JPS63117235A - Load control - Google Patents

Load control

Info

Publication number
JPS63117235A
JPS63117235A JP61262348A JP26234886A JPS63117235A JP S63117235 A JPS63117235 A JP S63117235A JP 61262348 A JP61262348 A JP 61262348A JP 26234886 A JP26234886 A JP 26234886A JP S63117235 A JPS63117235 A JP S63117235A
Authority
JP
Japan
Prior art keywords
vehicle
load
resistance value
value
load control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61262348A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nomoto
野本 由隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP61262348A priority Critical patent/JPS63117235A/en
Publication of JPS63117235A publication Critical patent/JPS63117235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To achieve a higher reliability in various tests of a vehicle, by calculating changes in the running resistance value generated with variations in vehicle weight shared by wheels during the accelerating of a vehicle to ensure the reproduction of a running resistance value. CONSTITUTION:When a load is generated corresponding to a running resistance value with a load simulator engaged with a four wheel driven type vehicle, front and rear wheels of a vehicle to be tested or driven wheel systems thereof are engaged with corresponding control sections 61, 62, 71 and 72 in a load control section 2 of the load simulator and a command value of the load control section 2 is provided as running resistance value of the vehicle being tested to control a load generated. Then, the acceleration of the vehicle being tested is measured to calculate variation of respective support vehicle weight on front and rear wheels of the vehicle being tested based on the acceleration thereof. A function item of a load is corrected in the command value of the load control section 2 based on the variation thus obtained.

Description

【発明の詳細な説明】 本発明は、4輪駆動方式の車両と係合させた負荷シミュ
レータにより走行抵抗値に対応した負荷を発生させる負
荷制御方法に関する従来の技術 路上走行中の車両が受ける抵抗の大きさ、すなわも走行
抵抗値Fは、次式で示される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conventional technology relating to a load control method for generating a load corresponding to a running resistance value using a load simulator engaged with a four-wheel drive vehicle. The magnitude of F, that is, the running resistance value F, is expressed by the following equation.

F=μ’v¥ + B v’十’vVsi八へ十(W 
/ gMV At        (1)ここに、 μ:路面抵抗係数 W:車重 B:風損係数v:i速 
5ihθ:登板抵抗係数 g二重力加速度 dV /dt:加速度μW:ころがり
抵抗値 B■:風損抵抗値Wsinθ:登板抵抗値 (’Q/g)dV/dt:+R性低抵抗値負荷シミュレ
ータ、上記走行抵抗値に対応した負荷を試験台上で再現
し、負荷シミュレータの負荷制御部と駆動輪又は駆動輪
系を介して係合される被試験車両に加えるものであり、
上記ころがり抵抗値、風損抵抗値および登板抵抗値に対
応した負荷は電気的手段(rjh力計)により発生させ
、慣性抵抗値はlI!械的手段(フライホイール)また
は電気的手段(加速度を測定し慣性抵抗値を算出し、動
力計で制御)のいずれかにより発生させている。
F=μ'v¥ + B v'ten'vVsi eight to ten (W
/ gMV At (1) Here, μ: Road resistance coefficient W: Vehicle weight B: Windage coefficient v: i speed
5ihθ: Climbing resistance coefficient g Double force acceleration dV /dt: Acceleration μW: Rolling resistance value B■: Windage resistance value Wsinθ: Climbing resistance value ('Q/g) dV/dt: +R low resistance value load simulator, above A load corresponding to the running resistance value is reproduced on a test stand and applied to the test vehicle engaged via the load control unit of the load simulator and the drive wheel or drive wheel system,
Loads corresponding to the above rolling resistance values, windage resistance values, and climbing resistance values are generated by electrical means (rjh force meter), and the inertial resistance values are lI! It is generated by either mechanical means (flywheel) or electrical means (acceleration is measured, inertial resistance is calculated, and controlled by a dynamometer).

ところで、4輪駆動方式の車両用の負荷シミュレータに
おいては、実走行中に各駆動輪が受けた抵抗をそれぞれ
に対する負荷制御部により再現させる必要がある。すな
わち、前記(1)式の走行抵抗値Fを各車輪に対して所
定の割合で分割し、それを各負荷制御部の指令値とした
制御が必要であり、その各車輪ごとの分担走行抵抗値は
通常衣のように定められる。
By the way, in a load simulator for a four-wheel drive vehicle, it is necessary to reproduce the resistance experienced by each drive wheel during actual driving by a load control section for each. In other words, it is necessary to divide the running resistance value F in equation (1) above at a predetermined ratio for each wheel and use it as a command value for each load control section, and the shared running resistance for each wheel is Values are usually determined like clothing.

第2図において、いよ被試験車両80の重心85の位置
を路面からの高さがh、後輪対83.84からの水平方
向距離がXとすると、前輪対81.82、後輪対83.
84に加わっでいる力、すなわち分担車重Wす、Wr+
(土、Wz = Wx/ l  Wr = W(t −
x)/ lである。
In FIG. 2, if the height of the center of gravity 85 of the test vehicle 80 from the road surface is h, and the horizontal distance from the rear wheel pair 83.84 is X, then the front wheel pair 81.82, the rear wheel pair 83 ..
The force applied to 84, that is, the shared vehicle weight Ws, Wr+
(Sat, Wz = Wx/ l Wr = W(t −
x)/l.

したがって、先ず、上記(1)式の慣性抵抗値項の質量
は、Wf/g  Wr/gであり、また(1)式中の車
重の関数項であるころがり抵抗値と登板抵抗値の車重は
、前後輪対においてそれぞれWf、Wト、である。次に
、風損抵抗値は車重とは無関係のものであり、各車両が
均等に受は持つことになる。下記の(2)式は、以上の
結果を整理して前輪81.82 後輪83.84の分担
走行抵抗値をそれぞれ84yBr+とじて表わしたもの
であり、これが各前輪対、後輪対と係合される負荷制御
部の指令値となる。
Therefore, first of all, the mass of the inertial resistance value term in equation (1) above is Wf/g Wr/g, and the rolling resistance value and climbing resistance value, which are the function terms of vehicle weight in equation (1), are Wf/g Wr/g. The weights of the front and rear wheels are Wf and Wt, respectively. Next, the windage resistance value is unrelated to vehicle weight, and each vehicle has an equal amount of windage resistance. Equation (2) below organizes the above results and expresses the shared running resistance values of the front wheels 81.82 and rear wheels 83.84 as 84yBr+, respectively, and this is the relationship between each front wheel pair and rear wheel pair. This becomes the command value of the load control unit that is combined with the command value.

Bす=μJ+BV/2+WチS+Aθ + (W4 / g)dv/ dj =W(μ +Si八θへ)(x/ l )+  B  
V /  2+ (W / g)(x/ l )clv
/ dtB  = u Wr十B V / 2 +Wr
s7Lθ+ (W r/ g)dv/ dt =W (u +Sir’Lθ)(1−x)/ l十BV
/2、 +<W / g)[(1−x)/ I ]dv/ dt
但し、実際の負荷制御においては、負荷シミュレータ自
体にも被試験車両の車輪又は駆動軸系と係合して動く可
動部があり、その質量によって生じる慣性負荷があるた
め、予め慣性抵抗値項の質量はこの分だけ差引かれる。
Bsu=μJ+BV/2+WchiS+Aθ+(W4/g)dv/dj=W(μ+Si8θ)(x/l)+B
V/2+ (W/g)(x/l)clv
/ dtB = u Wr 1 B V / 2 + Wr
s7Lθ+ (W r/ g) dv/ dt = W (u +Sir'Lθ) (1-x)/l BV
/2, +<W/g) [(1-x)/I]dv/dt
However, in actual load control, the load simulator itself has moving parts that move by engaging with the wheels or drive shaft system of the test vehicle, and there is an inertial load caused by the mass of the moving parts, so the inertial resistance value term should be calculated in advance. The mass will be subtracted by this amount.

また、以上は前輪対81.82の各輪どうしの各分担走
行抵抗値を同一としたものであり、各車輪対を負荷制御
部と係合させているが、一般にこの種の負荷シミュレー
タでは、各車輪ごとに異なる負荷を与える試験等も行な
えるように、各車輪又は駆動軸系とそれぞれ負荷制御部
を係合させる方式が採用されている。この方式における
前輪、後輪の一つづつが受は持つ分担走行抵抗値りす、
Drは次のとおりとなり、これを指令値として各制御部
による発生負荷の制御が行なわれる。
Furthermore, in the above description, the shared running resistance values of each wheel of the front wheel pair 81 and 82 are the same, and each wheel pair is engaged with the load control section, but generally in this type of load simulator, In order to perform tests that apply different loads to each wheel, a method is adopted in which a load control section is engaged with each wheel or drive shaft system. In this system, each of the front and rear wheels has a shared running resistance value,
Dr is as follows, and the generated load is controlled by each control section using this as a command value.

D多=W(μ+5iにθ)(x/ l)/ 2 +B 
V/ 4+g’vV/g  M)(x/l)/2Jdv
/dtD r = W(μ+S;ハθ)(1−x)/ 
21十BV/4 + (W/ g −M )[(1−x)/ I/ 21
dv/dtここに M:車輪側の質量に換算した負荷シ
ミュレータの可動部等価質量 尚、上式の等画質量Mは、各車輪と係合した負荷シミュ
レータの各負荷制御部の等画質量がそれぞれM/4で等
しい場合であるが異なる場合は、各負荷制御部ごとにそ
の等酒質量分補正を行なうことになる。
D multi=W(μ+5i to θ)(x/l)/2+B
V/ 4+g'vV/g M)(x/l)/2Jdv
/dtD r = W(μ+S; θ)(1-x)/
210 BV/4 + (W/ g - M) [(1-x)/I/ 21
dv/dt where M: Equivalent mass of the moving part of the load simulator converted to mass on the wheel side. Furthermore, the isometric mass M in the above equation is the equal mass of each load control section of the load simulator engaged with each wheel. If they are equal at M/4, but different, the equal alcohol amount is corrected for each load control section.

発明が解決しようとする問題点 さて、走行中の車両が加速あるいは減速走行した場合、
前記のとおり慣性抵抗が発生するが、同時にその慣性抵
抗の発生に伴ない前輪対と後輪対間に分担車重の変化が
生じる。
Problems to be Solved by the Invention Now, when a moving vehicle accelerates or decelerates,
As described above, inertial resistance is generated, but at the same time, due to the generation of inertial resistance, a change in vehicle weight is caused between the front wheel pair and the rear wheel pair.

しかしながら、上記の負荷制御方法においては、前者の
慣性抵抗の再現はされておらず、実際の走行状態が正確
に再現されない問題点があった。
However, in the above-mentioned load control method, the former inertial resistance is not reproduced, and there is a problem that the actual running condition cannot be accurately reproduced.

、問題点を解決するための方法 そこで、加速あるいは減速走行時における前後輪間の車
重移動を検討するのに、第3図に示すように、加速度d
v/dtが車両80に作用すると、重心85に対して慣
性抵抗値(W / g)dv/ dtが作用し、その結
果、前輪対81.82には−ΔWの、後輪対83.84
には+ΔWの分担車重変化が生じ、その大きさは次のよ
うに表される。
, Method for solving the problem Therefore, in order to study the weight transfer between the front and rear wheels during acceleration or deceleration, it is necessary to calculate the acceleration d as shown in Figure 3.
When v/dt acts on the vehicle 80, an inertial resistance value (W/g) dv/dt acts on the center of gravity 85, and as a result, -ΔW acts on the front wheel pair 81.82, and -ΔW acts on the rear wheel pair 83.84.
A shared vehicle weight change of +ΔW occurs, and its magnitude is expressed as follows.

ΔW =(W/g)(h/1)dv/dt     (
4)そして、この分担車重変化によr)影響を受ける走
行抵抗値中の項は、前記(2)式中の右辺第1項の車重
の関数項であり、その変化量ΔFは次のとおりである。
ΔW = (W/g) (h/1) dv/dt (
4) The term in the running resistance value that is affected by this change in vehicle weight is the vehicle weight function term in the first term on the right side of equation (2), and the amount of change ΔF is as follows: It is as follows.

ΔF = (W / g)(h/ I )(u +5r
rbθ)dv/dtとすると、加速度を測定して分担車
重の変化量を求め、それにより負荷シミュレータの負荷
側@部の指令値を補正することにより、負荷シミュレー
タにおいて加速時の走行抵抗値がより厳密に再現させら
れることになる。本発明は上記検討に基づいてなされた
ものである。すなわち、4輪駆動力   式の被試験車
両に対する負荷制御方法であって 、被試験車両の前、
後輪又はその駆動輪係と負荷シミュレータの各対応する
負荷制御部とを係合させ、各負荷制御部の指令値は被試
験車両の走行抵抗値とし、発生負荷を制御する負荷制御
方法において、被試験車両の加速度を測定し、その加速
度に基づいて被試験車両の前、後輪の各支持車重の変化
量を算出し、その変化量に基づき前記負荷制御部の指令
値中の荷重の関数項を補正することを特徴とする負荷制
御方法である。
ΔF = (W/g)(h/I)(u+5r
rbθ)dv/dt, by measuring the acceleration and finding the amount of change in the shared vehicle weight, and correcting the command value of the load side @ part of the load simulator, the running resistance value during acceleration can be calculated in the load simulator. This will allow for a more precise reproduction. The present invention has been made based on the above considerations. In other words, it is a load control method for a four-wheel drive type vehicle under test, in which the front of the vehicle under test,
In a load control method in which a rear wheel or its driving wheel is engaged with each corresponding load control section of a load simulator, the command value of each load control section is a running resistance value of the vehicle under test, and the generated load is controlled, Measure the acceleration of the vehicle under test, calculate the amount of change in the vehicle weight supported by the front and rear wheels of the vehicle under test based on the acceleration, and calculate the load in the command value of the load control section based on the amount of change. This is a load control method characterized by correcting a function term.

実施例 @1図は慣性抵抗値(制御部の可動部分を除く)を含む
全抵抗値を電×的手段により発生させるようにした負荷
シミュレータであってその指令値は抵抗値をトルク値に
換算して与えたちのである。
Example @ Figure 1 is a load simulator that generates the total resistance value including the inertial resistance value (excluding the movable parts of the control unit) by electrical means, and the command value is calculated by converting the resistance value into a torque value. That's what we give.

図において設定部1は前記(3)式に示した走行抵抗値
の各項のトルク換算値を設定する走行抵抗値設定器10
と前記加速度に伴なう分担車重変化の補正値を算出する
補正器50とからなる。その設定部1において、走行抵
抗値設定器10は従来技術と同様のものであり、先ずそ
れを説明する。11.21.31は設定回路群であり、
11.21には車両全体の走行抵抗値F[式(1)参照
)中のころがりおよび登板抵抗値の和W(μ十sIへθ
)、風損抵抗値BVにそれぞれ車輪の半径Rを乗じて1
1紬のトルクに換算した値が設定され、31には後記制
御部において車輪と係合して回動する部分の等画質量M
を差引いた車両質量<W/g  M)の値を車軸のまわ
りの慣性モーメン)(W/g−M)/ R2に換算した
値が設定される。次に12と13は乗算回路であり、前
記設定回路11の設定値が入力され、それにそれぞれx
/ l、 (1−x)/ lを行なうことにより、前、
後輪対の分担値の算出が行なわれ、次いでそれぞれ1/
2乗算回路14.15を介することによって各面、後輪
−つごとの分担ころがりおよび登板抵抗値の算出が行な
われる。同様に22は1/4割算回路であり、前記設定
回路21の出力の1/・を倍が行われ、各車輪ごとの分
担風損抵抗値の算出が行われる。また、32.33は前
記12.13と同様の乗算回路であり、そこに導入され
ている設定器31の出力は、それぞれx/ l=(1−
x)/ 1倍され、次いでそれを各対応した1/2乗ヰ
回路34.35を介することによって各面、後輪の一つ
ごとの分担慣性モーメントの値の算出が行なわれる。
In the figure, the setting unit 1 is a running resistance value setter 10 that sets the torque conversion value of each term of the running resistance value shown in equation (3) above.
and a corrector 50 that calculates a correction value for the change in shared vehicle weight due to the acceleration. In the setting section 1, the running resistance value setting device 10 is similar to that of the prior art, and will be explained first. 11.21.31 is a setting circuit group,
11.21 is the sum of the rolling and climbing resistance values W (μ + sI to θ
), the windage resistance value BV is multiplied by the radius R of each wheel, and the result is 1.
A value converted to the torque of 1 pongee is set, and 31 is the equal image mass M of the part that engages with the wheel and rotates in the control section described later.
The value obtained by subtracting the vehicle mass <W/g M) is converted to the moment of inertia around the axle) (W/g-M)/R2. Next, 12 and 13 are multiplication circuits, into which the set value of the setting circuit 11 is input, and each x
/l, (1-x)/l, the previous,
Calculation of the share value of the rear wheel pair is performed, and then each 1/
Through squaring circuits 14 and 15, the rolling and climbing resistance values for each surface and rear wheel are calculated. Similarly, 22 is a 1/4 division circuit, which multiplies the output of the setting circuit 21 by 1/. to calculate the shared windage resistance value for each wheel. Further, 32.33 is a multiplication circuit similar to the above 12.13, and the output of the setting device 31 introduced therein is x/l=(1-
x)/1 and then passing it through the corresponding 1/2 power circuits 34 and 35 to calculate the value of the shared moment of inertia for each surface and rear wheel.

そして、これら分担慣性モーメントは、後記制御部2の
微分回路82から送出される加速度出力と共に各対応す
る乗算回路36.37に導入されて乗算され、それぞれ
各前後輪の一つづつの分担慣性抵抗値の算出が行なわれ
る。
These shared moments of inertia are then introduced into the respective corresponding multiplier circuits 36 and 37 and multiplied together with the acceleration output sent from the differentiation circuit 82 of the control section 2, which will be described later. is calculated.

続いて、これら前輪の一つに対するトルクで表された分
担値、すなわち、乗算回路14からの分担ころがりおよ
び登板抵抗トルク値、乗算回路22からの分担風損抵抗
トルク値、乗算回路36からの分担慣性抵抗トルク値は
加算回路41に送られて加算され、その加算値が前輪に
対する指令値となる。同様に、後輪の一つに対するトル
クで表された分担値、すなわち、乗算回路15.22.
35、の各トルク値は、加算回路42に送られて加算さ
れ、その加算値が後輪に対する指令値となる。
Subsequently, the shared value expressed by the torque for one of these front wheels, that is, the shared rolling and climbing resistance torque value from the multiplier circuit 14, the shared windage resistance torque value from the multiplier circuit 22, and the shared windage resistance torque value from the multiplier circuit 36. The inertial resistance torque value is sent to an adding circuit 41 and added, and the added value becomes a command value for the front wheels. Similarly, the share value expressed in torque for one of the rear wheels, ie the multiplier circuit 15.22.
The respective torque values of 35 and 35 are sent to an adding circuit 42 and added, and the added value becomes a command value for the rear wheels.

以上が、従来技術と同様の走行抵抗値設定器10であり
、本発明はこれに対して付加された補正器50により、
加速時(尚、化に伴う走行抵抗値変化分の補正を行わせ
るものである。すなわち、51は設定回路であり、そこ
には前記(5)中の係数項(W/ g)(h/ l)(
μ+S訊θ)に車輪半径Rを釆じた値が設定され、続い
て1/2乗算回路52で1/2倍された後、乗算回路5
3においてその出力と前記微分回路82の加速度出力d
v/dtとの乗算が行なわれ、これにより走行抵抗値中
の車輪−つづつの車重の関数項の変化量がトルク値で算
出される。
The above is the running resistance value setter 10 similar to the conventional technology, and the present invention has the corrector 50 added thereto to
During acceleration (in addition, correction is made for the change in running resistance value due to l)(
A value combining the wheel radius R is set to μ+S and θ), and then multiplied by 1/2 in the 1/2 multiplication circuit 52, and then the multiplication circuit 5
3, its output and the acceleration output d of the differentiation circuit 82
Multiplication by v/dt is performed, whereby the amount of change in the wheel-by-vehicle weight function term in the running resistance value is calculated as a torque value.

そして、その出力およびその出力を極性反転回路54を
介した出力は、それぞれ前記加算回路41.42に補正
値として加えられる。したがって、加速度が生じた場合
には、直ちにそれに応じて変化する走行抵抗値の変化分
の算出が行なわれ、加速度の正、負に応じて指令値に対
しその変化分の加減補正が行なわれる。
The output and the output from the polarity inversion circuit 54 are respectively added to the addition circuits 41 and 42 as correction values. Therefore, when acceleration occurs, the amount of change in the running resistance value that changes accordingly is immediately calculated, and the command value is corrected by the amount of change depending on whether the acceleration is positive or negative.

以下、この指令値は各前輪、各後輪とそれぞれ係合され
た制御部61.62.71、れぞれ係合された制御部6
1.62.71.72に送られ、その各発生負荷が前記
指令値に応じた値に制御される。尚、制御部2について
は詳述していないが、車輪と係合  4されたローラ、
それと係合された動力計、その動力計の制御回路、トル
クお上び車速のセンサ等からなる公知のシャシ−ダイナ
モメータよりなる。また、前記の加速度の算出は前記各
車速センサからの出力n、〜n。
Hereinafter, this command value is used for the control units 61, 62, and 71 engaged with each front wheel and each rear wheel, and the control unit 6 that is engaged with each front wheel, respectively.
1, 62, 71, and 72, and each generated load is controlled to a value corresponding to the command value. Although the control unit 2 is not described in detail, the rollers engaged with the wheels 4,
The chassis dynamometer comprises a dynamometer engaged therewith, a control circuit for the dynamometer, torque and vehicle speed sensors, etc., as known in the art. Further, the above-described acceleration is calculated using the outputs n, to n from each of the vehicle speed sensors.

を速度算出回路81に導入して各車輪の平均速度■を算
出後、それを微分回路82に送って微分して得ているも
のであり、その加速度出力が前記各乗算回路36.37
.53に送出される。
is introduced into the speed calculation circuit 81 to calculate the average speed of each wheel, which is then sent to the differentiation circuit 82 and differentiated, and the acceleration output is obtained from each of the multiplication circuits 36.37
.. 53.

発明の効果 以上のとおりであり、本発明は、負荷シミュレータにお
いて、車両の加速時の各車両の分担車重変化により生じ
る走行抵抗値変化を加速度を測定して算出し、それによ
り負荷制御部の指令値を補正するので、走行抵抗値の再
現を正確に行なうことができ、車両の各種試験の信頼度
を向上させることができる。
Effects of the Invention As described above, the present invention calculates, in a load simulator, a change in running resistance value caused by a change in the shared vehicle weight of each vehicle when the vehicle accelerates by measuring acceleration. Since the command value is corrected, the running resistance value can be accurately reproduced, and the reliability of various vehicle tests can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

ttS1図は本発明の方法を実施するための装置例を示
すブロック線図、第2.3図は車両の分担車重を説明す
るためのモデル図である。 1: 設定部  2: 制御部 10: 走行抵抗設定器
Figure ttS1 is a block diagram showing an example of a device for carrying out the method of the present invention, and Figure 2.3 is a model diagram for explaining the shared vehicle weight of the vehicle. 1: Setting section 2: Control section 10: Running resistance setting device

Claims (1)

【特許請求の範囲】[Claims] 1、4輪駆動方式の被試験車両に対する負荷制御方法で
あって、被試験車両の前、後輪又はその駆動輪係と負荷
シミュレータの各対応する負荷制御部とを係合させ、各
負荷制御部の指令値は被試験車両の走行抵抗値とし、発
生負荷を制御する負荷制御方法において、被試験車両の
加速度を測定し、その加速度に基づいて被試験車両の前
、後輪の各支持車重の変化量を算出し、その変化量に基
づき前記負荷制御部の指令値中の荷重の関数項を補正す
ることを特徴とする負荷制御方法。
1. A load control method for a four-wheel drive test vehicle, in which the front and rear wheels of the test vehicle or their drive wheels are engaged with each corresponding load control section of a load simulator, and each load control The command value for this section is the running resistance value of the vehicle under test, and in the load control method that controls the generated load, the acceleration of the vehicle under test is measured, and based on the acceleration, each support vehicle of the front and rear wheels of the vehicle under test is controlled. A load control method comprising: calculating an amount of change in load, and correcting a function term of the load in a command value of the load control unit based on the amount of change.
JP61262348A 1986-11-04 1986-11-04 Load control Pending JPS63117235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262348A JPS63117235A (en) 1986-11-04 1986-11-04 Load control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262348A JPS63117235A (en) 1986-11-04 1986-11-04 Load control

Publications (1)

Publication Number Publication Date
JPS63117235A true JPS63117235A (en) 1988-05-21

Family

ID=17374495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262348A Pending JPS63117235A (en) 1986-11-04 1986-11-04 Load control

Country Status (1)

Country Link
JP (1) JPS63117235A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120941A (en) * 1984-11-16 1986-06-09 Toyota Motor Corp Chassis dynamometer for four-wheel-driven vehicle
JPS61202138A (en) * 1985-03-06 1986-09-06 Toyota Motor Corp Chasis dynamometer for four-wheel-driven vehicle
JPH0246891A (en) * 1988-08-09 1990-02-16 Sanyo Electric Co Ltd Dehydrating machine
JPH037894A (en) * 1989-06-02 1991-01-16 Kuraray Co Ltd Anti-far infrared ray camouflaging film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120941A (en) * 1984-11-16 1986-06-09 Toyota Motor Corp Chassis dynamometer for four-wheel-driven vehicle
JPS61202138A (en) * 1985-03-06 1986-09-06 Toyota Motor Corp Chasis dynamometer for four-wheel-driven vehicle
JPH0246891A (en) * 1988-08-09 1990-02-16 Sanyo Electric Co Ltd Dehydrating machine
JPH037894A (en) * 1989-06-02 1991-01-16 Kuraray Co Ltd Anti-far infrared ray camouflaging film

Similar Documents

Publication Publication Date Title
US5542290A (en) Control system for chassis dynamometer for simulating road test of automotive vehicle
EP1048944A2 (en) Engine testing apparatus
JPS6140994B2 (en)
US4825690A (en) Method of controlling a dynamometer
US3962914A (en) Motor vehicle brake test apparatus and method
KR102211047B1 (en) Control device of dynamometer system
JP6020122B2 (en) Chassis dynamometer
JP3279898B2 (en) Running resistance measuring method and device
JP2007248095A (en) Controller of chassis dynamometer for automatic four-wheel car
JPS63117235A (en) Load control
JP2005061889A (en) Testing device of power train
JP2010078384A (en) Chassis dynamometer for 4wd vehicle
JPH06258193A (en) Running load resistance setter
JPH06265441A (en) Setting method of running resistant load
JPS62151737A (en) Chassis dynamometer
JPH0339632A (en) Controller for chassis dynamometer
JP2001091411A (en) Front-rear axle load controlling method in four-wheel drive vehicle bench test
JPS61204539A (en) Chassis dynamo for vehicle
JP2587357B2 (en) Inspection device for anti-lock brake
JPS6225233A (en) Simulation device on equivalent path
JPH0362215B2 (en)
JPS63293438A (en) Chassis dynamo for four-wheel drive vehicle
JPH0612313B2 (en) Shiashi Dynamo for four-wheel drive vehicles
JPS61204538A (en) Chassis dynamo for four-wheel drive vehicle
JPS61204537A (en) Chassis dynamo for vehicle