示す。Examples are shown below.

炭素繊維(A) 市販のPAN系炭素繊維(東邦ベスロン製: HTA−
C6)を55℃で6hrアセトン抽出しサイソング剤を
除去した。(この時点での表面状態は炭化後酸化処理を
施した状態である。) 乾燥後過剰の濃度1150規定NaOH水溶液を投入後
1150規定HC1水溶液で逆滴定し、炭素繊維表面の
全酸性基を定量したところ4×10 当量/g(CF>
であった。
Carbon fiber (A) Commercially available PAN carbon fiber (manufactured by Toho Bethlon: HTA-
C6) was extracted with acetone at 55°C for 6 hours to remove the Cysong agent. (The surface condition at this point is a state in which oxidation treatment has been performed after carbonization.) After drying, add an excess concentration of 1150N NaOH aqueous solution and perform back titration with 1150N HC1 aqueous solution to quantify the total acidic groups on the carbon fiber surface. As a result, 4×10 equivalents/g (CF>
Met.

サイジング剤除去後乾燥した炭素繊維を10倍当量のK
OH水溶液中に浸漬し、80℃で4hr処理した後水洗
した。水洗終了後100℃で真空乾燥し、表面の酸性基
をアルカリ金属塩とした炭素繊維(A)を得た。
After removing the sizing agent, the dried carbon fiber was treated with 10 times the equivalent of K.
It was immersed in an OH aqueous solution, treated at 80° C. for 4 hours, and then washed with water. After washing with water, the fibers were vacuum dried at 100° C. to obtain carbon fibers (A) in which the acidic groups on the surface were made with alkali metal salts.

炭素繊維(B) 水素ガスをキャリアーとして、鉄の超微粉末をエチルア
ルコール中に分散させた液を反応管内に噴射する方法で
得た気相成長炭素繊維(特開昭58−180615)を
60%HNO,,100℃の条件で、48 hr酸化処
理を施した。
Carbon fiber (B) Vapor-grown carbon fiber (Japanese Unexamined Patent Publication No. 180615/1983) obtained by injecting a liquid in which ultrafine iron powder is dispersed in ethyl alcohol using hydrogen gas as a carrier into a reaction tube was %HNO, 48 hr oxidation treatment at 100°C.

処理後−7になるまで水洗した。After treatment, it was washed with water until it reached -7.

この状態で前記[株])と同様の手法で定量した表面の
全酸性量は5 X 10−’当量/El (CF )で
あった。
In this state, the total acidity on the surface was determined by the same method as in the above-mentioned [Co., Ltd.], and was 5 x 10-' equivalent/El (CF).

水洗に引き続き10倍当量のKOH水溶液中に浸漬し8
0℃で2hr処理した後水洗した。
After washing with water, immerse in a 10-fold equivalent KOH aqueous solution.
After being treated at 0°C for 2 hours, it was washed with water.

水洗終了後lOO℃で真空乾燥し、表面の酸性基をアル
カリ金属塩とした炭素繊維の)を得た。
After washing with water, it was vacuum dried at 100° C. to obtain a carbon fiber whose surface acidic groups were alkali metal salts.

エポキシ変性ポリプロピレン ポリプロピレン(商標名ニジヨウアロマ−1銘柄:MA
510) 150 g、メタクリル酸グリシジル(和光
紬薬(株)製)15(1、過酸化ベンゾイル(東京化成
(株)製)1.09を溶媒としたキシレン31に入れ1
10℃で3hr反応させた。反応終了後アセトンを加え
ポリマー析出後、再溶解、再沈殿により未反応モノマー
を洗い出しエポキシ基を含有する変性ポリプロピレンを
得た。
Epoxy modified polypropylene polypropylene (trade name Nijiyo Aroma-1 brand: MA
510) 150 g, glycidyl methacrylate (manufactured by Wako Tsumugi Co., Ltd.) 15 (1, benzoyl peroxide (manufactured by Tokyo Kasei Co., Ltd.) 1.09 in xylene 31 as a solvent, and 1
The reaction was carried out at 10°C for 3 hours. After the reaction was completed, acetone was added to precipitate the polymer, and unreacted monomers were washed out by redissolution and reprecipitation to obtain modified polypropylene containing epoxy groups.

グラフト量は赤外吸収ス4クトルにより検量した。グラ
フト量は0.3重量%であった。
The graft amount was calibrated using an infrared absorption spectrum. The amount of grafting was 0.3% by weight.

比較炭素繊維(C) 市販の炭素繊維(東邦ペスロン(株)製HTA −C6
)をそのまま用いた。なおこの繊維はメーカー側にて酸
化処理及びサイジング剤付与がなされ℃いる。
Comparison carbon fiber (C) Commercially available carbon fiber (HTA-C6 manufactured by Toho Peslon Co., Ltd.)
) was used as is. This fiber has been oxidized and given a sizing agent by the manufacturer.

比較炭素繊維0) 上記の炭素繊維を前記(4)に示す、アセトン抽出によ
るサイジング剤除去処理までを施したもの。
Comparative carbon fiber 0) The above carbon fiber was subjected to the sizing agent removal treatment by acetone extraction as shown in (4) above.

即ち炭素繊維て酸化処理のみを施した表面状態に相当す
る。
In other words, it corresponds to the surface condition of carbon fibers subjected to only oxidation treatment.

比較炭素繊維@) 前記(B)に示す、気相成長炭素繊維を酸化処理まで施
したもの。
Comparative carbon fiber @) The vapor-grown carbon fiber shown in (B) above, which has been subjected to oxidation treatment.

比較炭素繊維V) 03)に示したような処理を何ら施すことなく気相中で
生成したままの炭素繊維。
Comparative Carbon Fiber V) Carbon fiber as produced in the gas phase without any treatment as shown in 03).

実施例1〜4、比較例1〜12 炭素繊維A、B、比較炭素繊維C,D、E、F、前記エ
ポキシ変性ポリプロピレン及びポリプロピレン(商標名
;ショウアロマ−銘柄: MA510 )を表1に示す
配合割合にてう?ゲラストミル(東洋精器製作新製:形
式28−125、ローラミキサー型式R−60)を用い
混練した。炭素繊維は長さ6mのものを用いたが、混練
後は平均300#Iとなった。
Examples 1 to 4, Comparative Examples 1 to 12 Carbon fibers A, B, comparative carbon fibers C, D, E, F, the epoxy-modified polypropylene and polypropylene (trade name: Show Aroma brand: MA510) are shown in Table 1. What about the blending ratio? The mixture was kneaded using a gelasto mill (manufactured by Toyo Seiki Seisakusho, model 28-125, roller mixer model R-60). The carbon fibers used had a length of 6 m, and after kneading, the average length was 300 #I.

混線条件 温度    170℃ 時間    樹脂線9   5分 炭素繊維投入 〃 混練  〃 計        15分 得られた混線物を一旦冷却後平均2〜4圏立方のサイズ
に切断し熱板プレスを用い220℃で成形した。平板か
ら所定のサイズに試験片を打ち抜き、曲げ強度、曲げ弾
性率、引張シ強度、アイゾツト衝撃試験に供した。
Mixed wire conditions Temperature: 170°C Time: Resin wire 9 5 minutes Addition of carbon fiber〃 Kneading〃 Total: 15 minutes The obtained mixed wire was once cooled, cut into an average size of 2 to 4 cubes, and molded at 220°C using a hot plate press. . Test pieces were punched out to a predetermined size from a flat plate and subjected to bending strength, bending modulus, tensile strength, and Izot impact tests.

結果をまとめて表1に示す。The results are summarized in Table 1.

PAN系炭素繊維、気相成長炭素繊維ともに本発明方法
による組み合わせで得られた複合体の特性は、その組み
合わせの1つ(炭素繊維表面の酸性基のアルカリ金属塩
化或いは変性ポリオレフィンのいずれか)を欠いた場合
に比べ大きく向上することが明らかとなった。
The properties of the composite obtained by combining both PAN-based carbon fibers and vapor-grown carbon fibers by the method of the present invention are that one of the combinations (either alkali metal chloride of the acidic group on the carbon fiber surface or modified polyolefin) It became clear that there was a significant improvement compared to the case without it.

、−c、、   7y1,4@ ?’Ls    lo
  i+  4  イh Hz’  ;Jiia  z
−,13゜実施例5 市販のPAN系炭素繊維「ベスファイトHTA3000
」(東邦ベスロン(株)製)を(8)と全く同様の条件
で処理して得た、表面の酸性基をアルカリ金属塩とした
炭素繊維を「エピコート828J(シェル化学(株)製
エポキシ樹脂)80重量部、3弗化はう素モノエチルア
ミン4重量部、メチルエチルケトン16重量部の混合液
に含浸し、金型に充填して200℃で40分加熱硬化し
た。得られた硬化物を所定の大きさに調整し、テンシロ
ンUTM −I −2500(東洋?−ルドウィン社製
)にて曲げ試験治具を用い0.5+m/分の速度でIL
SSを評価したところ10、5 kg7m であった。
,-c,, 7y1,4@? 'Ls lo
i+ 4 Ih Hz';Jia z
-,13゜Example 5 Commercially available PAN-based carbon fiber "Besphite HTA3000"
'' (manufactured by Toho Bethlon Co., Ltd.) under exactly the same conditions as (8), and the acidic groups on the surface were treated with alkali metal salts. ), 4 parts by weight of boronic monoethylamine trifluoride, and 16 parts by weight of methyl ethyl ketone. IL was adjusted to the size of 0.5 + m/min using a bending test jig using Tensilon UTM-I-2500 (manufactured by Toyo?-Ludwin).
When the SS was evaluated, it was 10.5 kg and 7 m.

比較例13 実施例5に用いた「ペスファイ)HTA3000Jを市
販されている状態のまま、実施例5と同様の手順でき浸
、硬化、ILSS測定を実施した。ILSS値は8.0
 kg7簡であった。
Comparative Example 13 Using the commercially available Pesphi HTA3000J used in Example 5, immersion, curing, and ILSS measurement were carried out in the same manner as in Example 5. The ILSS value was 8.0.
It was 7 kg.

Claims (1)

【特許請求の範囲】[Claims] 表面の酸性基をアルカリ金属塩とした炭素繊維と高分子
からなる組成物であって、該高分子中に直鎖中もしくは
分岐鎖中にエポキシ基をもつ高分子を少なくとも1部含
むことを特徴とする炭素繊維複合高分子組成物。
A composition consisting of a polymer and a carbon fiber whose surface acidic groups are alkali metal salts, characterized in that the polymer contains at least one portion of a polymer having an epoxy group in its linear or branched chain. Carbon fiber composite polymer composition.
JP26564586A 1986-11-10 1986-11-10 Composite composition of carbon fiber high-molecular material Pending JPS63120741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26564586A JPS63120741A (en) 1986-11-10 1986-11-10 Composite composition of carbon fiber high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26564586A JPS63120741A (en) 1986-11-10 1986-11-10 Composite composition of carbon fiber high-molecular material

Publications (1)

Publication Number Publication Date
JPS63120741A true JPS63120741A (en) 1988-05-25

Family

ID=17420012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26564586A Pending JPS63120741A (en) 1986-11-10 1986-11-10 Composite composition of carbon fiber high-molecular material

Country Status (1)

Country Link
JP (1) JPS63120741A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209656A (en) * 1990-12-07 1992-07-31 Osaka Gas Co Ltd Carbon fiber-reinforced resin composition
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
WO2005073291A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
JP2008106109A (en) * 2006-10-24 2008-05-08 Nagase Chemtex Corp Method for producing carbon fiber-reinforced composite material
JP2010150371A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Carbon filament-reinforced polypropylene composite material
JP2011178914A (en) * 2010-03-02 2011-09-15 Teijin Chem Ltd Carbon fiber reinforced polypropylene-based resin composition
JP2018159015A (en) * 2017-03-23 2018-10-11 新日鉄住金化学株式会社 Carbon fiber-reinforced resin composition and molded product
JP2019172802A (en) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 Polyolefin-based resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119772A (en) * 1984-11-13 1986-06-06 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62149968A (en) * 1985-12-23 1987-07-03 東レ株式会社 Treatment of carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119772A (en) * 1984-11-13 1986-06-06 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62149968A (en) * 1985-12-23 1987-07-03 東レ株式会社 Treatment of carbon fiber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209656A (en) * 1990-12-07 1992-07-31 Osaka Gas Co Ltd Carbon fiber-reinforced resin composition
US5462799A (en) * 1993-08-25 1995-10-31 Toray Industries, Inc. Carbon fibers and process for preparing same
US5587240A (en) * 1993-08-25 1996-12-24 Toray Industries, Inc. Carbon fibers and process for preparing same
US5589055A (en) * 1993-08-25 1996-12-31 Toray Industries, Inc. Method for preparing carbon fibers
US5691055A (en) * 1993-08-25 1997-11-25 Toray Industries, Inc. Carbon fibers and process for preparing same
JP2005213479A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Carbon fiber-reinforced, polyolefin-based resin composition and formed article consisting of the same
WO2005073291A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
JP4586372B2 (en) * 2004-02-02 2010-11-24 株式会社プライムポリマー Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
JP2008106109A (en) * 2006-10-24 2008-05-08 Nagase Chemtex Corp Method for producing carbon fiber-reinforced composite material
JP2010150371A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Carbon filament-reinforced polypropylene composite material
JP2011178914A (en) * 2010-03-02 2011-09-15 Teijin Chem Ltd Carbon fiber reinforced polypropylene-based resin composition
JP2018159015A (en) * 2017-03-23 2018-10-11 新日鉄住金化学株式会社 Carbon fiber-reinforced resin composition and molded product
JP2019172802A (en) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 Polyolefin-based resin composition

Similar Documents

Publication Publication Date Title
JP4349118B2 (en) Method for producing sizing-coated carbon fiber
JP4695510B2 (en) Carbon fiber reinforced resin composite material
JPS63120741A (en) Composite composition of carbon fiber high-molecular material
CN106366423B (en) A kind of antistatic eva foam composite material and preparation method
CN110172228A (en) A kind of anti-aging composite material of lignin epoxide resin/fibre reinforced
JPWO2013027674A1 (en) Carbon fiber composite material
JPS63221169A (en) Carbon fiber/high-molecular material composite composition
KR0127672B1 (en) Adhesive composition
CN109161194A (en) A kind of fishing rod high-strength tenacity composite material
CN106633741B (en) A kind of interface modification method of carbon fiber/unsaturated-resin
CN108912451A (en) Fiber reinforcement composite polyethylene material and preparation method thereof
JPS6385167A (en) Surface modified carbon fiber and its production
Rajulu et al. Tensile properties of natural fabric Hildegardia populifolia/polycarbonate toughened epoxy composites
CN106047255A (en) Preparation method of inorganic filler-in-graphene composite resin adhesive
CN107674161A (en) A kind of epoxide resin material for strengthening metal adhesion and preparation method thereof
CN110885489A (en) Low-temperature-resistant polyethylene plastic barrel and preparation process thereof
Parsania Filled and unfilled glass/jute-epoxy methacrylate of 1, 1’-bis (4-hydroxy phenyl) cyclohexane composites: Mechanical and electrical properties
CN108976695A (en) A kind of high impact properties ABS resin
JP3179262B2 (en) Aramid fiber for reinforcing polyolefin resin moldings
JPH06287866A (en) Method for treating polyparaphenylenebenzobisoxazole fiber
Rajulu et al. Tensile properties of epoxy coated natural fabric Hildegardia populifolia
RU2186796C2 (en) Composition for treating surface of composite polymer coatings of mechanical rubber products and carbon-graphite basis
CN106868865B (en) A kind of method of alcamines solution graft copolymerization modified carbon fiber surface size agent
JPH09278914A (en) Prepreg and carbon-fiber reinforced plastics
CN106811966B (en) A kind of method of acrylic amide aqueous solution grafting modified carbon fiber surface size agent