JP3288433B2 - Carbon fiber reinforced carbon composite precursor - Google Patents

Carbon fiber reinforced carbon composite precursor

Info

Publication number
JP3288433B2
JP3288433B2 JP20111792A JP20111792A JP3288433B2 JP 3288433 B2 JP3288433 B2 JP 3288433B2 JP 20111792 A JP20111792 A JP 20111792A JP 20111792 A JP20111792 A JP 20111792A JP 3288433 B2 JP3288433 B2 JP 3288433B2
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber
fiber reinforced
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20111792A
Other languages
Japanese (ja)
Other versions
JPH0648829A (en
Inventor
智 之 宇留野
城 庸 夫 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP20111792A priority Critical patent/JP3288433B2/en
Publication of JPH0648829A publication Critical patent/JPH0648829A/en
Application granted granted Critical
Publication of JP3288433B2 publication Critical patent/JP3288433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度な炭素繊維強化
炭素複合材料を得るための前駆体に関する。
The present invention relates to a precursor for obtaining a high-strength carbon fiber reinforced carbon composite material.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料の一般的な製
造方法は、炭素繊維束、炭素繊維織布または炭素繊維不
織布などの強化繊維と熱硬化性樹脂を用いて、まず通常
の繊維強化樹脂複合材料と同様の方法により成形型を用
いて任意形状の樹脂成形体すなわち炭素繊維強化炭素複
合材料前駆体を得る。ついで、真空、窒素ガス、アルゴ
ンガス等の非酸化性雰囲気で焼成し樹脂を炭化すること
で炭素繊維強化炭素複合材料とする。
2. Description of the Related Art A general method of manufacturing a carbon fiber reinforced carbon composite material is to first use a fiber reinforced resin such as a carbon fiber bundle, a carbon fiber woven fabric or a carbon fiber non-woven fabric and a thermosetting resin to form a normal fiber reinforced resin. A resin molded article having an arbitrary shape, that is, a carbon fiber reinforced carbon composite material precursor is obtained by using a molding die in the same manner as the composite material. Next, the resin is baked in a non-oxidizing atmosphere such as vacuum, nitrogen gas, argon gas or the like to carbonize the resin to obtain a carbon fiber reinforced carbon composite material.

【0003】ここで熱硬化性樹脂を用いる理由は、一度
硬化した樹脂は加熱しても再溶融しないため、焼成中に
型崩れを起こさず賦形が容易なためである。この熱硬化
性樹脂は、焼成炭化時に分解し、樹脂硬化後の重量にし
ておよそ1/2がガスとして放出される。
[0003] The reason for using a thermosetting resin here is that once cured resin does not re-melt even when heated, it does not lose its shape during firing and is easy to shape. This thermosetting resin is decomposed at the time of firing and carbonization, and about 1/2 of the weight after the resin is cured is released as a gas.

【0004】[0004]

【発明が解決しようとする課題】ここで、発生したガス
によって膨れや層間剥離を起こすことが、炭素繊維含有
率の高い高強度な炭素繊維強化炭素複合材料を製造する
上で問題となっていた。このようなガス抜けの問題を、
炭素質粉末または短炭素繊維を液状の樹脂または溶媒希
釈した樹脂に添加することで解決しようとする方法が知
られている。しかしながら、この方法では樹脂液に炭素
質粉末または短炭素繊維を添加混合すると急激に粘度が
上昇し、強化繊維である炭素繊維束に十分に含浸できな
くなるという問題がある。また、樹脂液と炭素質粉末ま
たは短炭素繊維を混合しない方法により成形体を得たと
しても、膨れや層間剥離は発生しなくなるが、強化繊維
の体積含有率の低下を招き高強度な炭素繊維強化炭素複
合材料は得られない。
Here, swelling or delamination caused by the generated gas has been a problem in producing a high-strength carbon fiber reinforced carbon composite material having a high carbon fiber content. . This kind of outgassing problem
There is known a method for solving the problem by adding carbonaceous powder or short carbon fiber to a liquid resin or a resin diluted with a solvent. However, in this method, when carbonaceous powder or short carbon fiber is added to and mixed with the resin solution, there is a problem that the viscosity sharply increases and the carbon fiber bundle as the reinforcing fiber cannot be sufficiently impregnated. In addition, even if a molded article is obtained by a method in which the resin liquid and the carbonaceous powder or the short carbon fiber are not mixed, swelling and delamination do not occur, but the volume content of the reinforcing fiber is reduced and the high-strength carbon fiber is reduced. No reinforced carbon composite is obtained.

【0005】本発明の目的は、前述した炭素繊維強化炭
素複合材料前駆体焼成時の膨れおよび層間剥離といった
不良を出さずに、高強度な炭素繊維強化炭素複合材料を
得るために、マトリクス樹脂の分解ガスを前駆体に損傷
を与えないように前駆体外へ放出することができる炭素
繊維強化炭素複合材料前駆体を提供することにある。
It is an object of the present invention to provide a high-strength carbon fiber reinforced carbon composite material without causing defects such as swelling and delamination during firing of the carbon fiber reinforced carbon composite material precursor described above. An object of the present invention is to provide a carbon fiber reinforced carbon composite precursor which can release a decomposition gas outside the precursor without damaging the precursor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明によれば、炭素繊維の連続長繊維と熱可塑性樹
脂製の連続長繊維とで構成された繊維束に熱硬化性樹脂
が含浸された炭素繊維強化炭素複合材料前駆体であっ
て、前記熱可塑性樹脂製繊維の繊維径は、前記炭素繊維
のそれの5倍以下であり、前記繊維束中の熱可塑性樹脂
製の繊維の割合は、全繊維の実質的体積に対し0.5〜
3体積%であることを特徴とする炭素繊維強化炭素複合
材料前駆体が提供される。
According to the present invention, in order to attain the above object, a thermosetting resin is added to a fiber bundle composed of continuous filaments of carbon fibers and continuous filaments made of a thermoplastic resin. The impregnated carbon fiber reinforced carbon composite material precursor, wherein the fiber diameter of the thermoplastic resin fiber is not more than 5 times that of the carbon fiber, and the fiber diameter of the thermoplastic resin fiber in the fiber bundle is The ratio is 0.5 to the substantial volume of all fibers.
There is provided a carbon fiber reinforced carbon composite precursor characterized by being 3% by volume.

【0007】本発明では、前記熱可塑性樹脂の溶融温度
が前記熱硬化性樹脂の硬化温度より高く、前記熱可塑性
樹脂の分解温度は、前記熱硬化性樹脂の分解温度未満で
ある炭素繊維強化炭素複合材料前駆体であることが好ま
しい。
In the present invention, the melting temperature of the thermoplastic resin is higher than the curing temperature of the thermosetting resin, and the decomposition temperature of the thermoplastic resin is lower than the decomposition temperature of the thermosetting resin. Preferably, it is a composite precursor.

【0008】本発明では、さらに熱可塑性樹脂製繊維を
含んだ繊維束は、その長手方向の少なくとも一端が前記
炭素繊維強化炭素複合材料前駆体の自由端面に露出して
いる炭素繊維強化炭素複合材料前駆体であることが好ま
しい。
In the present invention, the fiber bundle further containing a thermoplastic resin fiber is a carbon fiber reinforced carbon composite material having at least one longitudinal end exposed at a free end face of the carbon fiber reinforced carbon composite material precursor. It is preferably a precursor.

【0009】また、前記熱可塑性樹脂製繊維を含んだ繊
維束は、その長手方向の少なくとも一端が前記炭素繊維
強化炭素複合材料前駆体の自由端面に露出しているのが
好ましい。本発明での自由端面とは前駆体の側面を含む
前駆体の表面を意味する。
Preferably, at least one longitudinal end of the fiber bundle containing the thermoplastic resin fiber is exposed at a free end face of the carbon fiber reinforced carbon composite material precursor. The free end face in the present invention means the surface of the precursor including the side face of the precursor.

【0010】以下に本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0011】本発明において、炭素繊維強化炭素複合材
料前駆体の強化繊維素材となる炭素繊維としては、PA
N系炭素繊維を代表例として挙げることができるが、こ
れに限定するものではなく、連続長繊維束として通常利
用できるものであればよい。
In the present invention, the carbon fiber used as the reinforcing fiber material of the carbon fiber reinforced carbon composite material precursor is PA
N-type carbon fibers can be given as a typical example, but the present invention is not limited thereto, and any carbon fiber that can be generally used as a continuous long fiber bundle may be used.

【0012】また、本発明において前記繊維束を用いた
織布同士を接着し、マトリクス前駆体となるバインダー
として使用する熱硬化性樹脂としては、フェノール樹
脂、フラン樹脂、エポキシ樹脂などを挙げることができ
る。
In the present invention, examples of the thermosetting resin used as a binder for bonding woven fabrics using the fiber bundle and serving as a matrix precursor include a phenol resin, a furan resin, and an epoxy resin. it can.

【0013】本発明では前記炭素繊維の連続長繊維束中
に熱可塑性樹脂製の連続長繊維を含んでいる。前記熱可
塑性樹脂としては、ポリプロピレン、ポリエチレンなど
の焼成時に残炭のないものを用いる。また、この熱可塑
性樹脂の溶融温度と分解温度については、熱硬化性樹脂
の硬化温度より融点が高く、熱硬化性樹脂の分解温度よ
り分解温度の低いものが好ましい。これは、前記炭素繊
維強化炭素複合材料前駆体を成形する際、熱可塑性樹脂
製繊維が繊維の形状を維持していることが必要であり、
つぎにこの炭素繊維強化炭素複合材料前駆体を焼成する
際、熱硬化性樹脂よりも先に熱可塑性樹脂が分解して開
気孔を形成することが必要なためである。
In the present invention, the continuous continuous fiber bundle of carbon fibers contains continuous continuous fibers made of a thermoplastic resin. As the thermoplastic resin, a resin such as polypropylene or polyethylene having no residual carbon during firing is used. As for the melting temperature and the decomposition temperature of the thermoplastic resin, those having a melting point higher than the curing temperature of the thermosetting resin and lower than the decomposition temperature of the thermosetting resin are preferable. This means that when molding the carbon fiber reinforced carbon composite material precursor, it is necessary that the thermoplastic resin fibers maintain the shape of the fibers,
Next, when the carbon fiber reinforced carbon composite material precursor is fired, it is necessary that the thermoplastic resin decomposes to form open pores before the thermosetting resin.

【0014】この様な炭素繊維強化炭素複合材料前駆体
を焼成炭素化するに当たり、該熱可塑性樹脂製繊維の溶
融温度の手前から分解温度の直上までを充分緩やかに昇
温する過程を、焼成の初期段階、または前処理工程とし
て組み込む。これによって、硬化した熱硬化性樹脂の分
解温度より低温度領域で、該熱可塑性繊維を溶融および
分解させることにより連続的な開気孔を形成し、次の工
程または段階で発生する熱硬化性樹脂の分解ガスの抜け
道を確保する。この昇温パターンは、熱硬化性樹脂と熱
硬化性樹脂の組合せ、製品の形状などによって異なるた
め適宜設定する。
When such a carbon fiber reinforced carbon composite material precursor is carbonized by firing, the process of sufficiently slowly increasing the temperature from just before the melting temperature of the thermoplastic resin fiber to just above the decomposition temperature is called firing. Incorporation as an initial stage or as a pretreatment process. Thereby, in the temperature range lower than the decomposition temperature of the cured thermosetting resin, the thermoplastic fibers are melted and decomposed to form continuous open pores, and the thermosetting resin generated in the next step or step is formed. To secure the escape route for cracked gas. This heating pattern varies depending on the combination of the thermosetting resin and the thermosetting resin, the shape of the product, and the like, and is appropriately set.

【0015】また、前記熱可塑性樹脂製繊維の径は、炭
素繊維強化炭素複合材料の欠陥を防止するため、前記炭
素繊維の5倍以下とする。熱可塑性樹脂製繊維の径が5
倍を超えると、熱可塑性樹脂製繊維が分解してできた開
気孔自身が欠陥として作用し、焼成完了後の炭素繊維強
化炭素複合材料の強度低下の原因となるためである。
Further, the diameter of the thermoplastic resin fiber is not more than five times the carbon fiber in order to prevent defects of the carbon fiber reinforced carbon composite material. Thermoplastic resin fiber diameter is 5
If it exceeds twice, the open pores themselves formed by decomposition of the thermoplastic resin fibers will act as defects, causing a decrease in the strength of the carbon fiber reinforced carbon composite material after the completion of firing.

【0016】本発明において前記繊維束中の熱可塑性樹
脂製繊維の割合は、0.5〜3体積%とする。この割合
が0.5%未満であると、十分なガス抜け孔が確保でき
ず、3%超では強化繊維である炭素繊維の体積含有率を
低くすることになるため、高強度な炭素繊維強化炭素複
合材料を製造するには不利となる。前記複数の繊維束
は、そのまま、または織布、不織布とすることができ
る。
In the present invention, the ratio of the thermoplastic resin fibers in the fiber bundle is 0.5 to 3% by volume. If this ratio is less than 0.5%, sufficient gas vent holes cannot be secured, and if it exceeds 3%, the volume content of the carbon fiber as the reinforcing fiber is reduced, so that high-strength carbon fiber reinforced This is disadvantageous for producing carbon composite materials. The plurality of fiber bundles can be used as is, or a woven or nonwoven fabric.

【0017】本発明の炭素繊維強化炭素複合材料前駆体
において、連続長炭素繊維の強化形態は、織布の積層、
またはフイラメントワインディングなどを用いるのが好
ましい。これは、全ての繊維束の長手方向の少なくとも
一端の断面が、必ず前記前駆体の自由端面に露出し、繊
維束の断面が外気と接していることが必要だからであ
る。もし、繊維束の両端とも前駆体内部に閉じ込めら
れ、繊維束の端面が外気と接触していないと、繊維束中
の熱可塑性樹脂が分解しても、分解ガスが前駆体外へ放
出することができなくなる。
In the carbon fiber reinforced carbon composite material precursor of the present invention, the continuous carbon fiber is reinforced by woven fabric lamination,
Alternatively, it is preferable to use filament winding or the like. This is because the cross section of at least one end in the longitudinal direction of all the fiber bundles must be always exposed to the free end face of the precursor, and the cross section of the fiber bundle needs to be in contact with the outside air. If both ends of the fiber bundle are confined inside the precursor and the end face of the fiber bundle is not in contact with the outside air, even if the thermoplastic resin in the fiber bundle decomposes, the decomposition gas may be released outside the precursor. become unable.

【0018】炭素繊維強化炭素複合材料前駆体の強化繊
維素材として炭素繊維の連続長繊維束中に、前記炭素繊
維と同等な繊維径の熱可塑性樹脂製の連続長繊維を0.
5〜3体積%の割合で含んでいる繊維束を用い、この炭
素繊維強化炭素複合材料前駆体を焼成することによっ
て、熱硬化性樹脂の分解が始まる以前にガスの抜け道を
用意することで、膨れや層間剥離のない良好で高強度な
炭素繊維強化炭素複合材料を得ることが出来る。
As a reinforcing fiber material of a carbon fiber reinforced carbon composite precursor, a continuous filament made of a thermoplastic resin having a fiber diameter equivalent to that of the carbon fiber is added to a continuous filament bundle of carbon fibers.
By firing the carbon fiber reinforced carbon composite material precursor using a fiber bundle containing 5 to 3% by volume, by preparing a gas passage before decomposition of the thermosetting resin starts, A good and high-strength carbon fiber reinforced carbon composite material without swelling or delamination can be obtained.

【0019】[0019]

【実施例】以下に本発明を実施例に基づき具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments.

【0020】(実施例1)フィラメント数1000本の
PAN系炭素繊維(東レ製トレカM40)のロービング
を3本用意し、この3本を同時に巻取ることでフィラメ
ント数3000本の連続長炭素繊維束を作製した。この
時、前記炭素繊維フィラメント各1000本に10本の
割合で合計30本、前記炭素繊維と同等な繊維径のポリ
プロピレン製フィラメントを同時に巻取った。これによ
り、全繊維の実質的体積に対し1体積%のポリプロピレ
ン製フィラメントを含んだ連続長炭素繊維束を準備し
た。
(Example 1) Three rovings of PAN-based carbon fiber (Toray Torayca M40, manufactured by Toray Co., Ltd.) having 1,000 filaments are prepared, and these three are simultaneously wound to form a continuous long carbon fiber bundle having 3000 filaments. Was prepared. At this time, a total of 30 polypropylene filaments having a fiber diameter equivalent to that of the carbon fibers were simultaneously wound at a ratio of 10 to 1000 for each of the carbon fiber filaments. Thus, a continuous long carbon fiber bundle containing 1% by volume of polypropylene filaments with respect to the substantial volume of all fibers was prepared.

【0021】この繊維束を使用した平織り織布を10c
m角に切断したものを、フェノール樹脂(群栄化学レジ
トップPL−2211、不揮発分58%)中に浸漬し、
ロールで搾りながら乾燥後の樹脂の目付量を炭素繊維と
の重量比で30%としたプリプレグを用意した。
A plain woven fabric using the fiber bundle is 10c.
The cut into m-squares is immersed in a phenolic resin (Gunei Chemical Regitop PL-2211, nonvolatile content 58%),
While squeezing with a roll, a prepreg was prepared in which the basis weight of the dried resin was 30% by weight with respect to the carbon fiber.

【0022】このプリプレグを10枚積層した後に、繊
維強化複合材料成形用オートクレーブを用いて常法によ
り雰囲気加圧5kg/cm2、温度はポリプロピレンの溶融温
度未満である150℃の条件で2時間保持し、炭素繊維
強化炭素複合材料前駆体を得た。この前駆体に、炭化焼
成工程の前処理として、窒素ガス雰囲気下のイナートオ
ーブンを用いて、5℃/hrの昇温速度で150℃から
前記フェノール樹脂の分解温度以下で、かつポリプロピ
レンの分解温度以上である230℃まで昇温し3時間保
持した。その後、窒素ガス雰囲気下、20℃/hrの昇
温速度で1000℃まで昇温し炭化することで、目的と
する炭素繊維強化炭素複合材料材を得た。この炭素繊維
強化炭素複合材料を切断し断面観察を行ない、膨れおよ
び層間割れがなく良好であることを確認した。また、3
点曲げ試験(スパン/厚み比、L/d=20)を実施し
た結果、平均で31Kg/mm2の曲げ強度を示した。
After laminating 10 prepregs, the pressure is kept at 5 kg / cm 2 at 150 ° C., which is lower than the melting temperature of polypropylene, by an ordinary method using an autoclave for molding a fiber reinforced composite material for 2 hours. Thus, a carbon fiber reinforced carbon composite material precursor was obtained. As a pretreatment of the carbonization firing step, the precursor is heated at a rate of 5 ° C./hr from 150 ° C. to a temperature not higher than the decomposition temperature of the phenolic resin, and a decomposition temperature of polypropylene, using an inert oven under a nitrogen gas atmosphere. The temperature was raised to 230 ° C. as described above and maintained for 3 hours. Thereafter, in a nitrogen gas atmosphere, the temperature was raised to 1000 ° C. at a temperature rising rate of 20 ° C./hr to carbonize, thereby obtaining a target carbon fiber reinforced carbon composite material. This carbon fiber reinforced carbon composite material was cut and observed for its cross section. It was confirmed that the carbon fiber reinforced carbon composite material was good without swelling and interlayer cracking. Also, 3
As a result of performing a point bending test (span / thickness ratio, L / d = 20), a bending strength of 31 kg / mm 2 was shown on average.

【0023】(比較例1)実施例1と同様の方法で連続
長炭繊維束を準備する際に、炭素繊維フィラメント各1
000本に50本の割合で合計150本、炭素繊維と同
等な繊維径のポリプロピレン製フィラメントを同時に巻
取った。これにより、全繊維の実質的体積に対し5体積
%のポリプロピレン製フィラメントを含んだ連続長炭素
繊維束を準備した。この繊維束を用いて、実施例1と同
様な方法で炭素繊維強化炭素複合材料前駆体を作製し、
実施例1と同様な方法で前処理および炭化を行ない、炭
素繊維強化炭素複合材料を得た。この炭素繊維強化炭素
複合材料を切断し断面観察を行い、膨れおよび層間割れ
がなく良好であることを確認した。しかし、3点曲げ試
験を実施した結果、平均で29Kg/mm2の曲げ強度を示し
た。
Comparative Example 1 When preparing a continuous long carbon fiber bundle in the same manner as in Example 1, each carbon fiber filament
A total of 150 filaments having a fiber diameter equivalent to that of the carbon fibers were wound at the same time at a ratio of 50 to 000. Thus, a continuous long carbon fiber bundle containing 5% by volume of polypropylene filaments with respect to the substantial volume of all fibers was prepared. Using this fiber bundle, a carbon fiber reinforced carbon composite material precursor was produced in the same manner as in Example 1,
Pretreatment and carbonization were performed in the same manner as in Example 1 to obtain a carbon fiber reinforced carbon composite material. This carbon fiber reinforced carbon composite material was cut and the cross section was observed, and it was confirmed that the carbon fiber reinforced carbon composite material was good without swelling and interlayer cracking. However, as a result of conducting a three-point bending test, it showed a bending strength of 29 kg / mm 2 on average.

【0024】(比較例2)実施例1と同様の方法で連続
長炭素繊維束を準備する際に、炭素繊維フィラメント各
1000本に1本の割合で合計3本、炭素繊維と同等な
繊維径のポリプロピレン製フィラメントを同時に巻取っ
た。これにより、全繊維の実質的体積に対し0.1体積
%のポリプロピレン製フィラメントを含んだ連続長炭素
繊維束を準備した。この繊維束を用いて、実施例1と同
様な方法で炭素繊維強化炭素複合材料前駆体を作製し、
実施例1と同様な方法で前処理および炭化を行い、炭素
繊維強化炭素複合材料を得た。この炭素繊維強化炭素複
合材料を切断し断面観察を行った結果、層間割れが板の
中心付近に観察された。
(Comparative Example 2) When preparing a continuous long carbon fiber bundle in the same manner as in Example 1, a total of three carbon fiber filaments, one for every 1,000 carbon fiber filaments, having a fiber diameter equivalent to that of carbon fiber At the same time. Thus, a continuous long carbon fiber bundle containing 0.1% by volume of polypropylene filaments with respect to the substantial volume of all fibers was prepared. Using this fiber bundle, a carbon fiber reinforced carbon composite material precursor was produced in the same manner as in Example 1,
Pretreatment and carbonization were performed in the same manner as in Example 1 to obtain a carbon fiber reinforced carbon composite material. As a result of cutting this carbon fiber reinforced carbon composite material and observing the cross section, interlayer cracking was observed near the center of the plate.

【0025】[0025]

【発明の効果】本発明は以上説明したように構成されて
いるの、膨れや層間割れのない高強度な炭素繊維強化炭
素複合材料を製造するための前駆体を得ることができ
る。また、炭素繊維強化炭素複合材料は一般に一次焼成
後に、高密度化を計るために緻密化処理を行うが、本発
明による炭素繊維強化炭素複合材料を緻密化する場合、
ガスの抜け道として連続気孔が材料内部にまで均一に存
在しているので、緻密化で容易に補填することできる。
このため、緻密化効果が十分に発揮され、高強度化に寄
与できる。
As described above, according to the present invention, it is possible to obtain a precursor for producing a high-strength carbon fiber reinforced carbon composite material free from blisters and interlayer cracks. In addition, the carbon fiber reinforced carbon composite material is generally subjected to a densification treatment in order to increase the density after primary firing, but when the carbon fiber reinforced carbon composite material according to the present invention is densified,
Since continuous pores are uniformly present inside the material as a gas passage, they can be easily filled by densification.
For this reason, the effect of densification is sufficiently exhibited, and it is possible to contribute to high strength.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/83 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/83

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維の連続長繊維と熱可塑性樹脂製の
連続長繊維とで構成された繊維束に熱硬化性樹脂が含浸
された炭素繊維強化炭素複合材料前駆体であって、 前記熱可塑性樹脂製繊維の繊維径は、前記炭素繊維のそ
れの5倍以下であり、 前記繊維束中の熱可塑性樹脂製の繊維の割合は、全繊維
の実質的体積に対し0.5〜3体積%であることを特徴
とする炭素繊維強化炭素複合材料前駆体。
1. A carbon fiber-reinforced carbon composite material precursor in which a thermosetting resin is impregnated into a fiber bundle composed of continuous filaments of carbon fibers and continuous filaments made of a thermoplastic resin, The fiber diameter of the thermoplastic resin fiber is 5 times or less that of the carbon fiber, and the ratio of the thermoplastic resin fiber in the fiber bundle is 0.5 to 3 volumes with respect to the substantial volume of all the fibers. % Of a carbon fiber reinforced carbon composite material precursor.
【請求項2】前記熱可塑性樹脂の溶融温度が前記熱硬化
性樹脂の硬化温度より高く、前記熱可塑性の分解温度
は、前記熱硬化性樹脂の分解温度未満である請求項1に
記載の炭素繊維強化炭素複合材料前駆体。
2. The carbon according to claim 1, wherein the melting temperature of the thermoplastic resin is higher than the curing temperature of the thermosetting resin, and the decomposition temperature of the thermoplastic resin is lower than the decomposition temperature of the thermosetting resin. Fiber reinforced carbon composite precursor.
【請求項3】前記熱可塑性樹脂製繊維を含んだ繊維束
は、その長手方向の少なくとも一端が前記炭素繊維強化
炭素複合材料前駆体の自由端面に露出している請求項1
または2に記載の炭素繊維強化炭素複合材料前駆体。
3. A fiber bundle containing said thermoplastic resin fiber, at least one end in the longitudinal direction of said fiber bundle is exposed to a free end face of said carbon fiber reinforced carbon composite material precursor.
Or the carbon fiber reinforced carbon composite precursor according to 2.
JP20111792A 1992-07-28 1992-07-28 Carbon fiber reinforced carbon composite precursor Expired - Fee Related JP3288433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20111792A JP3288433B2 (en) 1992-07-28 1992-07-28 Carbon fiber reinforced carbon composite precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20111792A JP3288433B2 (en) 1992-07-28 1992-07-28 Carbon fiber reinforced carbon composite precursor

Publications (2)

Publication Number Publication Date
JPH0648829A JPH0648829A (en) 1994-02-22
JP3288433B2 true JP3288433B2 (en) 2002-06-04

Family

ID=16435689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20111792A Expired - Fee Related JP3288433B2 (en) 1992-07-28 1992-07-28 Carbon fiber reinforced carbon composite precursor

Country Status (1)

Country Link
JP (1) JP3288433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663722B1 (en) 1998-03-25 2003-12-16 Daikin Industries, Ltd. Method of cleaning fluorine-containing rubber molded article for semiconductor production apparatuses and cleaned molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006336412A1 (en) * 2005-05-03 2007-08-02 Nanocomp Technologies, Inc. Nanotube composite materials and methods of manufacturing same
CN103640319A (en) * 2013-11-25 2014-03-19 宜兴市飞舟高新科技材料有限公司 Making method for carbon fiber composite board preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663722B1 (en) 1998-03-25 2003-12-16 Daikin Industries, Ltd. Method of cleaning fluorine-containing rubber molded article for semiconductor production apparatuses and cleaned molded article

Also Published As

Publication number Publication date
JPH0648829A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
US4321298A (en) Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
WO2006086167A1 (en) Carbon-carbon composite article manufactured with needled fibers
JPS6256103B2 (en)
US10336655B2 (en) Process for producing shaped bodies of carbon fiber reinforced carbon
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JPS6225094B2 (en)
JPH03150266A (en) Production of carbon/carbon composite material
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
JP3225098B2 (en) Carbon fiber reinforced carbon composite precursor
GB2112827A (en) Carbon fiber materials
US3796616A (en) Porous substrate for fibrous graphite structure produced by addition of degradable material
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPH052625B2 (en)
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH0517243A (en) Production of fiber reinforced ceramics
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material
JP3983401B2 (en) Method for producing molded body made of C / C material
JP3004777B2 (en) Method for producing precursor molded body for carbon fiber reinforced carbon composite material
JPH068215B2 (en) Manufacturing method of carbon fiber reinforced carbon material
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

LAPS Cancellation because of no payment of annual fees