JPS63107862A - Manufacture of carbon fiber reinforced carbon composite material - Google Patents

Manufacture of carbon fiber reinforced carbon composite material

Info

Publication number
JPS63107862A
JPS63107862A JP61252633A JP25263386A JPS63107862A JP S63107862 A JPS63107862 A JP S63107862A JP 61252633 A JP61252633 A JP 61252633A JP 25263386 A JP25263386 A JP 25263386A JP S63107862 A JPS63107862 A JP S63107862A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermosetting resin
carbon
composite material
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61252633A
Other languages
Japanese (ja)
Other versions
JPH0829987B2 (en
Inventor
奥山 公平
明男 加藤
恵介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61252633A priority Critical patent/JPH0829987B2/en
Publication of JPS63107862A publication Critical patent/JPS63107862A/en
Publication of JPH0829987B2 publication Critical patent/JPH0829987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1表面に熱硬化された熱硬化性樹脂の被覆層を
有する炭素繊維を補強繊維として使用する。優れた性能
を持つ炭素繊維強化炭素複合材の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses carbon fibers having a thermosetting resin coating layer on one surface as reinforcing fibers. The present invention relates to a method for manufacturing a carbon fiber reinforced carbon composite material with excellent performance.

〔従来の技術〕[Conventional technology]

炭素繊維強化炭素複合材(以下c/c複合材と略す)は
軽量、高強度であシ、耐熱、耐触性に優れているという
特徴を活かしてロケットノズル、/−iコーン、 航空
機(Dディスクブレーキなどの航空宇宙材料や、発熱体
、ホットプレート鋳型、その他の機械部品、原子炉用部
材などに用いられている。
Carbon fiber-reinforced carbon composite materials (hereinafter abbreviated as C/C composite materials) are lightweight, have high strength, are heat resistant, and have excellent corrosion resistance. It is used in aerospace materials such as disc brakes, heating elements, hot plate molds, other mechanical parts, and parts for nuclear reactors.

従来c/c複合材は予め炭素繊維にフェノール樹脂、フ
ラン樹脂などの熱硬化性樹脂、あるいはピッチなどの熱
可塑性樹脂々どのマトリックス前駆物質を含浸または混
合して加熱成型したものを不活性ガスなどの非酸化性雰
囲気中においてtoo〜/ 000℃で炭什、さらに要
するならば/♂00−2100℃で黒鉛化することによ
り製造されている。
Conventionally, C/C composite materials are made by impregnating or mixing carbon fibers with matrix precursors such as thermosetting resins such as phenol resins and furan resins, or thermoplastic resins such as pitch, and heating and molding them using inert gas, etc. It is produced by carbonization at too~/000°C in a non-oxidizing atmosphere, and further graphitization at /00~2100°C if necessary.

ところで、複合材においては補強繊維が負荷−〉− された応力を主に担い、マトリックスは応力を個々の繊
維に均等に分担させる伝達の役割を担うと言われている
。従って複合材としての性能を充分なものとするために
は繊維がマトリックス中に均一に分布し、その繊維がマ
トリックスで、一様に囲まれておシ、さらに繊維とマト
リックスが充分に接着していて応力の伝達が円滑に行な
われる様になっていることが重要である。
By the way, in composite materials, the reinforcing fibers are said to mainly bear the stress that is applied, and the matrix is said to play the role of transmitting the stress so that it is distributed equally among the individual fibers. Therefore, in order to achieve sufficient performance as a composite material, the fibers must be uniformly distributed in the matrix, the fibers must be uniformly surrounded by the matrix, and the fibers and the matrix must be sufficiently bonded. It is important that the stress be transmitted smoothly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来技術により Q/c複合材を製造した場合
には炭素繊維とマ)IJラックス駆物質との濡れ性が必
ずしも良好でないため、炭素R維にマトリックス前、堅
物質を含浸または混合する時にマトリックス前駆物質を
繊維間に均一に浸透させることが困難であった。また、
一般にマトリックス前駆物質の炭化による収縮が大であ
るため炭素繊維とマトリックス前駆物質の接着が充分で
ない場合には炭化の終了した時点で炭素繊維とマトリッ
クス前駆物質から変化したマトリックス炭素との界面に
空隙を生じることが多かった。これらの理由のため炭素
繊維とマトリックス炭素との間の応力伝達が阻害されて
充分な性能を持つc/c複合材を得ることは困難であっ
た。
However, when producing Q/c composite materials using conventional techniques, the wettability between carbon fibers and the IJ lux precursor material is not necessarily good. It was difficult to uniformly penetrate the matrix precursor between the fibers. Also,
Generally, shrinkage due to carbonization of the matrix precursor is large, so if the adhesion between the carbon fiber and the matrix precursor is not sufficient, voids are created at the interface between the carbon fiber and the matrix carbon changed from the matrix precursor at the end of carbonization. often occurred. For these reasons, stress transmission between carbon fibers and matrix carbon is inhibited, making it difficult to obtain a C/C composite material with sufficient performance.

従来の技術ではかかる問題を解決する方法として一般的
には炭化の終了し7’(c/c複合材に改めて樹脂類を
含浸して、マトリックス前駆物質の未浸透部分や、マト
リックス前駆物質の炭化収縮に起因する炭素繊維−マ)
 IJラックス素界面の空隙を埋め、再度炭化する方法
が採用されているが、未浸透部分、界面の空隙を完全に
埋めるためには樹脂類の含浸−再炭化の工程を多数回繰
返さなければ充分な性能を発現するに至らないといった
難点が有った。
Conventional techniques generally solve this problem by impregnating the C/C composite material with a resin after carbonization is completed, and removing the unpenetrated portions of the matrix precursor and the carbonization of the matrix precursor. Carbon fiber due to shrinkage (ma)
The method used is to fill the voids at the interface of IJ Lux and re-carbonize, but in order to completely fill the unpenetrated areas and voids at the interface, it is sufficient to repeat the process of resin impregnation and re-carbonization many times. However, there were some drawbacks such as not being able to achieve good performance.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者等は炭素繊維とマトリックス前駆物質の
濡れ性を向上させ、かつ接着性を高める方法について鋭
意検討した結果、補強用の炭素繊維を予め、  c/c
複合材製造の際のマトリックス前駆物質として使用され
る様な熱硬化性樹脂の希薄溶液で処理し、その後加熱処
理することで繊維の表面に該熱硬化性樹脂の熱硬化され
た薄い被覆層を形成させておけば炭素繊維とマ) IJ
ソックス駆物質との濡れ性、接着性が改良され、その結
果優れた性能のc/c複合材が得られることを見出し1
本発明を完成するに至った。
Therefore, the inventors of the present invention have conducted intensive studies on methods to improve the wettability of carbon fibers and matrix precursors, as well as to increase their adhesion.
The fibers are treated with a dilute solution of a thermosetting resin, such as those used as matrix precursors in composite manufacturing, and then heat treated to form a thin, thermoset coating layer of the thermosetting resin on the surface of the fibers. If you let it form, it will become carbon fiber and IJ.
It was discovered that the wettability and adhesion with the sock additive were improved, and as a result, a C/C composite material with excellent performance could be obtained.1
The present invention has now been completed.

すなわち、本発明の要旨は、熱硬化性樹脂溶液を炭素繊
維に塗布し、jO〜3oo℃の温度で加熱処理すること
により該熱硬化性樹脂を熱硬化して表面に熱硬化性樹脂
の被覆層を有する炭素繊維を形成し、得られた該熱硬化
性樹脂被覆炭素繊維にマトリックス前駆物質を含浸また
は混合した後、成型し、次いで焼成処理することを特徴
とする炭素繊維強化炭素複合材の製造方法に存する。
That is, the gist of the present invention is to apply a thermosetting resin solution to carbon fibers and heat-cure the thermosetting resin by heat-treating the carbon fiber at a temperature of 0 to 30°C, thereby coating the surface with the thermosetting resin. A carbon fiber-reinforced carbon composite material characterized in that carbon fibers having a layer are formed, the obtained thermosetting resin-coated carbon fibers are impregnated with or mixed with a matrix precursor, and then molded and then fired. It depends on the manufacturing method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する炭素繊維は公知のPAN系。The carbon fiber used in the present invention is a known PAN type carbon fiber.

ピッチ系炭素繊維あるいは気相成長法炭素繊維等いずれ
の種類でも良く、その形態も長繊維、短繊維あるいは織
布、不織布等のいずれであっても良いが長繊維ロービン
グや織布の様に各単繊維が高密度に集合した状態にある
ものが特に本発明の効果が大である。
It can be of any type, such as pitch-based carbon fiber or vapor-grown carbon fiber, and its form can be either long fiber, short fiber, woven fabric, non-woven fabric, etc. The effect of the present invention is particularly great for fibers in which single fibers are aggregated at high density.

本発明においては炭素繊維の表面に熱硬化性樹脂の希薄
溶液を浸漬等の方法によって塗布する。該熱硬化性樹脂
としては1例えばフェノール樹脂、フラン樹脂、エポキ
シ樹脂、不飽和ポリエステル樹脂等が挙げられるが、フ
ェノール樹脂特にレゾール型のフェノール樹脂が好適に
使用出来る。これらの熱硬化性樹脂はエタノールの様な
アルコール類、ヘキサンの様な炭化水素あるいはアセト
ンといった溶剤で溶解希釈して溶液となし炭素繊維に塗
布される。
In the present invention, a dilute solution of a thermosetting resin is applied to the surface of carbon fibers by a method such as dipping. Examples of the thermosetting resin include phenol resins, furan resins, epoxy resins, unsaturated polyester resins, etc., and phenol resins, particularly resol type phenol resins, can be suitably used. These thermosetting resins are dissolved and diluted with an alcohol such as ethanol, a hydrocarbon such as hexane, or a solvent such as acetone to form a solution that is applied to carbon fibers.

熱硬化性樹脂溶液の濃度としては通常0.2〜よwt%
、好ましくはo、r〜2 wt%の範囲のものを使用す
るのが繊維の表面に均一に塗布するために望ましい。ま
た、フラン樹脂、エポキシ樹脂等硬化剤を要するものは
硬化剤も溶液中に添加されるのがその量はそれぞれの樹
脂に適した量が添加される。
The concentration of the thermosetting resin solution is usually 0.2 to 50% by weight.
, preferably in the range of o, r to 2 wt%, in order to uniformly coat the fiber surface. Further, for those requiring a curing agent such as furan resin and epoxy resin, the curing agent is also added to the solution in an amount appropriate for each resin.

かかる熱硬化性樹脂溶液を炭素繊維に塗布する方法とし
ては溶液中に炭素繊維を浸漬するといった簡革な方法で
良いが、長繊維ロービングあるいは連続した織布等であ
るならば溶液の満された槽内を連続的に走行させる方法
が処理の動量の点から好ましい。また、この際に溶液の
満された槽に1O−jOKHz程度の超音波を作用させ
ておくと各単繊維間、織目間の気泡等による処理むらの
影響を防ぐことが出来るので好ましい。
The thermosetting resin solution can be applied to carbon fibers by a simple method such as immersing the carbon fibers in the solution, but if it is a long fiber roving or continuous woven fabric, it may be necessary to apply the thermosetting resin solution to the carbon fibers. A method in which the material is continuously moved through the tank is preferable from the viewpoint of processing speed. Further, at this time, it is preferable to apply ultrasonic waves of about 1 O-j OK Hz to the tank filled with the solution, since it is possible to prevent the effects of uneven processing due to air bubbles between each single fiber or between weaves.

熱硬化性樹脂溶液を塗布した炭素繊維は例えばローラー
を通すなどして余分な溶液を除去し。
The carbon fiber coated with the thermosetting resin solution is passed through a roller to remove excess solution.

次いで加熱処理を施される。Next, heat treatment is performed.

該加熱処理によシ、熱硬化性樹脂は熱硬化し、炭素繊維
の表面に薄い熱硬化性樹脂層が形成される。加熱処理の
条件は使用する熱硬化性樹脂の種類によってそれぞれ適
正条件は異なるが通常j O〜J 00℃、好ましくは
fO−200℃の温度で0.2〜j時間、好ましくは0
02〜2時間加熱処理される。この際、炭素繊維に塗布
された熱硬化性樹脂溶液からの急激な溶剤の脱離を避る
ため所定の温度への昇温を徐々に行なわれることが望ま
しい。また、加熱処理は炭素繊維を連続的に加熱炉内を
走行させる方法で行なうのが処理の動量の点から好まし
い。
By this heat treatment, the thermosetting resin is thermosetted, and a thin thermosetting resin layer is formed on the surface of the carbon fiber. Appropriate conditions for heat treatment vary depending on the type of thermosetting resin used, but are usually 0 to 00°C, preferably 0 to 200°C for 0.2 to 2 hours, preferably 0.
Heat treated for 02 to 2 hours. At this time, it is desirable to gradually raise the temperature to a predetermined temperature in order to avoid rapid desorption of the solvent from the thermosetting resin solution applied to the carbon fibers. Further, it is preferable from the viewpoint of processing speed that the heat treatment is carried out by a method in which the carbon fibers are continuously run through a heating furnace.

以上の様にして得られる炭素繊維はその表面に熱硬化さ
れた熱硬化性樹脂の薄い被覆層が形成されているが、被
覆層の厚さが薄すぎる場合にはc/c複合材製造に用い
るマトリックス前駆物質との濡水性、接着性の改良の効
果が充分ではなく、逆に被覆層が厚すぎる場合には各単
繊維間の固着が生じて以後の炭素繊維の取扱いが著しく
困難になってしまう。従って被覆層の厚さとしては平均
の厚さとしてOo、2〜3μ、好ましくは0.3− /
、!μの範囲であることが望ましい。
The carbon fiber obtained in the above manner has a thin coating layer of thermosetting resin formed on its surface, but if the thickness of the coating layer is too thin, it may be difficult to produce a c/c composite material. If the effect of improving wettability and adhesion with the matrix precursor used is not sufficient, and conversely, if the coating layer is too thick, adhesion between individual fibers will occur, making subsequent handling of the carbon fibers extremely difficult. It ends up. Therefore, the average thickness of the coating layer is Oo, 2 to 3μ, preferably 0.3−/
,! It is desirable that it be in the range of μ.

熱硬化性樹脂の被覆層の厚さは炭素繊維に塗布される熱
硬化性樹脂溶液の濃度にほぼ依存し。
The thickness of the thermosetting resin coating layer approximately depends on the concentration of the thermosetting resin solution applied to the carbon fibers.

溶液の濃度を調整することで所望の被覆層の厚さを得る
ことが可能であるが、高濃度の溶液を使用した場合には
被覆層の形成が不均一になることもある。所望の被覆層
厚さを得、かつ均一な被覆層形成を達成するために、熱
硬化性樹脂溶液の塗布、加熱処理による熱硬化性樹脂の
熱硬化を繰返えし行なっても良い。この場合初めは溶液
の濃度を低くシ、繰返し毎に次第に濃度を高くしてゆく
ことが均一な被覆層を形成させるため、および処理され
た炭素繊維の取扱い性等の点で好ましい。
Although it is possible to obtain a desired thickness of the coating layer by adjusting the concentration of the solution, when a highly concentrated solution is used, the formation of the coating layer may become non-uniform. In order to obtain the desired coating layer thickness and to achieve uniform coating layer formation, the application of the thermosetting resin solution and the thermosetting of the thermosetting resin by heat treatment may be repeated. In this case, it is preferable to start with a low concentration of the solution and gradually increase the concentration each time the solution is repeated, in order to form a uniform coating layer and to facilitate handling of the treated carbon fibers.

得られた1表面に熱硬化された熱硬化性樹脂の被覆層を
有する炭素繊維は次いでマトリックス前駆物質を含浸ま
たは混合した後、金型中に配列し一定の加熱、加圧条件
ともとで成型される。
The obtained carbon fibers having a coating layer of thermosetting resin on one surface are then impregnated with or mixed with a matrix precursor, and then arranged in a mold and molded under constant heating and pressure conditions. be done.

マトリックス前駆物蜜としてはフェノール樹脂、フラン
樹脂などの熱硬化性樹脂、あるいはピッチなどの熱可塑
性樹脂が使用できるが、熱硬化性樹脂を使用するのが本
発明の効果を発現させるためにはよシ好ましい。
As the matrix precursor, thermosetting resins such as phenolic resins and furan resins, or thermoplastic resins such as pitch can be used, but in order to achieve the effects of the present invention, it is best to use thermosetting resins. It is preferable.

上記含浸または混合は目的等によシ適宜選択しうるが、
炭素繊維が長繊維の場合には含浸、短繊維の場合には混
合が採用されるのが通常である。また、炭素繊維の使用
量はc/c複合材の用途によって異なるので一概には特
定出来ないが成形体の体積に対して通常30〜70%の
範囲から選択される。
The above impregnation or mixing can be selected as appropriate depending on the purpose, etc.
Usually, impregnation is used when the carbon fibers are long fibers, and mixing is used when the carbon fibers are short fibers. Further, the amount of carbon fiber to be used varies depending on the use of the c/c composite material, so it cannot be specified unconditionally, but it is usually selected from a range of 30 to 70% based on the volume of the molded product.

得られた成型体は次いで焼成処理される。例、ヅ えばハゲキングコークス中に埋め込んだ炭化処理を行な
い、さらに必要ならば黒鉛化処理を行なうことによp 
c/c複合材とする。また、炭化の後に必要に応じてピ
ッチ含浸あるいは樹脂含浸−再炭化の緻密化処理を繰返
して行なうことによシ一段と優れた性能のc/c複合材
を得ることが出来る。
The obtained molded body is then subjected to a firing treatment. For example, by performing carbonization treatment embedded in bald king coke, and further graphitization treatment if necessary.
c/c composite material. Moreover, by repeating the densification treatment of pitch impregnation or resin impregnation-recarbonization as required after carbonization, it is possible to obtain a C/C composite material with even better performance.

〔実施例〕〔Example〕

実施例/ 1000℃で炭化したピッチ系炭素繊維ローピング(3
oooフイラメント、flll維径/コμ。
Example / Pitch-based carbon fiber roping carbonized at 1000℃ (3
ooo filament, full fiber diameter/coμ.

引張強度/7okg/sJ)を4LjKHz、10OW
の超音波を作用させている、o、6 wt%フェノール
樹脂溶液(解束化学社製レゾール型フェノール樹脂”レ
ジトップPL−22//”、レジン分j!Sをエタノー
ルで溶解希釈)の満された槽内を走行させ1次いで複数
のローラを通過させた後ドラムに巻取った。この処理に
おける炭素繊維ロービングの走行速度は10m/Hz”
であ夛。
Tensile strength/7okg/sJ) at 4LjKHz, 10OW
0.6 wt% phenolic resin solution (resol type phenol resin "Regitop PL-22//" manufactured by Kaifu Kagaku Co., Ltd., diluted by dissolving the resin part j!S with ethanol) and applying ultrasonic waves. The material was run through a tank in which the film was heated, passed first through a plurality of rollers, and then wound onto a drum. The running speed of the carbon fiber roving in this process is 10 m/Hz.”
So many.

フェノール樹脂溶液の満された槽内における滞留時間は
/―であった。
The residence time of the phenolic resin solution in the filled tank was /-.

フェノール樹脂溶液を塗布した炭素繊維ロービングはド
ラムに巻取ったまま常温で2よHr風乾した後、全長0
.3m、中心部最高温度200℃の炉内を0.3 m/
Hrの速度で走行させて加熱処理を行なった。
The carbon fiber roving coated with the phenolic resin solution was air-dried at room temperature for 2 hours while wound on the drum, and then the total length was 0.
.. 3m, 0.3m/inside the furnace with a maximum temperature of 200℃ at the center
The heat treatment was performed by running at a speed of Hr.

以上の処理の結果得″られた炭素繊維ロービングはしな
やかであシ、処理前に比べてλ・6%の重量増加が有っ
た。また走査型電子顕微鏡で観察した所要面に平均で約
0.3μの厚さの被覆層が認めら九九。
The carbon fiber roving obtained as a result of the above treatment was flexible and had a weight increase of λ 6% compared to before treatment. Also, the required surface area observed with a scanning electron microscope averaged about 0. A coating layer with a thickness of .3μ was observed.

次いでこの炭素繊維ロービングf 27 cmの長さに
切シ揃え、マトリックス前駆物質としてフェノール樹脂
(解束化学社製”レジトップ2−λコ//”、レジン分
よ!%)を含浸、風乾してプリフォームとした後、厚さ
、21111.巾10ym。
Next, this carbon fiber roving was cut to a length of f 27 cm, impregnated with phenol resin ("Regitop 2-λ Co//" manufactured by Kaifu Kagaku Co., Ltd., resin content!%) as a matrix precursor, and air-dried. After making a preform, the thickness was 21111. Width 10mm.

長さ2JOwmの金型内に一方向に引揃えてVf=jj
%となる量を配列し、最高温度230℃。
Vf=jj aligned in one direction in a mold with a length of 2JOwm
The maximum temperature is 230℃.

最高圧力10kg/C1lの条件で成型して成型体を得
た。
A molded body was obtained by molding at a maximum pressure of 10 kg/Cl.

成型体はバッキングコークス中に埋め込み/ 000℃
で炭化してc/c複合材とした後、ピッチ含浸して10
00℃で再炭化する緻密化プロセスを弘回繰返し1次い
でアルゴン雰囲気中2000℃の処理を行なって嵩密度
/・t7i/dの黒鉛化されたc/c複合材を得た。
The molded body is embedded in backing coke/000℃
After carbonizing it to make a c/c composite material, it was impregnated with pitch and
The densification process of recarbonization at 00°C was repeated several times and then treated at 2000°C in an argon atmosphere to obtain a graphitized c/c composite material with a bulk density of /.t7i/d.

とのc/c複合材から長さgt■および20tmの試験
片をそれぞれ3枚切シ出し、スパン間距離uOrmおよ
び10wg、歪速度コ1/―で3点曲げ試験を行ない1
曲げ強度および層間剪断強度を求めた結果、それぞれ3
点の試験片の平均値として弘♂、2に9 / −、2,
! j kfl /−の値を得た。
Three specimens with lengths gt and 20tm were cut out from the c/c composite material, and a three-point bending test was conducted at a span distance of uOrm and 10wg, and a strain rate of 1/-.
As a result of calculating the bending strength and interlaminar shear strength, each
As the average value of the test piece of points, Hiro♂, 2 to 9/-, 2,
! The value of j kfl /- was obtained.

実施例λ 実施例1と同じ条件でフェノール樹脂溶液を塗布し、加
熱処理して得られた炭素繊維ロービングを、フェノール
樹脂溶液濃度を八jwt%とじた他は実施例1と同じ条
件で再びフェノール樹脂溶液の塗布および加熱処理をし
た。この結果得られた炭素繊維ロービングはしなやかさ
を残しておシ、最初に用意した処理前の炭素繊維ロービ
ングに比べて7.1%の重量増加があった。
Example λ A carbon fiber roving obtained by applying a phenol resin solution under the same conditions as in Example 1 and heat-treating it was coated with phenol again under the same conditions as in Example 1, except that the phenol resin solution concentration was reduced to 8 jwt%. A resin solution was applied and heat treated. The carbon fiber roving obtained as a result remained supple and had a weight increase of 7.1% compared to the initially prepared carbon fiber roving before treatment.

また、走査型電子顕微鏡での観察によシ表面に平均で約
0.7μの厚さの被覆層が認められた。
In addition, a coating layer with an average thickness of about 0.7 μm was observed on the surface by observation with a scanning electron microscope.

この炭素繊維ロービングを実施例1と同じ条件でフェノ
ール樹脂含浸、成型、炭化、緻密化、黒鉛化を行ない嵩
密度へ乙りg7criのc/c複合材を得た。このc/
c複合材につき実施例/と同様にして曲げ強度、層間剪
断強度を求めた結果。
This carbon fiber roving was impregnated with phenol resin, molded, carbonized, densified, and graphitized under the same conditions as in Example 1 to obtain a c/c composite material with a bulk density of g7cri. This c/
c Results of bending strength and interlaminar shear strength of the composite material obtained in the same manner as in Example.

それぞれよt、tLl、に9/d、 、!、J−タkQ
/−のイ直を得た。
Respectively, yot, tLl, ni9/d, ,! , J-ta kQ
/- got the right answer.

比較例1 実施例1で使用し士ものと同じ炭素繊維ロービングをフ
ェノール樹脂溶液の塗布を行なうことなく使用して、実
施例/と同じ条件でフェノール樹脂含浸、成型、炭化、
緻密化を行ない嵩密度へ6りi/c!/lのc/c複合
材を得た。
Comparative Example 1 The same carbon fiber roving as used in Example 1 was used without applying the phenolic resin solution, and was impregnated with phenolic resin, molded, carbonized, and processed under the same conditions as in Example.
6ri I/C to densify and increase bulk density! /l c/c composite material was obtained.

とのc/c複合材につき実施例/と同様にして曲げ強度
、眉間剪断強度を求めた結果、それぞれ37.3に9/
d、  へタタky/−の値を等た。
The bending strength and glabellar shear strength of the c/c composite material were determined in the same manner as in Example/, and the results were 37.3 and 9/3, respectively.
d, the value of Hetata ky/- was equalized.

比較例2 フェノール樹脂溶液の濃度をjwt%とした他は実施例
/と同じ条件でフェノール樹脂溶液ノ塗布を行ない1次
いで加熱処理を行なったが得られた炭素繊維ロービング
は固い棒状であった。
Comparative Example 2 A phenol resin solution was applied under the same conditions as in Example except that the concentration of the phenol resin solution was changed to jwt%, and then heat treatment was performed, but the obtained carbon fiber roving was in the shape of a hard rod.

この炭素繊維ロービングを走査型電子顕微鏡で観察した
所各単繊維の間がフェノール樹脂で埋っている部分が多
数観察された。観察した部分の、炭素繊維の数・径とフ
ェノール樹脂の占める面積から計算した平均的な被覆層
の厚さは弘、2μの値となった。次いで、この炭素繊維
ロービングを実施例/と同じ条件でフェノール樹脂含浸
、成型、炭化してみたが得られたc/c複合材は長さ方
向にねじれを生じておシ、かつ炭素繊維ロービング間の
マトリックス炭素部分に亀裂が認められた。
When this carbon fiber roving was observed with a scanning electron microscope, many portions where the spaces between each single fiber were filled with phenol resin were observed. The average thickness of the coating layer calculated from the number and diameter of carbon fibers and the area occupied by the phenol resin in the observed area was 2 μm. Next, this carbon fiber roving was impregnated with phenol resin, molded, and carbonized under the same conditions as in Example/1, but the resulting C/C composite material was twisted in the length direction, and the carbon fiber rovings were distorted. Cracks were observed in the matrix carbon part.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、炭素繊維とマトリックス前駆物質
の濡れ性、接着性を向上させ、優れた性能のc/c複合
材を得ることができる。
According to the method of the present invention, it is possible to improve the wettability and adhesion between carbon fibers and matrix precursors, and to obtain a C/C composite material with excellent performance.

Claims (3)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂溶液を炭素繊維に塗布し、50〜3
00℃の温度で加熱処理することにより該熱硬化性樹脂
を熱硬化して表面に熱硬化性樹脂の被覆層を有する炭素
繊維を形成し、得られた該熱硬化性樹脂被覆炭素繊維に
マトリックス前駆物質を含浸または混合した後、成型し
、次いで焼成処理することを特徴とする炭素繊維強化炭
素複合材の製造方法。
(1) Apply thermosetting resin solution to carbon fiber,
The thermosetting resin is thermally cured by heat treatment at a temperature of 00°C to form carbon fibers having a thermosetting resin coating layer on the surface, and the resulting thermosetting resin-coated carbon fibers are coated with a matrix. A method for producing a carbon fiber-reinforced carbon composite material, which comprises impregnating or mixing a precursor, then molding, and then firing.
(2)熱硬化性樹脂がフェノール樹脂であることを特徴
とする特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the thermosetting resin is a phenolic resin.
(3)熱硬化性樹脂溶液の濃度が5重量%以下であるこ
とを特徴とする特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the concentration of the thermosetting resin solution is 5% by weight or less.
JP61252633A 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material Expired - Lifetime JPH0829987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61252633A JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61252633A JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPS63107862A true JPS63107862A (en) 1988-05-12
JPH0829987B2 JPH0829987B2 (en) 1996-03-27

Family

ID=17240068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61252633A Expired - Lifetime JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH0829987B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214431A (en) * 1987-03-02 1988-09-07 Ibiden Co Ltd Manufacture of fiber reinforced composite material
JPH0230666A (en) * 1988-04-28 1990-02-01 Mitsubishi Kasei Corp Carbon fiber reinforced carbon composite material and production thereof
JPH02141452A (en) * 1988-11-24 1990-05-30 Shinagawa Refract Co Ltd Refractory containing carbon
JPWO2017170024A1 (en) * 2016-03-31 2019-02-14 コニカミノルタ株式会社 Manufacturing method and manufacturing apparatus of three-dimensional structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439843A (en) * 1977-09-06 1979-03-27 Fuji Electric Co Ltd Ac power source
JPS5935069A (en) * 1982-08-23 1984-02-25 川崎製鉄株式会社 Manufacture of carbon-containing refractories
JPS5935841A (en) * 1982-08-21 1984-02-27 Nitto Shoko Kk Wire straightener
JPS60200860A (en) * 1983-12-14 1985-10-11 ハイトコ Manufacture of high strength acid-resistance carbon/carbon composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439843A (en) * 1977-09-06 1979-03-27 Fuji Electric Co Ltd Ac power source
JPS5935841A (en) * 1982-08-21 1984-02-27 Nitto Shoko Kk Wire straightener
JPS5935069A (en) * 1982-08-23 1984-02-25 川崎製鉄株式会社 Manufacture of carbon-containing refractories
JPS60200860A (en) * 1983-12-14 1985-10-11 ハイトコ Manufacture of high strength acid-resistance carbon/carbon composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214431A (en) * 1987-03-02 1988-09-07 Ibiden Co Ltd Manufacture of fiber reinforced composite material
JPH0230666A (en) * 1988-04-28 1990-02-01 Mitsubishi Kasei Corp Carbon fiber reinforced carbon composite material and production thereof
JPH02141452A (en) * 1988-11-24 1990-05-30 Shinagawa Refract Co Ltd Refractory containing carbon
JPH0543662B2 (en) * 1988-11-24 1993-07-02 Shinagawa Refractories Co
JPWO2017170024A1 (en) * 2016-03-31 2019-02-14 コニカミノルタ株式会社 Manufacturing method and manufacturing apparatus of three-dimensional structure

Also Published As

Publication number Publication date
JPH0829987B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US3936535A (en) Method of producing fiber-reinforced composite members
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
JPS63107862A (en) Manufacture of carbon fiber reinforced carbon composite material
DE3445510A1 (en) METHOD FOR PRODUCING CARBON / CARBON COMPOSITE MATERIALS
JPS6054270B2 (en) Carbon fiber reinforced carbon friction material
GB2112827A (en) Carbon fiber materials
JP2625783B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
KR0145784B1 (en) Carbon fiber-reinforced c/c composite
JP3383992B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP2864304B2 (en) Brake sliding part
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JP2805262B2 (en) Brake sliding part
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JP2969957B2 (en) Brake sliding part
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH04231739A (en) Brake sliding part
JP2578354B2 (en) Carbon fiber reinforced carbonaceous composite friction material and method for producing the same
JP3172815B2 (en) Carbon fiber for carbon fiber reinforced carbon composites
JP2864303B2 (en) Brake sliding part
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH01176273A (en) Production of carbon fiber-reinforced carbonaceous composite
JP3957229B2 (en) Method for producing carbon fiber reinforced carbon composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term