JPS6311570A - Manufacture of carbon fiber reinforced carbon material - Google Patents

Manufacture of carbon fiber reinforced carbon material

Info

Publication number
JPS6311570A
JPS6311570A JP61260151A JP26015186A JPS6311570A JP S6311570 A JPS6311570 A JP S6311570A JP 61260151 A JP61260151 A JP 61260151A JP 26015186 A JP26015186 A JP 26015186A JP S6311570 A JPS6311570 A JP S6311570A
Authority
JP
Japan
Prior art keywords
carbon fiber
pressure
temperature
carbon
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61260151A
Other languages
Japanese (ja)
Other versions
JPH051227B2 (en
Inventor
酢谷 潔
角南 好彦
加藤 幹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPS6311570A publication Critical patent/JPS6311570A/en
Publication of JPH051227B2 publication Critical patent/JPH051227B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は、ロケットノズル、航空機用ディスクブレー
キ、或いは炭素発熱体等に使用して優れた性能を発揮す
る炭素繊維強化炭素材の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for manufacturing a carbon fiber reinforced carbon material that exhibits excellent performance when used in rocket nozzles, aircraft disc brakes, carbon heating elements, etc. It is something.

〈従来技術とその問題点〉 軽量で高強度を示し、しかも耐熱性にも優れた炭素繊維
強化炭素材(以下rC/C複合材」と略称する)は、今
や宇宙航空機部材や発熱体、更には医療用材料等として
欠かせない存在となっているが、その製造には“炭素繊
維と熱硬化性樹脂或いはピッチとを混合し炭化する手段
”が一般的に採用されている。しかし、C/ C71合
材の製造にこの方法を採用すると炭化後の成形体中に多
量の気孔が生成し易く、従って「ピッチ含浸−炭化処理
」を繰り返したり[炭素のCVD (化学蒸着)処理」
を施す等の高密度化処理が必要であるなど、工程が極め
て複雑となるので工業的に決して好ましい手段とは言え
なかった。
<Prior art and its problems> Carbon fiber-reinforced carbon materials (hereinafter referred to as rC/C composite materials), which are lightweight, exhibit high strength, and have excellent heat resistance, are now used in spacecraft components, heating elements, and even has become indispensable as a medical material, etc., and in its production, a method of mixing carbon fiber with a thermosetting resin or pitch and carbonizing the mixture is generally employed. However, when this method is adopted to produce C/C71 composite material, a large number of pores are likely to be generated in the compact after carbonization. ”
Since the process is extremely complicated, as it requires densification treatment such as densification treatment, it cannot be said to be an industrially preferable method.

一方、「炭素繊維と炭素質骨材並びに高軟化点のピンチ
からなる混合物とを交互に積層し、これを加圧・加熱成
形してから炭化すると、ピッチ含浸やCVD等の高密度
化処理を施さなくとも高密度で強度の高いC/ C11
合材が得られる」との報告もなされている(「炭素材料
学会筒11回年会要旨集J第98〜99頁)。
On the other hand, ``if carbon fibers, carbonaceous aggregates, and a mixture of high-softening point pinch are alternately laminated, then pressurized and heated, and then carbonized, densification treatments such as pitch impregnation and CVD are possible. C/C11 has high density and high strength even without applying
It has also been reported that "a composite material can be obtained"("Collection of Abstracts of the 11th Annual Meeting of the Carbon Materials Society of Japan, pp. 98-99).

しかしながら、炭素繊維と炭素質骨材・ピンチの混合物
とを均一な厚みで交互積層することは技術的に極めて困
難なことであり、従って、この方法にてC/C複合材の
工業的規模での生産を試みたとしても、得られる製品の
炭素繊維含有率は高々40%以下程度のものにしかなら
ず、所望の良好な物性(曲げ強度、引張り強度、圧縮強
度、剪断強度並びに耐摩耗性等)を有するC/C複合材
の安定な量産は望むべくもなかった。
However, it is technically extremely difficult to alternately laminate carbon fibers and a mixture of carbonaceous aggregate/pinch with a uniform thickness, and therefore this method is not suitable for manufacturing C/C composite materials on an industrial scale. Even if an attempt is made to produce a product, the carbon fiber content of the resulting product will only be around 40% or less, and the desired physical properties (flexural strength, tensile strength, compressive strength, shear strength, abrasion resistance, etc.) will not be achieved. It was impossible to hope for stable mass production of C/C composite materials having such characteristics.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、曲げ、引張り、
圧縮及び剪断等の強度や、耐摩耗性を始めとするその他
の物性に優れた高炭素繊維含有率・高密度C/C複合材
を工業的規模で安定生産し得る方法を提供すべく、試行
錯誤を繰り返しながら研究を重ねたところ、以下に示さ
れる如き知見が得られたのである。即ち、 (a)  何れも微粉状態の炭素質骨材とバインダーピ
ッチとを、これら微粉並びに炭素繊維との濡れ性が良好
な溶液に分散させると共にこの分散液と炭素繊維とを接
触させると、該炭素繊維に前記混合微粉が均一・緻密に
付着した繊維体が極めて容易に、しかも確実に得られる
こと。
<Means for solving the problem> From the above-mentioned viewpoint, the present inventors have developed a method for bending, tensile,
In order to provide a method for stably producing high carbon fiber content and high density C/C composite materials on an industrial scale that have excellent compression and shear strength and other physical properties such as abrasion resistance, we are conducting trials. As a result of repeated research and repeated errors, the following knowledge was obtained. That is, (a) When carbonaceous aggregate and binder pitch, both of which are in a fine powder state, are dispersed in a solution that has good wettability with these fine powders and carbon fibers, and this dispersion liquid is brought into contact with carbon fibers, A fibrous body in which the mixed fine powder is uniformly and densely adhered to carbon fibers can be obtained extremely easily and reliably.

(bl  その上、この炭素質骨材とピッチとを均一付
着させた繊維体は炭素繊維の繊維面が前記混合微粉で殆
んど隙間なく被覆された状態となっているので、この繊
維体の複数をそのまま積層して所定温度域で加圧・加熱
成形し炭化乃至は黒鉛化処理すると、ピッチ含浸又はC
VD等の高密度化処理や“へら”等を使用して行われて
きた面倒な炭素繊維と炭素質骨材・バインダーピッチ混
合粉との交互積層処理を要することなく、炭素繊維含有
率も密度も高い優れた物性のC/C複合材が極めて簡単
にかつ安定して得られること。
(bl) Furthermore, in the fibrous body to which the carbonaceous aggregate and pitch are evenly adhered, the fiber surface of the carbon fiber is covered with the mixed fine powder with almost no gaps, so the fibrous body Pitch impregnation or C
There is no need for densification treatment such as VD or the troublesome alternate lamination treatment of carbon fiber and carbonaceous aggregate/binder pitch mixed powder, which has been done using a spatula, etc., and the carbon fiber content and density can be reduced. To obtain a C/C composite material with excellent physical properties extremely easily and stably.

(C)  更に、積層した繊維体の前記加圧・加熱成形
に際し、これに所定温度域で減圧する前処理を施すと、
繊維束内に残存する気体が除去されて繊維束内へのマト
リックス成分(炭素質骨材)の含浸が促進され、より緻
密で一段と優れた物性を有するC/C複合材が極めて安
定に得られるようになること。
(C) Furthermore, when the laminated fibrous body is subjected to a pretreatment of reducing pressure in a predetermined temperature range during the pressurization and heat forming,
The gas remaining in the fiber bundle is removed and the impregnation of the matrix component (carbonaceous aggregate) into the fiber bundle is promoted, resulting in an extremely stable C/C composite material that is denser and has even better physical properties. To become like that.

この発明は、上記知見に基づいてなされたものであり、 微粉状炭素質骨材とバインダーピッチとを分散させた溶
液中に浸漬してこれらを付着させた炭素繊維織物の複数
を積層し、そのまま或いは必要により更に〔前記バイン
ダーピッチの軟化点+50℃〕〜450℃の温度域にて
100+uHg以下の減圧処理を施した後、加圧・加熱
成形して炭化乃至黒鉛化することにより、面倒な処理・
操作を要することなく、各種強度や体摩耗性等の物性に
優れた炭素繊維強化炭素材を安定して1tJIし得るよ
うにした点、 に特徴を有するものである。
This invention was made based on the above findings, and involves laminating a plurality of carbon fiber fabrics that are immersed in a solution in which finely powdered carbonaceous aggregate and binder pitch are dispersed to adhere them, and then laminating them as they are. Alternatively, if necessary, after further performing a reduced pressure treatment of 100+ uHg or less in a temperature range of [the softening point of the binder pitch +50°C] to 450°C, the complex treatment can be performed by pressurizing and heating forming to carbonize or graphitize.・
The present invention is characterized in that a carbon fiber-reinforced carbon material having excellent physical properties such as various strengths and body abrasion resistance can be stably processed to 1 tJI without requiring any operations.

ここで、炭素質骨材としてはC/C複合材の製造に従来
から使用されている炭素粉、カーボンブラック、黒鉛等
の何れをも採用することができ、またその粒径は格別に
限定されるものではないが、粒径が20μを越えると複
合体の炭化処理後に骨材とピッチのマトリックス中にク
ラックが発生し易くなることから、好ましくは20μ以
下の炭素質骨材(例えば5〜15μの粒径のものが主体
をなすもの)を使用するのが良い。
Here, as the carbonaceous aggregate, any of carbon powder, carbon black, graphite, etc. conventionally used in the production of C/C composite materials can be used, and the particle size is particularly limited. However, if the particle size exceeds 20μ, cracks are likely to occur in the matrix of aggregate and pitch after carbonization of the composite. It is best to use particles that mainly have a particle size of .

また、この発明の方法ではバインダーとしてピッチを採
用している。なぜなら、熱硬化性樹脂よりもピッチの方
が炭化収率が高くて有利だからである。そして、バイン
ダーピッチとしては高軟化点のものほど炭化収率が高く
て緻密なC/C複合材が得られるので、このような観点
からすれば軟化点(ここで言う“軟化点”とは、高化式
フローテスター内の試料が軟化変形し試料粒子自体の空
隙を充填し終わる温度を指す)が200°C以上のもの
が好ましく、出来れば250℃以上のものが推奨される
。しかも、バインダーピッチは炭素繊維フィラメント内
に含浸させなければならないものであって、成形時の加
熱過程で容易に溶融・流動することが必要である。従っ
て、適用するバインダーピッチは流動点(“流動点”と
は前記試料が流動化し始める温度であり、通常は「軟化
点+20〜40℃」である)を有するものが望ましい。
Further, the method of the present invention employs pitch as a binder. This is because pitch has a higher carbonization yield and is more advantageous than thermosetting resin. As a binder pitch, the higher the softening point, the higher the carbonization yield and the denser the C/C composite material. The temperature (refers to the temperature at which the sample in the Koka flow tester finishes softening and deforming and filling the voids of the sample particles themselves) is preferably 200°C or higher, preferably 250°C or higher. Moreover, the binder pitch must be impregnated into the carbon fiber filaments, and must be easily melted and fluidized during the heating process during molding. Therefore, it is desirable that the binder pitch to be applied has a pour point (the "pour point" is the temperature at which the sample begins to fluidize, and is usually "softening point +20 to 40° C.").

これらの点からは揮発分が15%以上のバインダーピッ
チが良いが、炭化収率の観点からは揮発分が30%以下
のものが好ましい。
From these points of view, a binder pitch with a volatile content of 15% or more is preferable, but from the viewpoint of carbonization yield, a binder pitch with a volatile content of 30% or less is preferable.

上述のような軟化点が200℃以上でしかも流動点を存
するバインダーピッチは、例えばコールタールピッチや
石油系ピンチを減圧下で350℃以上の温度で熱処理す
る方法で得ることができるが、使用に当っては200μ
程度以下に粉砕するのが好ましい。
The above-mentioned binder pitch having a softening point of 200°C or higher and a pouring point can be obtained, for example, by heat-treating coal tar pitch or petroleum-based pinch at a temperature of 350°C or higher under reduced pressure. 200μ for the hit
It is preferable to pulverize the powder to a fine size.

この発明で使用される炭素繊維は高強度品或いは低強度
品の何れでも良く、炭化温度は一般的な1000℃以上
である必要はなく500〜1ooo℃程度のものでも十
分であり(むしろ、これら比較的低温で焼成したものの
方が成形体の炭化時に収縮傾向を示すので、マトリック
スとの収縮差が無くなって高い強度を実現することが多
い)、C/C複合材の目標性能に応じて使い分けられる
。炭素繊維の形態としては、チョップ状のもの等何れを
採用してもよいが、高い性能が得られると言う観点から
織物状や長繊維状のものが好適であり、中でも“織物状
のもの”は繊維の配向方向に高い物性が得られるので特
に推奨されるものである。
The carbon fiber used in this invention may be either a high-strength product or a low-strength product, and the carbonization temperature does not need to be the usual 1000°C or higher, but a carbonization temperature of about 500 to 100°C is sufficient (rather, Products fired at relatively low temperatures show a tendency to shrink during carbonization of the compact, so the difference in shrinkage with the matrix is eliminated and high strength is often achieved), depending on the target performance of the C/C composite material. It will be done. As for the form of carbon fiber, any form such as chopped form may be adopted, but from the viewpoint of obtaining high performance, woven form and long fiber form are preferable, and among these, ``woven form'' is particularly recommended because high physical properties can be obtained in the fiber orientation direction.

また、繊維径は特に制限されるものではないが、5〜2
0μ程度のものが適当である。そして、これらの炭素繊
維はエポキシ樹脂等でサイジングされているのが普通で
あるが、サイジングされたまま用いると加熱時にサイジ
ング剤が硬化してピッチが炭素繊維束内へ含浸し難(な
る上、ピッチと炭素繊維との界面に異物が存在すること
になるため、使用に当っては事前に溶剤でサイジング剤
を除去しておくことが望ましい。
In addition, the fiber diameter is not particularly limited, but 5 to 2
A value of approximately 0μ is appropriate. These carbon fibers are usually sized with epoxy resin, etc., but if they are used as they are sized, the sizing agent hardens during heating, making it difficult for the pitch to impregnate into the carbon fiber bundle (and Since foreign matter will be present at the interface between pitch and carbon fiber, it is desirable to remove the sizing agent with a solvent before use.

ところで、この発明の方法では、前記炭素質骨材粉とバ
インダーピッチとを炭素繊維に付着させるため、骨材粉
とバインダーピッチを分散させた溶液中に炭素繊維を浸
漬する手段が採用される。
By the way, in the method of the present invention, in order to attach the carbonaceous aggregate powder and binder pitch to the carbon fibers, a means of immersing the carbon fibers in a solution in which aggregate powder and binder pitch are dispersed is adopted.

このような手段を採用することにより、固体成分が炭素
繊維に良くなじんで均一な厚みで付着し、高炭素繊維含
有率の成形体を製造することが可能となるが、骨材粉と
バインダーピッチとを分散させる液体としては、これら
固体粉及び炭素繊維の何れとも濡れ性の良い、例えばア
セトン、エタノール、メタノール、〔水子界面活性剤〕
の溶液、或いはこれらと樹脂の混合液等が使用出来る。
By adopting such a method, the solid component blends well with the carbon fibers and adheres to them with a uniform thickness, making it possible to produce a molded product with a high carbon fiber content. Examples of the liquid for dispersing the solid powder and carbon fiber include acetone, ethanol, methanol, and water surfactants that have good wettability with both the solid powder and carbon fiber.
A solution of these or a mixture of these and a resin can be used.

なお、分散液に分散させたり浸漬したりする炭素質骨材
、バインダーピ・ノチ及び分散液の重量比率は1 : 
(0,2〜4) : (1〜6)程度が適当である。そ
して、このようにすればマトリックス成分(骨材+バイ
ンダーピッチ)と繊維との比率が1=(2〜2゜3)の
成形物の製造も可能である。
In addition, the weight ratio of the carbonaceous aggregate dispersed or immersed in the dispersion liquid, the binder pipe, and the dispersion liquid is 1:
(0,2-4): Approximately (1-6) is appropriate. In this way, it is also possible to produce a molded product in which the ratio of matrix components (aggregate + binder pitch) to fibers is 1=(2 to 2°3).

さて、炭素質骨材とバインダーピッチとを付着させた炭
素繊維が複数準備されると、これらは積層され、そのま
ま或いは予備成形の後加圧・加熱成形されるが、成形温
度は、ピッチが重合反応して固化することが必要である
ことから少なくとも430℃以上、好ましくは450℃
以上とするのが良い。また、該温度が高すぎるとピンチ
の収縮に起因した成形体の収縮が起こり、加圧力でプレ
ス面に拘束された状態では成形体に割れが発生するので
、成形温度の上限を550℃、好ましくは540 ゛c
程度に抑えるのが良い。成形圧は30kg/cm2未満
では成形体の緻密化が十分に行われないおそれがあるの
で30 kg/all”以上1.好適には40kg/c
m”以上とするのが良い。
Now, when a plurality of carbon fibers to which carbonaceous aggregate and binder pitch are attached are prepared, they are laminated and then either as they are or after preforming, pressurized and heat molded, but the molding temperature is set so that the pitch polymerizes. Since it is necessary to react and solidify, the temperature is at least 430°C or higher, preferably 450°C.
It is better to set it to the above. In addition, if the temperature is too high, the molded product will shrink due to pinch shrinkage, and cracks will occur in the molded product when it is restrained by the pressing force on the press surface. Therefore, the upper limit of the molding temperature is preferably 550°C. is 540゛c
It is best to keep it to a minimum. If the molding pressure is less than 30 kg/cm2, the compact may not be sufficiently densified;
It is preferable to set it to more than m”.

更に、この場合、室温から成形の最終温度(最高到達温
度)まで高圧で加圧し続けると、成形体内に熱分解ガス
が内包されて多孔質となり易く、また例えピッチが高粘
度化する温度(550℃程度)から加圧を開始し650
℃程度まで加圧を続けて上記不都合の回避を図る方法を
採用すると、今度は加圧開始時にピッチが過度に重合し
て粘度が高くなり過ぎ、炭素質骨材と炭素繊維とを接着
する能力が低下しがちとなり易く、何れにしても得られ
るC/C複合材の強度に悪影響を及ぼす一抹の懸念を拭
い得ないものである。そこで、このような懸念を完全に
除いてしまうためには次のような手段が強く推奨される
Furthermore, in this case, if pressurization is continued at high pressure from room temperature to the final temperature of molding (maximum temperature reached), pyrolysis gas is likely to be included in the molded body, making it porous. Start pressurizing from 650℃
If we adopt a method to avoid the above disadvantages by continuing to pressurize to around ℃, the pitch will polymerize excessively at the start of pressurization, resulting in an excessively high viscosity and the ability to bond carbonaceous aggregate and carbon fibers. In any case, there is a certain concern that the strength of the resulting C/C composite material will be adversely affected. Therefore, in order to completely eliminate such concerns, the following measures are strongly recommended.

即ち、加圧・加熱成形工程を、360〜480°Cの温
度範囲まで20kg/amz以下の圧力下(加圧しない
場合も含む)で昇温する第1工程と、これに引き続く、
第1工程での到達温度よりも高い最高到達温度域が43
0〜550℃(出来れば430〜540℃)の加熱下で
30kg/cm”以上(好ましくは40 kg/cab
2以上)の加圧を行う第2工程とで構成する手段である
。なぜなら、360℃を下回る程度の温度はピッチは軟
化するがピンチの熱分解反応は未だ起こらない領域であ
り、また360〜480℃の温度域はある程度熱分解も
進む領域であるが、この時点で20kg/cm”を越え
る高圧で加圧すると、被成形体は炭素繊維と骨材とが密
接すると共にその間隙をピッチが埋め尽くすまで圧密さ
れ、余剰のピッチが被成形体から流出するようになる。
That is, the first step is a pressurization/heat molding step in which the temperature is increased to a temperature range of 360 to 480° C. under a pressure of 20 kg/amz or less (including the case where no pressure is applied), and this is followed by
The maximum temperature range higher than the temperature reached in the first step is 43
30 kg/cm” or more (preferably 40 kg/cab) under heating at 0 to 550°C (preferably 430 to 540°C)
2 or more). This is because at temperatures below 360°C, the pitch softens, but the pinch thermal decomposition reaction does not occur yet, and at temperatures between 360 and 480°C, thermal decomposition progresses to some extent, but at this point, When pressurized at a high pressure of over 20 kg/cm, the carbon fibers and aggregate of the molded object are brought into close contact with each other, and the gap is compacted until the pitch is filled, and excess pitch flows out from the molded object. .

ところが、加圧・加熱成形型のR終温度としては更なる
高温が必要であるので成形型を更に昇温すると、ピ・ノ
チは熱分解反応を起こすか或いは熱分解反応の程度を増
し、発生する熱分解生成ガス圧によりピンチは一層成形
型から流出してピッチ不足の状態を来たすため、得られ
る成形体は多孔質のものとなり強度が低下しがちとなる
懸念がある。また、いきなり480℃を越える温度域に
加熱すると、ピッチの熱分解反応が進み過ぎて高粘度化
するために加圧成形を行っても熱分解ガスが内包されて
しまう上、ピンチと炭素繊維との濡れや接着が十分に起
こらずに成形体の強度に悪影響がでる懸念がある。しか
し、加圧・加熱成形の初期工程を無加圧又は精々20 
kg/cm2以下の加圧下で360〜480℃の温度範
囲にまで加熱するように調整すると、成形に必要な高圧
加圧を実施する前にある程度熱分解が進んでそれ以降の
熱分解生成ガス量が減るので分解ガスによるピンチの流
出現象は低減され、更にこの範囲であればピッチの粘度
も未だ低いことから気泡の内包や骨材及び炭素繊維とピ
ッチの接着不良等の問題は完全に解消される。そして、
これに続いて被成形体を30 kg/cm”以上、好ま
しくは40kg/cm”以上の加圧下で更に昇温しで成
形を完了し、炭化乃至は黒鉛化すると、目的強度を十分
に満足するC/C複合材がより一層安定確実に得られる
。この場合、第1工程での到達温度よりも高い第2工程
での最高到達温度が430℃以上であるとピッチの分解
・固化反応が遅くて成形に長時間を要するような不都合
は完全に拭われ、一方、550℃以下であると、ピンチ
が固化を完了して収縮することに起因した“熱膨張する
金型面と収縮する成形体間の膨張・収縮差”で成形体に
割れが発生するとの懸念は皆無となり、その上、この時
の成形圧を30kg/cm”以上とすることで十分に緻
密化した成形体が確実に得られる。
However, since a higher R final temperature is required for the pressure/heat molding mold, if the temperature of the mold is raised further, Pi-Nochi will cause a thermal decomposition reaction or increase the degree of thermal decomposition reaction, causing Due to the pressure of the pyrolysis product gas, the pinches further flow out of the mold, resulting in a state of insufficient pitch, and there is a concern that the resulting molded product will be porous and its strength will tend to decrease. In addition, if the pitch is suddenly heated to a temperature range exceeding 480°C, the pyrolysis reaction of the pitch will proceed too much and the viscosity will increase, so even if pressure molding is performed, pyrolysis gas will be trapped, and the pinch and carbon fibers will There is a concern that sufficient wetting and adhesion may not occur and the strength of the molded product may be adversely affected. However, the initial process of pressure/heat molding can be carried out without pressure or at most
If the heating is adjusted to a temperature range of 360 to 480°C under pressure of kg/cm2 or less, thermal decomposition will proceed to some extent before the high pressure required for molding is applied, and the amount of gas produced by thermal decomposition will decrease after that. Since the viscosity of pitch is still low within this range, problems such as bubble inclusion and poor adhesion between aggregate and carbon fiber and pitch are completely eliminated. Ru. and,
Subsequently, the molded object is further heated under pressure of 30 kg/cm" or higher, preferably 40 kg/cm" or higher to complete the molding, and is carbonized or graphitized to fully satisfy the target strength. A C/C composite material can be obtained more stably and reliably. In this case, if the maximum temperature reached in the second step is 430°C or higher, which is higher than the temperature reached in the first step, the disadvantage that the pitch decomposition and solidification reaction is slow and the molding takes a long time can be completely eliminated. On the other hand, if the temperature is below 550°C, cracks will occur in the molded product due to the "difference in expansion and contraction between the thermally expanding mold surface and the shrinking molded product" caused by the pinch completing solidification and shrinking. There is no concern that this will occur, and in addition, by setting the molding pressure at this time to 30 kg/cm'' or more, a sufficiently densified molded product can be reliably obtained.

また、このような加圧・加熱成形の前に〔バインダーピ
ッチの軟化点+50℃〕〜450℃の温度域にて100
mHg以下の減圧処理を施すのが良いことは前述した通
りであるが、この際の加熱温度が〔バインダーピッチの
軟化点+50°C〕の値よりも低いとピッチの溶融が不
十分で炭素繊維束内へ含浸しにくくなり、一方、450
℃を越える温度に加熱すると ピンチの熱分解−ガス発生−発泡一浸み出しを生じるこ
とから、この時の加熱温度は〔パインダーピンチの軟化
点+50℃〕〜450℃の温度域とした。更に、この時
の雰囲気圧がlQOmnHgよりも高いとマトリックス
成分の含浸効果が十分に発揮されないことから、加圧・
加熱成形の前に減圧処理を施す場合にはその減圧度を1
00 m−mHg以下と定めた。
In addition, before such pressurization and heat molding, 100° C.
As mentioned above, it is better to perform the vacuum treatment at mHg or less, but if the heating temperature at this time is lower than the value of [softening point of binder pitch + 50°C], the pitch will not be melted enough and the carbon fibers will be damaged. It becomes difficult to impregnate into the bundle, while 450
Since heating to a temperature exceeding .degree. C. causes thermal decomposition of the pinch, gas generation, foaming, and oozing, the heating temperature at this time was set to a temperature range of [softening point of the pinder pinch + 50.degree. C.] to 450.degree. Furthermore, if the atmospheric pressure at this time is higher than lQOmnHg, the impregnating effect of the matrix component will not be sufficiently exerted, so pressurization and
When applying a vacuum treatment before heat forming, the degree of vacuum should be 1.
00 m-mHg or less.

つまり、炭素質骨材とバインダーピッチとを液中分散し
て炭素繊維を浸漬し、その複数を積層して加圧・加熱す
ると、均一に付着してはいるが浸漬時に繊維束内部にま
で侵入していなかったマトリックス成分(骨材とピッチ
)も溶融によって繊維束内へ侵入することとなるが、時
たまそれだけでは十分に含浸しない場合もある。なぜな
ら、繊維束が加圧によって密着するのでフィラメント間
の隙間が少なくなって融液の浸入が困難となったり、繊
維束内に残存していた空気等の気体が抜は難くて融液の
含浸を阻害したり、或いは溶融したピッチは成形金型の
隙間等から流出するので圧力の伝達が悪くなって含浸力
を低下させたりするからである。ところが、加圧・加熱
成形の前に前記条件の減圧処理を行うと上記不都合は完
全に取り除かれ、高密度の成形体を安定して製造出来る
ようになるのである。
In other words, if carbon fibers are dispersed in a liquid with carbonaceous aggregate and binder pitch and carbon fibers are immersed in the liquid, and then a plurality of carbon fibers are layered and then pressurized and heated, although they adhere uniformly, they penetrate into the inside of the fiber bundle during immersion. Matrix components (aggregate and pitch) that were not present will also enter the fiber bundle by melting, but sometimes this alone is not sufficient for impregnation. This is because the fiber bundles are brought into close contact with each other by pressure, which reduces the gap between the filaments, making it difficult for the melt to penetrate, and it is difficult to remove gases such as air remaining in the fiber bundles, causing impregnation of the melt. This is because the molten pitch may flow out from gaps in the molding die, impairing pressure transmission and reducing the impregnating force. However, if the vacuum treatment under the above conditions is performed before the pressure/heat molding, the above-mentioned disadvantages are completely eliminated, and it becomes possible to stably produce a high-density molded product.

何れにしろ、減圧処理を行う場合はもとより、このよう
な前処理を行わなくても、この発明の方法に従って加圧
・加熱成形された成形体は、従来のものに比して極めて
緻密で、繊維フィラメント同士の間が強固に結合された
構造を有している。
In any case, the molded product formed by pressure and heat molding according to the method of the present invention is extremely dense and dense compared to conventional products, whether it is subjected to reduced pressure treatment or without such pretreatment. It has a structure in which fiber filaments are strongly bonded to each other.

そこで、この成形体を常法の炭化処理或いは黒鉛化処理
に付すと、非常に良好な強度や耐摩耗性等を備えたC/
C複合材が得られる。
Therefore, when this molded body is subjected to a conventional carbonization treatment or graphitization treatment, C/
C composite material is obtained.

以下、実施例によりこの発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

〈実施例〉 実施例 1 コークスを微粉砕して粒径5〜10μに調整した炭素粉
、コールタールを430”Cで熱処理して得たバインダ
ーピッチ(軟化点=295℃1粒度ニーytooμ)並
びにエタノールを混合重量比5:5:20で混合・分散
させた後、この分散液に炭素繊維織物(糸強度: 35
0 kg/mm”、弾性率:23 ton/mm”の平
織1000フイラメント)を直径が50m1の円形にカ
ットしたものを複数枚浸漬し、引き上げて乾燥した。
<Examples> Example 1 Carbon powder prepared by finely pulverizing coke and adjusting the particle size to 5 to 10μ, binder pitch obtained by heat-treating coal tar at 430”C (softening point = 295℃, 1 particle size nytooμ), and After mixing and dispersing ethanol at a mixing weight ratio of 5:5:20, a carbon fiber fabric (thread strength: 35
A plurality of sheets of plain weave 1000 filament (1000 filaments of 0 kg/mm", elastic modulus: 23 ton/mm") cut into circles with a diameter of 50 m1 were immersed, pulled up and dried.

次に、得られた微粉付着炭素繊維を30枚積層し、内径
50mφの金型に入れ、80kg/cm2の加圧下で加
熱速度:2℃/I!linにて室温から520℃まで昇
温し、10分間保持した後冷却した。
Next, 30 sheets of the obtained fine powder-adhered carbon fibers were laminated, placed in a mold with an inner diameter of 50 mφ, and heated at a heating rate of 2°C/I! under a pressure of 80 kg/cm2. The temperature was raised from room temperature to 520°C using lin, held for 10 minutes, and then cooled.

得られた成形体は重量比で68%の炭素繊維を含有して
おり、曲げ強度は1200 kg/cm”で、顕微鏡観
察により亀裂のない緻密な断面を有していることが確認
された。
The obtained molded product contained 68% carbon fiber by weight, had a bending strength of 1200 kg/cm'', and was confirmed by microscopic observation to have a dense cross section with no cracks.

続いて、この成形体を、N2ガス中で加熱速度:20℃
/hrにて1000℃まで昇温し、10時間保持してか
ら冷却した。
Subsequently, this molded body was heated at a heating rate of 20°C in N2 gas.
The temperature was raised to 1000° C. at a rate of 1000° C./hr, maintained for 10 hours, and then cooled.

このようにして得られたC/C複合体は、曲げ強度16
00kg/cm”と言う高い値を示した。
The C/C composite thus obtained has a bending strength of 16
It showed a high value of "00 kg/cm".

実施例 2 天然黒鉛(粒径:5〜15μ)と、デカントオイルを4
50℃で真空度:20mmHgにて60分処理して得た
ピッチ(軟化点:310度)と、エタノールニア0%及
びフェノール樹脂=30%の混合液とを混合重量比3:
’7:40で混合・分散させた後、この分散液に炭素繊
維(糸強度:350kg/nm”、弾性率: 23 t
on/mm” 、フィラメント数: 6000本の長繊
維)を連続的に通過させ、その後回転しつつ軸方向に微
動する直径30cmのドラムに間隙無く巻き付けた。巻
き付けた糸の密度は、軸方向の長さ1■当り5本であっ
た。
Example 2 Natural graphite (particle size: 5-15μ) and decant oil
Pitch (softening point: 310 degrees) obtained by processing for 60 minutes at 50 ° C. and vacuum degree: 20 mmHg and a mixed solution of 0% ethanol nia and 30% phenol resin were mixed at a weight ratio of 3:
After mixing and dispersing at 7:40 am, carbon fiber (thread strength: 350 kg/nm", elastic modulus: 23 t) was added to this dispersion.
on/mm", number of filaments: 6,000 long fibers) was passed through continuously, and then wound without any gaps around a rotating drum with a diameter of 30 cm that moved slightly in the axial direction. The density of the wound yarn was determined by the axial direction. There were 5 pieces per inch of length.

このドラムに巻いた炭素繊維を90°Cで40分乾燥し
てエタノールを除去したところ、一方向性のシート状物
が得られた。
When the carbon fibers wound around this drum were dried at 90° C. for 40 minutes to remove ethanol, a unidirectional sheet-like material was obtained.

このシート状物を5CI!1角にカットし、繊維方向を
直角に交互に10枚積層した後、内寸が5 cm角の金
型に入れて50 kg/cm”の加圧下で500℃にて
30分保持してから冷却した。
This sheet-like material is 5CI! After cutting into one corner and stacking 10 sheets alternately with the fiber direction perpendicular, the pieces were placed in a mold with an inner dimension of 5 cm square and held at 500°C for 30 minutes under a pressure of 50 kg/cm. Cooled.

次いで、得られた成形体を計雰囲気中で加熱速度:5℃
/hrにて1000 ’cまで昇温し、2時間保持後冷
却してC/C複合材を製造した。
Next, the obtained molded body was heated at a heating rate of 5°C in a measuring atmosphere.
The temperature was raised to 1000'C at /hr, held for 2 hours, and then cooled to produce a C/C composite material.

製造されたC/C複合材は、曲げ強度が1900kg/
cm”であり、炭素繊維含有率は重量比で58%であっ
た。
The manufactured C/C composite material has a bending strength of 1900 kg/
cm", and the carbon fiber content was 58% by weight.

実施例 3 炭素繊維長繊維(糸強度: 80kg/mm”、フィラ
メント数:6ooo本)を〔フェノール樹脂:30%十
エタノールニア0%〕の溶液中に浸漬してこれを含浸さ
せた後、実施例2におけると同様の回転ドラムに間隙無
く巻き付けた。続いて、このドラムを130℃で1時間
乾燥してから炭素繊維を剥がし取り、5 cra角にカ
ットして一方向性シートを得た。
Example 3 Carbon fiber long fibers (thread strength: 80 kg/mm", number of filaments: 600) were immersed in a solution of [phenolic resin: 30% and 0% ethanol] and then impregnated with this. It was wound without gaps around a rotating drum similar to that in Example 2. Subsequently, this drum was dried at 130° C. for 1 hour, the carbon fibers were peeled off, and a unidirectional sheet was obtained by cutting into 5 cra square pieces.

一方、コールタールに濃硝酸を6%添加し真空度:20
uHgで400℃まてま加熱したところ、軟化点が31
5℃のピッチが得られたので、これを−200メソシ、
1に粉砕してバインダービ・ノチ扮を得た。
On the other hand, 6% concentrated nitric acid was added to the coal tar, and the degree of vacuum was 20.
When heated at 400℃ under uHg, the softening point was 31.
Since a pitch of 5℃ was obtained, this was -200 mesosi,
It was crushed to 1 to obtain binderbi nochiyari.

また、オイルコークスを1000℃で乾留した後倣粉砕
し、平均粒径:10μの炭素質骨材粉を得た。
In addition, oil coke was carbonized at 1000° C. and then pulverized to obtain carbonaceous aggregate powder with an average particle size of 10 μm.

次に、上記バインダーピッチ粉、炭素質骨材粉並びにア
セトンを混合重量比 3:1:5で混合・分散させた後
、この分散液に上述の1方向性シートを繊維方向が直角
となるように交互に40枚積層した後、内寸が5C11
角の金型に入れて90kg/cm”の加圧下で540℃
まで加熱し、10分保持してから冷却した。
Next, after mixing and dispersing the above binder pitch powder, carbonaceous aggregate powder, and acetone at a mixing weight ratio of 3:1:5, the above-mentioned unidirectional sheet was added to this dispersion so that the fiber direction was perpendicular to the dispersion. After stacking 40 sheets alternately, the inner dimensions are 5C11.
Place it in a square mold and heat it at 540℃ under a pressure of 90kg/cm.
The mixture was heated to 100 mL, held for 10 minutes, and then cooled.

得られた成形体をAr雰囲気中で加熱速度:30’C/
hrにて1200℃まで昇温し、1時間保持後冷却して
C/C複合材を製造した。
The obtained molded body was heated in an Ar atmosphere at a heating rate of 30'C/
The temperature was raised to 1200° C. for 1 hour, held for 1 hour, and then cooled to produce a C/C composite material.

製造されたC / C?![合材は、曲げ強度が105
0kg/cm2であり、炭素繊維含有率は重量比で65
%であった。
Manufactured C/C? ! [The bending strength of the composite material is 105
0kg/cm2, and the carbon fiber content is 65% by weight.
%Met.

比較例 1 実施例1で用いた炭素粉とバインダーピッチとを5=5
の重量比で乾式混合し、この混合粉と実施例1に示した
炭素繊維織物(50++nφにカット)とを、炭素繊維
の含有率が重量比で68%となるような割合で内径:5
0flφの金型中に交互に積層した。なお、炭素繊維の
積層枚数は30枚であり、混合粉を積層する時は“へら
”で面をならして出来る限り層厚が一定となるようにし
た。
Comparative Example 1 The carbon powder and binder pitch used in Example 1 were 5=5.
This mixed powder and the carbon fiber fabric shown in Example 1 (cut to 50++nφ) were mixed in a dry manner at a weight ratio of
They were alternately laminated in a mold of 0flφ. The number of layers of carbon fibers was 30, and when layering the mixed powder, the surfaces were leveled with a spatula to make the layer thickness as constant as possible.

次いで、この積層物を80kg/cmzの加圧下で加熱
速度:2℃/winにて室温から520℃まで昇温し、
10分間保持した後冷却した。
Next, this laminate was heated from room temperature to 520°C at a heating rate of 2°C/win under a pressure of 80 kg/cmz,
After holding for 10 minutes, it was cooled.

得られた成形体は重量比で67%の炭素繊維を含有して
いたが、曲げ強度は140kg/car2でしかなく、
この成形体を顕微鏡観察したところプレス面と平行な方
向に多数の亀裂が見られた。
The obtained molded body contained 67% carbon fiber by weight, but the bending strength was only 140 kg/car2,
When this compact was observed under a microscope, many cracks were observed in the direction parallel to the pressed surface.

続いて、この成形体を実施例1の場合と同様にN2ガス
中で加熱して炭化したが、得られたC/C複合材の曲げ
強度は240 kg/cm”を示すに止まった。
Subsequently, this molded body was heated and carbonized in N2 gas in the same manner as in Example 1, but the bending strength of the obtained C/C composite material was only 240 kg/cm''.

実施例 4 石油コークスを1000℃で炭化した後ロータリーミル
で粉砕して得られた粒径:15μ以下の炭素質骨材粉を
30部と、コールタールを真空度:5mmHgで440
″Cまで加熱して30分保持して得たところの粒径:1
25μ以下のバインダーピッチ(軟化点:300°C2
流動点:340℃)を70部用意し、これを200部の
エタノール中に均一分散してから、この分散液中にアセ
トンでサイジング剤を除去した9、5cm角の炭素繊維
織物(糸強度: 390kg/cm2. フィラメント
数: 1000本、平織)を浸漬し、引き上げた後、目
開き1cI11の金網上で乾燥した。このように処理さ
れた炭素繊維織物は、炭素繊維100部に対する骨材粉
とバインダーピッチの総付着量が95部となっていた。
Example 4 Petroleum coke was carbonized at 1000°C and then pulverized with a rotary mill. 30 parts of carbonaceous aggregate powder with a particle size of 15μ or less was mixed with coal tar at a vacuum level of 5mmHg at 440°C.
Particle size obtained by heating to "C" and holding for 30 minutes: 1
Binder pitch of 25μ or less (softening point: 300°C2
Pour point: 340°C) was prepared, 70 parts of this was uniformly dispersed in 200 parts of ethanol, and then a 9.5 cm square carbon fiber fabric (thread strength: 390 kg/cm2. Number of filaments: 1000, plain weave) was immersed, pulled up, and dried on a wire mesh with an opening of 1 cI11. The thus treated carbon fiber fabric had a total adhesion amount of aggregate powder and binder pitch of 95 parts per 100 parts of carbon fibers.

次に、この炭素繊維織物を40枚積層してから内寸が1
0cn角の金型に装入し、この金型を更に減圧可能な容
器中にセットした。続いて、これを5 mu Hgの減
圧下で400℃まで昇温して10分間保持した後、N2
ガスを導入して大気圧にまで戻した。
Next, after stacking 40 sheets of this carbon fiber fabric, the inner dimension is 1
The mixture was placed in a 0 cm square mold, and this mold was further set in a container capable of reducing pressure. Subsequently, the temperature was raised to 400°C under a reduced pressure of 5 mu Hg, held for 10 minutes, and then heated with N2
Gas was introduced to return the pressure to atmospheric pressure.

次いで、この金型をプレス成形機にセントして80kg
/cm2の加圧下で加熱速度:3℃/minにて300
℃より520℃にまで昇温し、10分間保持した後冷却
した。
Next, this mold was placed in a press molding machine and weighed 80 kg.
Heating rate: 300 at 3°C/min under pressure of /cm2
The temperature was raised from .degree. C. to 520.degree. C., held for 10 minutes, and then cooled.

得られた成形体は、重量比で59%の炭素繊維を含有し
ており、曲げ強度は1300 kg/cm2で、顕微鏡
観察したところ緻密でかつ繊維フィラメント間が強固に
結合された断面を有しているのが確認された。
The obtained molded product contained 59% carbon fiber by weight, had a bending strength of 1300 kg/cm2, and when observed under a microscope, it was dense and had a cross section in which the fiber filaments were firmly bonded. It was confirmed that

更に、この成形体を粉コークス中に入れ、N2雰囲気下
で加熱速度:12℃/hrにて1100℃まで昇温しで
10分間保持後冷却したところ、密度が1.50で、曲
げ強度が2100kg/cm” (厚さ:4mm)のC
/C複合材が得られた。
Furthermore, this molded body was placed in coke powder, heated to 1100°C at a heating rate of 12°C/hr under N2 atmosphere, held for 10 minutes, and then cooled. As a result, the density was 1.50 and the bending strength was 2100kg/cm” (thickness: 4mm) C
/C composite material was obtained.

また、このC/C複合材を溶解したピッチ中に浸漬し、
230℃まで昇温後5 m Hgに減圧して30分間保
持してから大気圧に戻し、更に10分間保持した後ピッ
チ中から引き上げると言うピッチ含浸処理を施した。そ
して、このピッチを含浸させたC/C複合材を前記と同
じ条件で再炭化処理したところ、密度が1.60、曲げ
強度が3200kg/cm”のC/C複合材が得られた
In addition, this C/C composite material is immersed in melted pitch,
After raising the temperature to 230° C., the pressure was reduced to 5 m Hg, held for 30 minutes, returned to atmospheric pressure, held for an additional 10 minutes, and then pulled out from the pitch for pitch impregnation treatment. Then, when the C/C composite material impregnated with this pitch was recarbonized under the same conditions as above, a C/C composite material with a density of 1.60 and a bending strength of 3200 kg/cm'' was obtained.

実施例 5 石油コークスを1000℃で炭化した後ユーマイザーで
粉砕して得た平均粒径12μの炭素質骨材粉を30部と
、コールタールを真空度:5mmHgで430℃まで加
熱して90分保持して得たところの粒径:125μ以下
のバインダーピッチ(軟化点=300℃、流動点:34
0℃)を70部用意し、これを160部のエタノール中
に均一分散してから、この分散液中にアセトンでサイジ
ング剤を除去した9、5cm角の炭素繊維織物(糸強度
:390 kg/cm”、 フィラメント数: 100
0本、平織)を浸漬し、引き上げた後、目開き1co+
の金網上で乾燥した。このように処理された炭素繊維織
物は、炭素繊維100部に対する骨材粉とバインダーピ
ッチの絵付着量が95部となっていた。
Example 5 30 parts of carbonaceous aggregate powder with an average particle size of 12μ obtained by carbonizing petroleum coke at 1000°C and then crushing it with a userizer and coal tar were heated to 430°C at a vacuum level of 5 mmHg for 90 minutes. Particle size obtained by holding: Binder pitch of 125μ or less (softening point = 300°C, pour point: 34
Prepare 70 parts of 0°C), uniformly disperse it in 160 parts of ethanol, and add a 9.5 cm square carbon fiber fabric (thread strength: 390 kg/ cm”, number of filaments: 100
0 pieces, plain weave), after dipping and pulling up, the opening is 1co+
dried on a wire mesh. In the carbon fiber fabric treated in this manner, the amount of aggregate powder and binder pitch adhered to 100 parts of carbon fiber was 95 parts.

次に、この炭素繊維織物を40枚積層してから内寸がL
oan角の金型に装入し、プレス成形機を使用し常温に
て20kg/cn+”で加圧して予備成形した後、第1
表で示す条件通りに加圧・加熱成形した。なお、加圧・
加熱成形は、予備成形が終了してから温度ts(加圧開
始温度)まではダイスの自重(0,1kg/cm”)の
みで加圧しつつ加熱速度:10’C/winにて昇温し
、1sで10分間保持した後、1、からtl、(最高到
達温度)までは第1表に示した成形圧を加えつつ加熱速
度:lO°C/minにて昇温しt□、で30分間保持
する手段によった。
Next, after laminating 40 sheets of this carbon fiber fabric, the inner dimension is L.
After charging into an oan square mold and preforming by pressurizing at 20 kg/cn+" at room temperature using a press molding machine, the first
Pressure and heat molding was carried out under the conditions shown in the table. In addition, pressurization
In heat forming, from the end of preforming to the temperature ts (pressure start temperature), the temperature is increased at a heating rate of 10'C/win while applying pressure only by the weight of the die (0.1 kg/cm"). , after holding for 10 minutes at 1 s, the temperature was increased from 1 to tl (maximum temperature) at a heating rate of lO°C/min while applying the molding pressure shown in Table 1, and at t□, 30 By means of holding for a minute.

続いて、このようにして得られた成形体を粉コークス中
に埋没し、N2雰囲気下で加熱速度:20”C/hrに
て1000℃まで昇温して2時間保持することにより炭
化した。
Subsequently, the molded body thus obtained was embedded in coke powder, heated to 1000° C. at a heating rate of 20”C/hr under N2 atmosphere, and carbonized by holding for 2 hours.

得られたC/C複合材の曲げ強度を第1表に併せて示し
たが、この第1表からも、本発明の方法によって優れた
強度のC/C複合材が安定して得られることが明らかで
ある。
The bending strength of the obtained C/C composite material is also shown in Table 1, which also shows that a C/C composite material with excellent strength can be stably obtained by the method of the present invention. is clear.

実施例 6 実施例5におけると同様の材料を使用した実施例5と同
様の処理で、炭素繊維100部に対する骨材粉とバイン
ダーピッチの絵付着量が95部のマトリックス付着炭素
繊維織物を得、次にこの炭素繊維織物を40枚積層して
から内寸がioam角の金型に装入し、プレス成形機を
使用し常温にて80 kg/cm!で加圧して予備成形
した後、第2表で示す条件通りに加圧・加熱成形した。
Example 6 A matrix-attached carbon fiber fabric was obtained by carrying out the same treatment as in Example 5 using the same materials as in Example 5, and having a visual adhesion amount of aggregate powder and binder pitch of 95 parts to 100 parts of carbon fibers. Next, 40 sheets of this carbon fiber fabric were laminated, then charged into a mold with an ioam square inner dimension, and molded to 80 kg/cm at room temperature using a press molding machine. After pressurizing and preforming, it was pressurized and heated under the conditions shown in Table 2.

なお、加圧・加熱成形は、予備成形が終了してから温度
11(加圧開始温度)までは第2表に示すような低圧加
圧を加えつつ加熱速度: 10 ’C/minにて昇温
し、1.で直ちに250 kg/cm2の加圧力を加え
てそのままjmax(最高到達温度)まで加熱速度:1
0℃/winにて昇温しt□8で1時間保持する手段に
よった。
In addition, in pressure/heat forming, from the end of preforming to temperature 11 (pressing start temperature), the heating rate is increased at a heating rate of 10'C/min while applying low pressure as shown in Table 2. Warm, 1. Immediately apply a pressure of 250 kg/cm2 and heat up to jmax (maximum temperature) at a heating rate of 1.
The temperature was raised at 0° C./win and maintained at t□8 for 1 hour.

続いて、このようにして得られた成形体を実施例5の場
合と同様条件で炭化し、その曲げ強度を測定して第2表
に併せて示したが、第2表からも明らかなように、本発
明の方法によって安定製造されるC / C71合材は
何れも優れた強度を有していることが分かる。
Subsequently, the molded body thus obtained was carbonized under the same conditions as in Example 5, and its bending strength was measured and shown in Table 2, as is clear from Table 2. In addition, it can be seen that all the C/C71 composite materials stably produced by the method of the present invention have excellent strength.

〈効果の総括〉 以上に説明した如く、この発明によれば、炭素繊維含有
率が高くしかも高密度を有し、強度その他の緒特性に一
段と優れた炭素繊維強化炭素材を工業的規模で安定して
生産することが可能となり、炭素繊維強化炭素材の適用
分野の更なる拡大が期待できるなど、産業上極めて有用
な効果がもたらされるのである。
<Summary of Effects> As explained above, according to the present invention, it is possible to stably produce carbon fiber-reinforced carbon materials on an industrial scale that have a high carbon fiber content and high density, and are superior in strength and other mechanical properties. This makes it possible to produce carbon fiber-reinforced carbon materials, and the field of application of carbon fiber-reinforced carbon materials can be expected to further expand, resulting in extremely useful effects industrially.

Claims (6)

【特許請求の範囲】[Claims] (1)微粉状炭素質骨材とバインダーピッチとを分散さ
せた溶液中に浸漬してこれらを付着させた炭素繊維の複
数を積層し、次いで加圧・加熱成形して炭化乃至黒鉛化
することを特徴とする、炭素繊維強化炭素材の製造方法
(1) Laminating a plurality of carbon fibers that are immersed in a solution in which finely powdered carbonaceous aggregate and binder pitch are dispersed to adhere them, and then pressurized and heated to form carbonization or graphitization. A method for producing a carbon fiber-reinforced carbon material, characterized by:
(2)炭素繊維が織物状をなしている、特許請求の範囲
第1項に記載の炭素繊維強化炭素材の製造方法。
(2) The method for producing a carbon fiber-reinforced carbon material according to claim 1, wherein the carbon fibers are in the form of a woven fabric.
(3)加圧・加熱成形工程が、360〜480℃の温度
範囲まで20kg/cm^2以下の圧力下で昇温する第
1工程と、引き続いて第1工程での到達温度よりも高い
最高到達温度域が430〜550℃の加熱下で30kg
/cm^2以上の加圧を行う第2工程とで構成される、
特許請求の範囲第1項又は第2項に記載の炭素繊維強化
炭素材の製造方法。
(3) The pressure/heat molding process includes a first step in which the temperature is raised to a temperature range of 360 to 480°C under a pressure of 20 kg/cm^2 or less, followed by a maximum temperature higher than the temperature reached in the first step. 30kg under heating with an attained temperature range of 430-550℃
A second step of applying pressure of /cm^2 or more,
A method for producing a carbon fiber reinforced carbon material according to claim 1 or 2.
(4)微粉状炭素質骨材とバインダーピッチとを分散さ
せた溶液中に浸漬してこれらを付着させた炭素繊維織物
の複数を積層し、次いで〔前記バインダーピッチの軟化
点+50℃〕〜450℃の温度域にて100mmHg以
下の減圧処理を施した後、加圧・加熱成形して炭化乃至
黒鉛化することを特徴とする、炭素繊維強化炭素材の製
造方法。
(4) A plurality of carbon fiber fabrics made by dipping them into a solution in which finely powdered carbonaceous aggregate and binder pitch are dispersed and adhering them are laminated, and then [softening point of the binder pitch +50°C] to 450°C A method for producing a carbon fiber-reinforced carbon material, which comprises subjecting the material to a reduced pressure treatment of 100 mmHg or less in a temperature range of .degree. C., followed by carbonization or graphitization by pressurization and heat molding.
(5)炭素繊維が織物状をなしている、特許請求の範囲
第4項に記載の炭素繊維強化炭素材の製造方法。
(5) The method for producing a carbon fiber-reinforced carbon material according to claim 4, wherein the carbon fibers are in the form of a woven fabric.
(6)加圧・加熱成形工程が、360〜480℃の温度
範囲まで20kg/cm^2以下の圧力下で昇温する第
1工程と、引き続いて第1工程での到達温度よりも高い
最高到達温度域が430〜550℃の加熱下で30kg
/cm^2以上の加圧を行う第2工程とで構成される、
特許請求の範囲第4項又は第5項に記載の炭素繊維強化
炭素材の製造方法。
(6) The pressure/heat molding process includes a first step in which the temperature is raised to a temperature range of 360 to 480°C under a pressure of 20 kg/cm^2 or less, followed by a maximum temperature higher than the temperature reached in the first step. 30kg under heating with an attained temperature range of 430-550℃
A second step of applying pressure of /cm^2 or more,
A method for producing a carbon fiber reinforced carbon material according to claim 4 or 5.
JP61260151A 1985-12-16 1986-10-31 Manufacture of carbon fiber reinforced carbon material Granted JPS6311570A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28243585 1985-12-16
JP60-282435 1985-12-16
JP61-52277 1986-03-10

Publications (2)

Publication Number Publication Date
JPS6311570A true JPS6311570A (en) 1988-01-19
JPH051227B2 JPH051227B2 (en) 1993-01-07

Family

ID=17652375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260151A Granted JPS6311570A (en) 1985-12-16 1986-10-31 Manufacture of carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPS6311570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197360A (en) * 1989-12-25 1991-08-28 Nippon Steel Corp Production of carbon fiber-reinforced carbon material
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930785A (en) * 1982-08-11 1984-02-18 東レ株式会社 Carbon composite material
JPS6052103A (en) * 1983-07-29 1985-03-25 アールシーエー トムソン ライセンシング コーポレイシヨン Fm demodulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930785A (en) * 1982-08-11 1984-02-18 東レ株式会社 Carbon composite material
JPS6052103A (en) * 1983-07-29 1985-03-25 アールシーエー トムソン ライセンシング コーポレイシヨン Fm demodulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197360A (en) * 1989-12-25 1991-08-28 Nippon Steel Corp Production of carbon fiber-reinforced carbon material
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like

Also Published As

Publication number Publication date
JPH051227B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
US3766000A (en) Low thermal expansion composites
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
US4874564A (en) Molding process and device therefor
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
US4297307A (en) Process for producing carbon-carbon fiber composites suitable for use as aircraft brake discs
US4321298A (en) Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
US5614134A (en) Process for preparing carbon/carbon composite preform and carbon/carbon composite
JPH03150266A (en) Production of carbon/carbon composite material
JPS6311570A (en) Manufacture of carbon fiber reinforced carbon material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
GB2112827A (en) Carbon fiber materials
JPH0456788B2 (en)
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
Chung Composite material structure and processing
JPS6360156A (en) High carbon composite material
JPS62212263A (en) Manufacture of carbon-carbon fiber composite material
JPS63112463A (en) Manufacture of carbon fiber/carbon composite material
JPH08183674A (en) Production of c/c composite material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH0352426B2 (en)
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPH03205360A (en) Production of carbon fiber-reinforced carbon composite material having high strength
JPH03249268A (en) Intermediate material for carbon fiber reinforced carbon material and its production thereof
JPH029776A (en) Carbon fiber reinforced carbon composite material and production thereof