JPH029776A - Carbon fiber reinforced carbon composite material and production thereof - Google Patents

Carbon fiber reinforced carbon composite material and production thereof

Info

Publication number
JPH029776A
JPH029776A JP63159291A JP15929188A JPH029776A JP H029776 A JPH029776 A JP H029776A JP 63159291 A JP63159291 A JP 63159291A JP 15929188 A JP15929188 A JP 15929188A JP H029776 A JPH029776 A JP H029776A
Authority
JP
Japan
Prior art keywords
resin
carbon
carbonaceous
composite material
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63159291A
Other languages
Japanese (ja)
Inventor
Osamu Ebato
修 江波戸
Shigeru Takano
茂 高野
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63159291A priority Critical patent/JPH029776A/en
Publication of JPH029776A publication Critical patent/JPH029776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-strength carbon fiber reinforced carbon composite material free from generation of a laminar crack by fixing both carbide of mesospheric small carbon and carbonaceous long fiber with a carbonaceous matrix derived from resin. CONSTITUTION:A precursory molding body consisting of 3-40wt.% carbide of mesospheric small carbons 40-85wt.% carbonaceous long fiber and 5-50 wt.% carbonaceous substance of resin having <=45% residual carbon ratio is prepared by calcining and carbonizing mesospheric small carbon (about <=100mum particle diameter), carbonaceous long fiber (PAN series, etc., about >=10mm fiber length) and carbonizable resin (phenol resin, etc.). Then this precursory molding body is laminated and molded and thereafter calcined and carbonized in the nonoxidative atmosphere. Thereby high-strength carbon composite material which can be favorably utilized as aerospace material and is free from generation of a laminar crack is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ロケットノズル、スペースシャトルのノーズ
コーンやリーディングエツジ、航空機のブレーキ材料な
ど宇宙航空用材料に使われる炭素繊維強化炭素複合材料
及びその製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to carbon fiber-reinforced carbon composite materials used in aerospace materials such as rocket nozzles, space shuttle nose cones and leading edges, and aircraft brake materials. This relates to a manufacturing method.

〈従来の技術〉 従来、炭素繊維強化炭素複合材r1(以下C/Cコンボ
ジフトと称す)は、耐熱性や耐薬品性に優れ、かつ高強
度で軽量であり、例えば、フェノール樹脂やフラン樹脂
などの熱硬化性樹脂を長炭素繊維やその繊物に含浸した
シートを積層し、成形したのち炭化したものが知られて
いる。しかしながら、このような長炭素繊維を用いた1
flN法によるC/Cコンポジットは、炭化処理過程で
樹脂の熱分解ガスの発生によるガスふくれや、樹脂の収
縮による眉間割れが起こりやずいという大きな問題があ
った。
<Conventional technology> Conventionally, carbon fiber-reinforced carbon composite material r1 (hereinafter referred to as C/C composite material) has excellent heat resistance and chemical resistance, high strength, and light weight. It is known that sheets of long carbon fiber or its fibers impregnated with a thermosetting resin are laminated, molded, and then carbonized. However, 1 using such long carbon fibers
The C/C composite produced by the flN method has a major problem in that gas blistering due to the generation of thermal decomposition gas from the resin during the carbonization process and glabellar cracking due to resin contraction are difficult to occur.

この改良方法として、特開昭57−209883号公報
には黒鉛粉末のフィラーを使う方法が開示されている。
As an improvement method for this, Japanese Patent Application Laid-Open No. 57-209883 discloses a method using graphite powder filler.

また長炭素繊維の代わりに短炭素繊維を用いることによ
りガスぶくれや層間割れを低減する方法も提案されてい
る。
A method has also been proposed in which gas blisters and interlaminar cracks are reduced by using short carbon fibers instead of long carbon fibers.

しかし、前記黒鉛ス5)末のフィラーを使う方法には、
若干の改善はみられるが、昇温速度を速< L。
However, in the method of using the graphite powder filler 5),
Although there is some improvement, the temperature increase rate should be increased to less than L.

た場合、あるいは厚さ5−以上のC/Cコンポジットを
製造する場合は、脱ガスが不十分になるためふくれが発
止したり、樹脂の収縮により眉間に微小クランクが発生
したりして強度的に十分なものが得られなかった。
or when manufacturing a C/C composite with a thickness of 5 mm or more, degassing may be insufficient and blistering may occur, or minute cranks may occur between the eyebrows due to resin contraction, resulting in poor strength. I couldn't get enough stuff.

また短炭素繊維を補強繊維として使用する場合には、昇
温速度を速< L、でもガスふくれ及び眉間割れ等は起
こらないが炭素繊維の補強効果が不十分であり、強度的
に満足するものが得られなかった。
Furthermore, when short carbon fibers are used as reinforcing fibers, even if the heating rate is set to less than L, gas blisters and glabellar cracks will not occur, but the reinforcing effect of carbon fibers will be insufficient and the strength will not be satisfactory. was not obtained.

〈発明が解決しようとする課題〉 本発明は、かくの如き従来の問題を解決し、高強度の炭
素繊維強化炭素複合材料及びその製造方法を捷供するこ
とを目的とする。
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned conventional problems and provide a high-strength carbon fiber-reinforced carbon composite material and a method for producing the same.

く課題を解決4°るための手段〉 本発明は、メソカーボン小球体の炭化物と炭素質長繊維
とを樹脂に由来する炭素質マトリックスで固定した炭素
繊維強化炭素複合材料であり、さらにはメソカーボン小
球体の炭化物が3〜40%重量%、炭素n長繊維が40
〜85重Y%、及び残炭率45%以上の樹脂の炭素質が
5〜50重漬%の範囲に焼成・炭化後なるように調整し
た、メンカーボン小球体、炭素質長繊維および炭化可能
な樹脂からなる前駆成形体を形成し、次いで該前駆成形
体を積層成形したのち、非酸化性雰囲気下で焼成・炭化
することを特徴とする炭素繊維強化炭素複合+41の製
造方法である。
Means for Solving the Problems> The present invention is a carbon fiber-reinforced carbon composite material in which carbide of mesocarbon small spheres and long carbon fibers are fixed with a carbonaceous matrix derived from a resin. Carbide of carbon small spheres is 3-40% by weight, carbon n-long fibers are 40% by weight.
Carbon spherules, carbonaceous long fibers, and carbonizable carbon particles adjusted so that the carbon content of the resin is 5 to 50% after firing and carbonization, with a carbon content of ~85% by weight and a residual carbon content of 45% or more. This is a method for producing carbon fiber-reinforced carbon composite +41, which is characterized in that a precursor molded body made of a resin is formed, then the precursor molded body is laminated and molded, and then fired and carbonized in a non-oxidizing atmosphere.

〈作 用〉 本発明のC/C二7ンボジツトの製造方法は、メソカー
ボン小球体と炭化可能な樹脂とをまず溶剤により希釈し
て樹脂フェスとし、これを炭素n長繊維に含浸させてシ
ートを得る0次にこのシートを積石し7てから、加熱し
て樹脂を硬化さセ前駆成形体を得る。この前駆成形体を
不活性雰囲気中で焼成・炭化し、C/ Cコンポジット
を得る。
<Function> The method for producing the C/C27 composite of the present invention involves first diluting mesocarbon spherules and a carbonizable resin with a solvent to form a resin face, and impregnating this into carbon n-long fibers to form a sheet. Next, this sheet is stacked with stone (7), and then heated to harden the resin to obtain a precursor molded body. This precursor compact is fired and carbonized in an inert atmosphere to obtain a C/C composite.

メソカーボン小球体の配合量は、焼成・炭化して得られ
るC / Cコンポジット中に占めるメツカーボン小球
体の炭化物が3〜40重量%、好ましくは5〜25重喰
%となるように調整するのがよい。
The blending amount of the mesocarbon spherules is adjusted so that the carbide of the mesocarbon spherules in the C/C composite obtained by firing and carbonization is 3 to 40% by weight, preferably 5 to 25% by weight. Good.

3重量%より少ない配合量では焼成・炭化時に発生した
樹脂の熱分解ガスのガス抜は性が悪く、また樹脂の収縮
が大きいので、ガスふくれ1層間割れを引き起こす、一
方40重世%より多いと、得られるC/Cコンポジット
の層間接着力が著しく低下してしまう。
If the amount is less than 3% by weight, the degassing of the thermal decomposition gas generated during firing and carbonization will be poor, and the resin will shrink so much that it will cause gas blistering and interlayer cracking, while if it is more than 40% by weight. As a result, the interlayer adhesive strength of the resulting C/C composite is significantly reduced.

また、炭化可能な樹脂の配合量は、同様に焼成・炭化し
て得られるC/Cコンポジット中に占める炭素質が5〜
50ffi1%、好ましくは10〜40!l’Ifft
%になるように調整するのがよい。5重量%より少ない
配合量では、得られるC/Cコンポジットの層間接着力
が著しく弱くなってしまう、一方50重量%より配合量
を多くすると焼成・炭化時の熱分解ガスの発生が多(、
また樹脂の収縮によりガスぶくれ層間割れを引き起こす
In addition, the blending amount of the carbonizable resin is such that the carbonaceous content in the C/C composite obtained by firing and carbonization is 5 to 5.
50ffi1%, preferably 10-40! l'Ifft
It is best to adjust it so that it is %. If the amount is less than 5% by weight, the interlayer adhesion of the resulting C/C composite will be significantly weakened, while if the amount is more than 50% by weight, pyrolysis gas will be generated during firing and carbonization.
Also, shrinkage of the resin causes gas blisters and interlayer cracks.

さらに、炭素質長繊維の量は、同様に焼成・炭化して得
られるC/Cコンポジット中に40〜85重量%、好ま
しくは50〜80重量%となるように調整するのがよい
、40重重景より炭素質長繊維の量が少ないと、繊維に
よる補強効果が十分でなく、得られるC/Cコンポジッ
トの強度が低下する。また85重素形より多いと層間接
着力が著j、2<低下し7てしまう、なお本発明で用い
る炭素n長繊維の繊維長は10鋪以上のものに限定され
る。10IIll11未満の短繊維では満足いく強度が
得られない。
Furthermore, the amount of carbonaceous long fibers is preferably adjusted to 40 to 85% by weight, preferably 50 to 80% by weight, in the C/C composite obtained by firing and carbonizing. If the amount of carbonaceous long fibers is smaller than that, the reinforcing effect of the fibers will not be sufficient, and the strength of the resulting C/C composite will decrease. Moreover, if the amount is more than 85, the interlayer adhesion strength will be significantly lowered, and the fiber length of the carbon n-long fibers used in the present invention is limited to 10 or more. If the short fibers are less than 10IIll11, satisfactory strength cannot be obtained.

つぎに、本発明に係る出発原料について説明する。Next, starting materials according to the present invention will be explained.

メソカーボン小球体としては、通常の方法、例えば石油
重質油やタールピッヂなどを熱処理して生成したメソカ
ーボン小球体を遠心分離あるいは濾過等により分別して
用いることができる。このメソカーボン小球体の粒径は
looum以下のもので細かいものほどよい0粒径が1
00μ鯖以上のものでは得られるC/Cコンポジットの
緻密性が川なねれ強度的に満足なものが得られない。メ
ソカーボン小球体が詩に有効である理由としては形状が
ほぼ完全な球体でありかつ粒径が非常に均一であるため
に炭化処理過程で生じるガスが粒子の間を通ってなめら
かに外部へ抜けていくためであると考えられる。このよ
うな点から、メソカーボン小球体のみならず、これに炭
化可能な樹脂を表面コーティングしたもの、高温にて熱
処理したもの等を本発明に用いることができる。
As the mesocarbon spherules, mesocarbon spherules produced by a conventional method such as heat treatment of heavy petroleum oil, tarpid, etc. can be separated and used by centrifugation or filtration. The particle size of these mesocarbon spherules is less than louum, and the finer the particle size, the better is 0 particle size.
If the thickness is more than 00 μm, the resulting C/C composite cannot have a density that is satisfactory in terms of river erosion strength. The reason why mesocarbon small spheres are effective for poetry is that they are almost perfectly spherical in shape and have a very uniform particle size, so the gas generated during the carbonization process passes between the particles and escapes smoothly to the outside. It is thought that this was for the purpose of going. From this point of view, not only mesocarbon small spheres, but also those whose surface is coated with a carbonizable resin, those which are heat-treated at high temperature, etc. can be used in the present invention.

炭化可能な樹脂としては、フェノール樹脂が好ましいが
、その他フラン樹脂やエポキシ樹脂、不餡和ポリエステ
ル樹脂、ポリイミド樹脂等も使用可能で、残炭率が45
%以上のものであれば本発明に十分使用し得る。フェノ
ール樹脂が好ましい理由は、樹脂の取板いやずさ、成形
体の特性が良好で安価なことによる。また残炭率が45
%未満の樹脂では焼成時にガスの発生が多いためC/C
コンボジントがガスぶくれ1層間割れを起こす。
As the carbonizable resin, phenolic resin is preferred, but other resins such as furan resin, epoxy resin, unsaturated polyester resin, and polyimide resin can also be used, and the carbonizable resin has a residual carbon content of 45%.
% or more can be sufficiently used in the present invention. The reason why phenol resin is preferable is that the resin has good properties in terms of mounting plate, shape, and molded product, and is inexpensive. Also, the remaining coal rate is 45
If the resin is less than %, a lot of gas will be generated during firing, so C/C
Combozinto causes gas blistering and one-layer cracking.

繊維としては、市販のPAN系、レーヨ:/系及びター
ルピッチ系炭素繊維を用いることができ、強度的にPA
Nのものを用いると最も優れたものが得られる0本発明
はPAN系及びタールピッチ系炭素繊維にあって特に長
さ10m1以上の長繊維を補強材として使用した場合、
有効である0M強繊維の形態としては長繊維フィラメン
トを100〜24000本束ねたロービングを一方向に
引きそろえたもの、およびロービングの織物を用いた場
合強度的に優れたものが得られ、本発明はこのような形
態をもつ補強繊維に対して最も有効に作用する。
As the fiber, commercially available PAN type, rayo:/ type and tar pitch type carbon fibers can be used, and in terms of strength, PA
The best results are obtained when N is used.The present invention relates to PAN-based and tar-pitch-based carbon fibers, especially when long fibers with a length of 10 m or more are used as a reinforcing material.
Effective forms of 0M strong fibers include those in which rovings made by bundling 100 to 24,000 long fiber filaments are aligned in one direction, and those with excellent strength can be obtained when woven rovings are used. acts most effectively on reinforcing fibers with this type of morphology.

メソカーボン小球体、炭化可能な樹脂及び炭素質長繊維
の配合方法としては、例えばメソカーボン小球体と炭化
可能な樹脂をアセトン、メタノール、トルエン等低沸点
の有機溶媒やその混合溶媒に熔解せしめ補強繊維のシー
トに含浸させた後、オーブン、真空乾燥器等を用いて有
機溶媒を除く方法、あるいは補強繊維を挟んで少なくと
も一方にメソカーボン小球体と炭化可能な樹脂との混合
物を塗布した離型紙を重ね合わせ、加熱ロールにて加熱
・加圧処理して樹脂を補強繊維に転位含浸させる方法な
どがあるが、補強繊維表面にメソカーボン小球体、炭化
可能な樹脂を均一にむらなく塗工、含浸できるものであ
ればいかなる方法によってもよく、本発明はメソカーボ
ン小球体と炭化可能な樹脂と炭素質長繊維の配合方法に
特に限定されない。
A method for blending mesocarbon spherules, carbonizable resin, and carbonaceous long fibers is, for example, by melting mesocarbon spherules and carbonizable resin in a low boiling point organic solvent such as acetone, methanol, toluene, or a mixed solvent thereof. A method of impregnating a fiber sheet and then removing the organic solvent using an oven, vacuum dryer, etc., or a release paper coated with a mixture of mesocarbon spherules and carbonizable resin on at least one side with reinforcing fibers in between. There is a method of overlapping the reinforcing fibers and applying heat and pressure using a heating roll to impregnate the reinforcing fibers with dislocations. Any method may be used as long as it can be impregnated, and the present invention is not particularly limited to the method of blending mesocarbon spherules, carbonizable resin, and carbonaceous long fibers.

本発明に示した割合で配合されたシートは必要に応して
積層した後、ホットプレス、オートクレーブ、オーブン
等公知公用の方法により加熱、成形され非酸化性雰囲気
中で焼成・炭化される。
The sheets blended in the proportions shown in the present invention are laminated as necessary, then heated and formed by a publicly known method such as hot press, autoclave, oven, etc., and fired and carbonized in a non-oxidizing atmosphere.

なお、必要に応じてフラン樹脂、タールピッチ等の炭化
可能な樹脂を減圧下で含浸し、再び焼成炭化する冷害化
処理を行いさらに密度9強度を高めることもできる。
Note that, if necessary, the density and strength can be further increased by impregnating the resin with a carbonizable resin such as furan resin or tar pitch under reduced pressure, and performing a cold damage treatment in which the resin is fired and carbonized again.

また、本発明の炭素繊維強化炭素板料は、特に高強度を
必要とする宇宙航空用材i/′1に使用できるものであ
るが、これに限ることなく一般のC/Cコンボジントの
用途に広く利用できる。
Furthermore, the carbon fiber-reinforced carbon plate material of the present invention can be used for aerospace materials i/'1 that require particularly high strength, but is not limited to this and can be widely used for general C/C composites. Available.

〈実施例〉 実施例1 メソカーボン小球体(平均粒径15μm)と液状フェノ
ール樹脂(旭有機材工業e1製; RM300OK )
とメタノールとを混合して!I!整した樹脂ワニスを炭
素繊維織物(東邦レーヨ〕/i)η製、W−1103)
に含浸し、室温にて4時間乾燥したのち、オーブン中で
100°C45分間予備硬化し、第1表の配合からなる
前駆成形体のシートを得た。
<Example> Example 1 Mesocarbon small spheres (average particle size 15 μm) and liquid phenol resin (manufactured by Asahi Yokuzai Kogyo e1; RM300OK)
Mix it with methanol! I! The prepared resin varnish is applied to a carbon fiber fabric (Toho Rayo/i) made by η, W-1103).
After drying at room temperature for 4 hours, precuring was carried out at 100° C. for 45 minutes in an oven to obtain a sheet of a precursor molded product having the formulation shown in Table 1.

このシートを、最終的に得られる炭素繊維強化炭素板の
厚さが511IIlとなる枚数(約40枚)を積層し、
オートクレーブ中で5 kg / c4の圧力下で15
0’C180分間加熱・成形した後、非酸化雰囲気中で
10°C/時間の昇温速度にて1000’cまで加熱・
炭化して厚さ5m、幅IQQ+mm、長さioo關の炭
素繊維強化炭素複合材料を得た。このC/Cコンボジン
トの特性を第1表に示す、なお、この炭素繊維強化炭素
板に層間割れは発生していなかった。さらにこの炭素繊
維強化炭素複合材料に真空中にてフラン樹脂(日立化成
工業■製;ヒクフラン)を含浸したのち、オーブン中で
150℃1時間、  200’CI時間加熱硬化させ非
酸化雰囲気中で10°C/時間の昇温速度で1000’
Cまで加熱炭化するという緻密化処理を3回行った。こ
の緻密化処理後の特性も第1表に示す。
This sheet is laminated in such a number (approximately 40 sheets) that the thickness of the final carbon fiber-reinforced carbon plate is 511IIl,
15 under pressure of 5 kg/c4 in autoclave
After heating and shaping for 180 minutes at 0'C, heating and shaping to 1000'C at a temperature increase rate of 10°C/hour in a non-oxidizing atmosphere.
After carbonization, a carbon fiber-reinforced carbon composite material having a thickness of 5 m, a width of IQQ+mm, and a length of about ioO was obtained. The properties of this C/C composite are shown in Table 1. Furthermore, no interlaminar cracks occurred in this carbon fiber reinforced carbon plate. Furthermore, this carbon fiber-reinforced carbon composite material was impregnated with furan resin (manufactured by Hitachi Chemical Co., Ltd.; Hikfuran) in a vacuum, and then heated and cured in an oven at 150°C for 1 hour and 200'CI for 100 minutes in a non-oxidizing atmosphere. 1000' at a heating rate of °C/hour
A densification process of heating and carbonizing to C was performed three times. The properties after this densification treatment are also shown in Table 1.

実施例2 実施例1の液状フェノール樹脂に変えてフェノ−ル樹脂
(住友デュレス■製;50273)を使用した以外は実
施例1と全く同様に配合処理して厚さ5請1幅100+
+w、長さ100nのC/ Cコニ/ポジットを得た。
Example 2 A compound with a thickness of 5 cm and a width of 100+ was prepared in exactly the same manner as in Example 1, except that a phenol resin (manufactured by Sumitomo Duress ■; 50273) was used instead of the liquid phenol resin in Example 1.
+w, a C/C coni/posit with a length of 100n was obtained.

このC/Cコンポジットの特性を第1表に示す。The characteristics of this C/C composite are shown in Table 1.

なお、この炭素繊維強化炭素板に層間割れは発生してい
なかった。
Note that no interlayer cracking occurred in this carbon fiber reinforced carbon plate.

実施例3 実施例1の液状フェノール樹脂に変えて粉末状フェノー
ル樹脂(鐘紡■製;ベルパールSタイプの樹脂)を使用
した以外は実施例1と全く同様に配合処理してC/Cコ
ンポジットを得た。
Example 3 A C/C composite was obtained by blending in exactly the same manner as in Example 1, except that powdered phenol resin (manufactured by Kanebo ■; Bell Pearl S type resin) was used instead of the liquid phenol resin in Example 1. Ta.

このC/Cコンポジットの特性を第1表に示す。The characteristics of this C/C composite are shown in Table 1.

なお、この炭素繊維強化炭素板に層間割れは発生してい
なかった。
Note that no interlayer cracking occurred in this carbon fiber reinforced carbon plate.

比較例1 メソカーボン小球体を使用せず液状フェノール樹脂(昭
和高分子■製、BRL−274)と炭素繊維織物(束し
■製;高弾性タイプM40)から実施例1と同様の方法
にて第1表の配合からなるシートを得、これを用いてl
¥さ5alIg、輻100mm、長さ100鵜の炭素繊
維強化炭素複合材料を得た。この炭素j411M強化炭
素板には、ガス7誓くれ、N間割れが発生していた。
Comparative Example 1 Using the same method as in Example 1 using liquid phenol resin (manufactured by Showa Kobunshi ■, BRL-274) and carbon fiber fabric (manufactured by Bunshi ■; high elasticity type M40) without using mesocarbon small spheres. A sheet consisting of the formulations shown in Table 1 was obtained, and using this, l
A carbon fiber-reinforced carbon composite material with a diameter of 5 alIg, a radius of 100 mm, and a length of 100 mm was obtained. This carbon J411M reinforced carbon plate had gas and N cracks.

比較例2 メソカーボン小球体に変えて黒鉛粉末(平均粒径2On
)を使用したほかは実施例Iと全く同様にして炭素繊維
強化炭素複合材料を得た。この炭素繊維強化炭素板には
一部層間割れが発生しているものがあった0層間割れが
ないものについては実施例1と全く同様にしてvIt密
化処理を行った。第1表に炭素繊維強化炭素板及び同緻
密化品の特性を示す。
Comparative Example 2 Graphite powder (average particle size 2 On) was used instead of mesocarbon small spheres.
) A carbon fiber-reinforced carbon composite material was obtained in exactly the same manner as in Example I, except that the following was used. Some of these carbon fiber-reinforced carbon plates had interlaminar cracks, but those with no interlaminar cracks were subjected to vIt densification treatment in exactly the same manner as in Example 1. Table 1 shows the characteristics of the carbon fiber reinforced carbon plate and its densified product.

比較例3 メソカーボン小球体、液状フェノール樹脂、炭素繊維織
物の配合量を変えたほかは実施例1と全く同様にして炭
素繊維強化炭素複合材料を得、さらに緻密化を行った。
Comparative Example 3 A carbon fiber-reinforced carbon composite material was obtained in exactly the same manner as in Example 1, except that the blending amounts of mesocarbon spherules, liquid phenol resin, and carbon fiber fabric were changed, and further densification was performed.

得られた炭素繊維強化板には1部層間割れが発生してい
るものがあった。第1表に炭素繊維強化炭素板及び同緻
密化品の特性を示す。
Some of the obtained carbon fiber reinforced plates had interlaminar cracks in some parts. Table 1 shows the characteristics of the carbon fiber reinforced carbon plate and its densified product.

比較例4 実施例1の液状フェノール樹脂に変えて残炭率35%の
樹脂(昭和高分子株製、 B L S−3122)を使
用した以外は実施例1と全く同様に配合処理して厚さ5
m、輻100mm、長さ100m+sの炭素繊維強化炭
素複合材料を得た。
Comparative Example 4 A resin with a residual carbon content of 35% (manufactured by Showa Kobunshi Co., Ltd., BLS-3122) was used in place of the liquid phenol resin of Example 1, but the compounding process was carried out in exactly the same manner as in Example 1. Sa5
A carbon fiber-reinforced carbon composite material with a diameter of 100 mm and a length of 100 m+s was obtained.

この炭素繊維強化炭素複合材料の特性を第1表に示す、
なお、この板には眉間割れが発生していなお、実施例お
よび比較例で得られた炭素繊維強化炭素板及び同緻密化
品の特性は以下のように評価、測定した。
The properties of this carbon fiber reinforced carbon composite material are shown in Table 1.
Although this board had glabellar cracks, the characteristics of the carbon fiber-reinforced carbon boards and densified products obtained in Examples and Comparative Examples were evaluated and measured as follows.

(1)層間割れの有無 目視及び顕微鏡にて観察し、層間に散開の連続した割れ
の有無で判定した。
(1) Presence or absence of interlaminar cracks Observation was made visually and under a microscope, and judgment was made based on the presence or absence of continuous cracks that spread between the layers.

無・・・層間に散開の連続した割れなし。None: No continuous cracks spread between layers.

「・・・層間に数閣の連続した割れが認められた。``...Several consecutive cracks were observed between the layers.

(2)曲げ強度 JISK7203に準じた試験を行った。(2) Bending strength A test was conducted according to JISK7203.

(3)層間剪断試験 ASTM  D 2344に準じた試験を行った。(3) Interlaminar shear test A test was conducted according to ASTM D 2344.

(4)残炭率 樹脂を完全硬化させた時の重Ft ’a oと■、雰囲
気ガス中で5°C/ meの昇温速度にて700°Cま
で加熱した時の1訃、より次式から算出した。
(4) Residual carbon ratio When the resin is completely cured, the weight Ft'a o and ■, 1 when heated to 700°C at a heating rate of 5°C/me in atmospheric gas, and more. Calculated from the formula.

W。W.

賀。Ga.

〈発明の効果〉 以上述べた如く、本発明によるメソカーボン小球体と炭
化可能な樹脂と炭素質長繊維を用いてなる炭素繊維強化
炭素複合材料は、層状割れが発生せず、かつ高強度の炭
素複合材料であって、特に高強度を必要とする宇宙航空
用材料に有利に使用できるものである。
<Effects of the Invention> As described above, the carbon fiber-reinforced carbon composite material made of mesocarbon spherules, carbonizable resin, and long carbon fibers according to the present invention does not cause layer cracking and has high strength. It is a carbon composite material that can be advantageously used particularly in aerospace materials that require high strength.

Claims (2)

【特許請求の範囲】[Claims] 1.メソカーボン小球体の炭化物と炭素質長繊維とを樹
脂に由来する炭素質マトリックスで固定した炭素繊維強
化炭素複合材料。
1. A carbon fiber-reinforced carbon composite material in which carbide of mesocarbon spherules and carbonaceous long fibers are fixed in a carbonaceous matrix derived from resin.
2.メソカーボン小球体の炭化物が3〜40%重量%,
炭素質長繊維が40〜85重量%,及び残炭率45%以
上の樹脂の炭素質が5〜50重量%の範囲に焼成・炭化
後なるように調整した、メソカーボン小球体,炭素質長
繊維および炭化可能な樹脂からなる前駆成形体を形成し
、次いで該前駆成形体を積層成形したのち、非酸化性雰
囲気下で焼成・炭化することを特徴とする炭素繊維強化
炭素複合材料の製造方法。
2. Carbide of mesocarbon small spheres is 3-40% by weight,
Mesocarbon spherules, carbonaceous length adjusted so that the carbonaceous long fibers are 40 to 85% by weight, and the carbonaceous content of the resin with a residual carbon content of 45% or more is in the range of 5 to 50% by weight after firing and carbonization. A method for producing a carbon fiber-reinforced carbon composite material, which comprises forming a precursor molded body made of fibers and a carbonizable resin, then layer-molding the precursor molded body, and then firing and carbonizing the precursor molded body in a non-oxidizing atmosphere. .
JP63159291A 1988-06-29 1988-06-29 Carbon fiber reinforced carbon composite material and production thereof Pending JPH029776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159291A JPH029776A (en) 1988-06-29 1988-06-29 Carbon fiber reinforced carbon composite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159291A JPH029776A (en) 1988-06-29 1988-06-29 Carbon fiber reinforced carbon composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH029776A true JPH029776A (en) 1990-01-12

Family

ID=15690587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159291A Pending JPH029776A (en) 1988-06-29 1988-06-29 Carbon fiber reinforced carbon composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH029776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189156A (en) * 1991-04-01 1993-02-23 Xerox Corporation Processes for the preparation of titanium-phthalocyanine Type X
US5189155A (en) * 1991-04-11 1993-02-23 Xerox Corporation Titanyl phthalocyanine Type I processes
US5206359A (en) * 1991-04-11 1993-04-27 Xerox Corporation Processes for preparation of titanyl phthalocyanines type x

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189156A (en) * 1991-04-01 1993-02-23 Xerox Corporation Processes for the preparation of titanium-phthalocyanine Type X
US5189155A (en) * 1991-04-11 1993-02-23 Xerox Corporation Titanyl phthalocyanine Type I processes
US5206359A (en) * 1991-04-11 1993-04-27 Xerox Corporation Processes for preparation of titanyl phthalocyanines type x

Similar Documents

Publication Publication Date Title
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
CA2332366C (en) Carbon-based composites derived from phthalonitrile resins
US20070237954A1 (en) Process for the impregnation of carbon fiber bundles, resin-impregnated carbon fiber bundle, shaped body and intermediate body for silicization
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
JPWO2003068707A1 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US20190233337A1 (en) Fiber reinforced carbon and refractory ceramics composites
Gajiwala et al. Hybridized resin matrix approach applied for development of carbon/carbon composites—I
JPH0559072B2 (en)
JPH03150266A (en) Production of carbon/carbon composite material
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH029776A (en) Carbon fiber reinforced carbon composite material and production thereof
JPH0242790B2 (en)
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
GB2112827A (en) Carbon fiber materials
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
Dhakate et al. Development of vapor grown carbon fibers (VGCF) reinforced carbon/carbon composites
RU2170220C1 (en) Method of preparing carbon-carbon composite material
JPH01133914A (en) Carbon fiber reinforced carbon composite material and production thereof
JPH04154663A (en) Production of carbon fiber reinforced carbon composite material
Özsoy et al. Carbon–carbon nanocomposites for brake systems and exhaust nozzles
JP3129424B2 (en) High-strength carbon fiber reinforced carbon composite material structure with ribs and method of manufacturing the same
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3969600B2 (en) C / C composite and manufacturing method thereof
JPH03247563A (en) Production of carbon fiber-reinforced carbon material
JP2004067487A (en) Carbon-fiber-reinforced carbon composite material mixed with ceramics