JPS6286179A - Cylinder head for internal combustion engine made of cast iron - Google Patents

Cylinder head for internal combustion engine made of cast iron

Info

Publication number
JPS6286179A
JPS6286179A JP60228070A JP22807085A JPS6286179A JP S6286179 A JPS6286179 A JP S6286179A JP 60228070 A JP60228070 A JP 60228070A JP 22807085 A JP22807085 A JP 22807085A JP S6286179 A JPS6286179 A JP S6286179A
Authority
JP
Japan
Prior art keywords
valve
cylinder head
cast iron
inter
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228070A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Joji Miyake
譲治 三宅
Haratsugu Koyama
原嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60228070A priority Critical patent/JPS6286179A/en
Publication of JPS6286179A publication Critical patent/JPS6286179A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F2001/008Stress problems, especially related to thermal stress

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To considerably decrease the cracks to be generated in the inter-valve parts between the intake valve and exhaust valve as well as inter-valve-chamber parts between the intake and exhaust valves and chamber hole of a cylinder head by forming alloyed layers contg. aluminum and silicon in the above- mentioned inter-valve parts. CONSTITUTION:The alloyed layer 10 is formed on the surfaces in the inter-valve parts 5 and inter-valve-chamber parts 6, 7 of the cylinder head 1 by fixing aluminum powder 9 into grooves 8 and using a TIG arc, etc. The alloyed layer 10 is welded to >=0.5mm depth and contains 0.1-10wt% aluminum. The alloyed layer is instantaneously cooled by the cooling power of the cylinder head 1 and is solidified without using special means. The fine structure is thus obtd. The cracks to be generated in the inter-valve parts, etc., are considerably decreased and the cost is reduced by the above-mentioned operation. The machining is made easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳鉄製内燃機関用シリンダヘッドに関し、詳し
くは鋳鉄製シリンダヘッドの吸気弁と排気弁の間の弁間
部並びに吸気弁とチャンバ穴の間および排気弁とチャン
バ穴の間の弁−チャンバ間部を改良した鋳鉄製内燃機関
用シリンダへノドに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cast iron cylinder head for an internal combustion engine, and more specifically to a valve gap between an intake valve and an exhaust valve of a cast iron cylinder head, as well as an intake valve and a chamber hole. This invention relates to a cast iron cylinder throat for an internal combustion engine that has an improved valve-chamber space between the exhaust valve and the chamber hole.

〔従来の技術〕[Conventional technology]

近年、自動車のエンジンに対する要求性能はますます高
度なものとなってきており、運転条件が過酷なものとな
っている。この結果、鋳鉄製シリンダヘッドにおいて、
他の部位より比較的肉薄とされている鋳鉄製シリンダヘ
ッドの吸気弁と排気弁の間の弁間部並びに吸気弁とチャ
ンバ穴の間および排気弁とチャンバ穴の間の弁−チャン
バ間部に、燃焼による熱応力に起因して亀裂が発生し易
いという問題があった。
In recent years, performance requirements for automobile engines have become increasingly sophisticated, and driving conditions have become harsher. As a result, in cast iron cylinder heads,
The valve area between the intake valve and exhaust valve of the cast iron cylinder head, which is relatively thinner than other parts, and the valve-chamber area between the intake valve and the chamber hole and between the exhaust valve and the chamber hole. However, there was a problem in that cracks were likely to occur due to thermal stress caused by combustion.

従来、かかる問題に対処するために亀裂の発生し易い部
位にFe−Ni合金等の延展性、耐熱性に優れた材料を
肉盛(溶接)、ろう付は等により形成し、この延展性、
耐熱性に優れた材料により熱応力を吸収して亀裂を防止
する方法が提案されている(例えば、特許第51682
9号(特公昭39−18230号)、特開昭58−62
344号、鋳物便覧等)。
Conventionally, in order to deal with this problem, materials with excellent ductility and heat resistance, such as Fe-Ni alloy, were formed by overlaying (welding), brazing, etc. in areas where cracks are likely to occur, and this ductility,
A method of preventing cracks by absorbing thermal stress using materials with excellent heat resistance has been proposed (for example, Japanese Patent No. 51682
No. 9 (Special Publication No. 39-18230), JP-A-58-62
No. 344, Foundry Handbook, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来技術では、使用するFe−Ni合金
のN i /1)度が高いため高コストとなるばかりか
、Fe−Ni合金自体が粘いため機械加工が困難となり
、刃具寿命が短くなるという問題がある。
By the way, in the above-mentioned conventional technology, not only is the Fe-Ni alloy used high in Ni/1), resulting in high costs, but also the Fe-Ni alloy itself is sticky, making machining difficult and shortening the tool life. There's a problem.

また、Fe−Ni合金の肉盛を行う際に、弁間部、弁−
チャンバ間部のごく狭い範囲しか肉盛しない場合には、
母材である鋳鉄と肉盛合金であるFe−Ni合金の熱膨
張率の違い等に起因して肉盛部と母材の境界部に亀裂が
発生する。このため、従来は弁間部、弁−チャンバ間部
を含む広い範囲を肉盛りすることにより、この問題に対
処している。従って、この場合にもコスト高となるとい
う問題がある。
In addition, when overlaying Fe-Ni alloy, it is necessary to
If only a narrow area between the chambers is to be overlaid,
Cracks occur at the boundary between the build-up portion and the base metal due to the difference in thermal expansion coefficient between cast iron, which is the base material, and Fe-Ni alloy, which is the build-up alloy. Therefore, conventionally, this problem has been dealt with by building up a wide area including the valve gap and the valve-chamber gap. Therefore, in this case as well, there is a problem of high cost.

更に、シリンダヘッドを予熱しないと肉盛性が悪く、シ
リンダヘッドを予熱して肉盛した場合には、予熱工程を
余分に必要し、また場合により焼鈍を必要とするという
問題がある。
Furthermore, if the cylinder head is not preheated, build-up properties are poor, and if the cylinder head is preheated and built-up, an extra preheating step is required, and in some cases, annealing is required.

そこで、従来と同程度の亀裂防止効果を維持しつつ、製
造性が良く、かつ低コストにする工夫が望まれていた。
Therefore, it has been desired to develop a method that maintains the same level of crack prevention effect as conventional methods, has good manufacturability, and can be made at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題は、次に述べる本発明の鋳鉄製内燃機関用シリ
ンダヘッドによって解決される。
The above problem is solved by the cast iron cylinder head for internal combustion engines of the present invention, which will be described below.

即ち、本発明の鋳鉄製内燃機関用シリンダヘッドは、鋳
鉄製シリンダヘッドの吸気弁と排気弁の間の弁間部並び
に吸気弁とチャンバ穴の間および排気弁とチャンバ穴の
間の弁−チャンバ間部に、表面から0.5 ax以上の
深さにわたって、アルミニウム、シリコンのうち少なく
とも一方が合計で0゜1重量%〜10重量%含有された
合金化層が形成されていることを特徴としている。
That is, the cast iron cylinder head for an internal combustion engine of the present invention has a valve gap between the intake valve and the exhaust valve of the cast iron cylinder head, and a valve-chamber area between the intake valve and the chamber hole and between the exhaust valve and the chamber hole. An alloyed layer containing a total of 0.1% to 10% by weight of at least one of aluminum and silicon is formed in the interspace to a depth of 0.5 ax or more from the surface. There is.

以下に、本発明を更に具体的に説明する。The present invention will be explained in more detail below.

本発明において、シリンダヘッド材料としては鋳鉄を使
用する。かかる鋳鉄として、JIS  Fe20、Fe
25、FC30等を用いることができる。
In the present invention, cast iron is used as the cylinder head material. As such cast iron, JIS Fe20, Fe
25, FC30, etc. can be used.

シリンダヘッドの弁間部等には、合金化層が形成される
。この合金化層は0.51m以上設けないと十分な効果
が得られない。合金化層は、鋳鉄にアルミニウム(AN
)、シリコン(Si)のうち少なくとも一方を重量%(
以下、%はすべで重量%)で合計0.1%〜10%含有
させたものである。
An alloyed layer is formed in the valve space of the cylinder head. A sufficient effect cannot be obtained unless this alloyed layer is provided for a length of 0.51 m or more. The alloying layer is aluminum (AN) on cast iron.
), at least one of silicon (Si) in weight% (
Hereinafter, all percentages are % by weight), and the total content is 0.1% to 10%.

ここで、アルミニウム、シリコンを添加するのは、フェ
ライト地を増加させることにより亀裂の発生を防止する
ためであり、その含有量を0.1%〜10%としたのは
、0.1%未満では十分にフェライト化を促進できず所
望の亀裂発生防止効果が得られないためであり、10%
を超えると逆に脆くなるからである。
Here, the reason why aluminum and silicon are added is to prevent the occurrence of cracks by increasing the ferrite base, and the content of 0.1% to 10% is less than 0.1%. This is because ferrite formation cannot be sufficiently promoted and the desired crack prevention effect cannot be obtained.
This is because if it exceeds this, it becomes brittle.

合金化の手段としては、高密度エネルギ源を用いる。即
ち、シリンダヘッド上の合金化処理を施す弁間部等の部
分に、アルミニウム、シリコンを粉末、圧粉体、スラリ
ー等の適宜形状で塗布あるいは載置更には溝を加工して
その中に充填した後、当該個所に高密度エネルギを照射
することにより瞬時に鋳鉄とアルミニウム、シリコンの
溶融、合金化を行う。このとき、合金化層は、シリンダ
ヘッドの冷II能により瞬時に冷却され、特別な冷却手
段を用いることなく凝固する。この結果、合金化層は十
へめで微細な組織となり、優れた機械的性質を備えるに
至る。なお、高密度エネルギ源としては、レーザ、電子
ビーム、プラズマアーク、TrGアーク等を用いること
ができる。
A high density energy source is used as a means for alloying. In other words, aluminum or silicon is coated or placed in an appropriate form such as powder, green compact, or slurry on the parts of the cylinder head that are to be alloyed, such as between the valves, and then a groove is formed and filled into the space. After that, the cast iron, aluminum, and silicon are instantly melted and alloyed by irradiating the area with high-density energy. At this time, the alloyed layer is instantly cooled by the cooling function of the cylinder head and solidified without using any special cooling means. As a result, the alloyed layer has a fine grained structure and has excellent mechanical properties. Note that a laser, an electron beam, a plasma arc, a TrG arc, etc. can be used as the high-density energy source.

〔作用〕[Effect]

本発明の鋳鉄製内燃機関用シリンダヘッドによれば、従
来、熱応力等により亀裂等の不具合が発生し易かった弁
間部と弁−チャンバ間部の表面部が、アルミニウム、シ
リコンを所定量添加したことによりフェライト地に富む
合金化層となる。従来のように、基地がパーライトの場
合には、燃焼によりシリンダヘッドの弁間部や弁−チャ
ンバ間部が高温となることにより、徐々にセメンタイト
が黒鉛とフェライトに分解し、このとき体積が膨張する
。そして、かかる膨張が弁間部等の熱応力を太き(し亀
裂発生の原因をなすと考えられる。
According to the cast iron cylinder head for internal combustion engines of the present invention, aluminum and silicon are added in predetermined amounts to the surface areas between the valves and between the valves and the chamber, where defects such as cracks were conventionally prone to occur due to thermal stress, etc. This results in an alloyed layer rich in ferrite. As in the past, when the base is pearlite, the combustion causes high temperatures in the area between the valves and the valve-chamber of the cylinder head, which gradually decomposes the cementite into graphite and ferrite, causing the volume to expand. do. It is thought that this expansion increases thermal stress in the valve space, etc., and causes cracks to occur.

しかるに、本発明のように、基地のすべであるいは大部
分がフェライトとなると、フェライトにはパーライトの
ような問題はなく、かつ靭性が高いため、弁間部等に発
生する熱応力が吸収、緩和される。この結果、弁間部、
弁−チャンバ間部の亀裂の発生が大幅に低減される。
However, as in the present invention, when all or most of the base is made of ferrite, ferrite does not have the problems of pearlite and has high toughness, so it absorbs and alleviates the thermal stress that occurs in the valve gap etc. be done. As a result, the intervalvular area,
The occurrence of cracks in the valve-chamber region is significantly reduced.

〔実施例] 次に、本発明の実施例を図面を参考にして説明する。〔Example] Next, embodiments of the present invention will be described with reference to the drawings.

(第1実施例) 第1実施例として、合金化層の添加元素にアルミニウム
を使用した例を示す。
(First Example) As a first example, an example will be shown in which aluminum is used as an additive element in the alloyed layer.

ここで、第1図は本発明の第1実施例に係る鋳鉄製内燃
機関用シリンダヘッドの要部を示す概略構成図、第2図
は本発明の第1実施例に係る鋳鉄製内燃機関用シリンダ
ヘッドの弁間部の合金化処理工程を示す工程図、第3図
は本発明の第1実施例で得られた鋳鉄製内燃機関用シリ
ンダヘッドの弁間部の合金化層の金属組織を示す顕微鏡
写真(X 400倍)である。
Here, FIG. 1 is a schematic configuration diagram showing the main parts of a cylinder head for a cast iron internal combustion engine according to a first embodiment of the present invention, and FIG. FIG. 3 is a process diagram showing the alloying process of the valve gap of a cylinder head, and FIG. This is a micrograph (x400x) shown.

シリンダヘッドの材料として、普通鋳鉄(JIS  F
e12)に脱酸剤としてセリウム(Ce)を0.02%
添加したものを溶解し、砂型鋳造法により第1図に要部
の概要を示すディーゼルエンジン用シリンダヘッド粗形
材lを鋳造した。第1図において、2はインテークボー
ト(吸気口)、3はエキゾーストボート(排気口)、4
はチャンバ穴である。そして、インテークボート2とエ
キゾーストボート3の間のハツチングで示した部分が弁
間部5であり、インテークボート2とチャンバ穴4の間
およびエキゾーストボート3とチャンバ穴4の間のハン
チングで示した部分が弁−チャンバ間部6.7である。
Ordinary cast iron (JIS F
e12) with 0.02% cerium (Ce) as a deoxidizing agent.
The added material was melted and a rough shaped cylinder head l for a diesel engine, the main parts of which are shown in FIG. 1, was cast by sand casting. In Figure 1, 2 is the intake boat (intake port), 3 is the exhaust boat (exhaust port), and 4
is the chamber hole. The part shown by hatching between the intake boat 2 and the exhaust boat 3 is the intervalve part 5, and the part shown by the hatching between the intake boat 2 and the chamber hole 4 and between the exhaust boat 3 and the chamber hole 4. is the valve-chamber section 6.7.

この弁間部5と弁−チャンバ間部6.7に合金化処理を
施した。即ち、第2図(a)(第1図のA−へ断面に相
当)に示すように、弁間部5 (説明の便宜上、弁間部
の合金化処理について説明するが、弁−チャンバ間部も
同様に合金化処理を行う)に、幅5 tm、長さ20n
、深さ0.5 m■の溝8を形成する。次いで、粘着剤
としてポリビニルアルコール(PVA)を用い、第2図
(b)に示すように、アルミニウム粉末9を1l18内
に固定した。
Alloying treatment was performed on the inter-valve portion 5 and the valve-chamber portion 6.7. That is, as shown in FIG. 2(a) (corresponding to the cross section A- in FIG. 5 tm in width and 20 n in length.
, a groove 8 having a depth of 0.5 m is formed. Next, using polyvinyl alcohol (PVA) as an adhesive, aluminum powder 9 was fixed in 1l18, as shown in FIG. 2(b).

続いて、TIGアークによりアルミニウム粉末と母材で
ある鋳鉄の合金化を行った。このとき、TICアークに
よる合金化処理は、3.2 mm径のタングステン電極
棒を用い、シールドガスとしてアルゴンガスを処理部に
151/分の割で供給しながら行った。処理条件として
は、ピーク電流を220A、ベース電流を190Aとし
、パルス時間を0.5秒とすると共に、アーク長を2鶴
とした。
Subsequently, aluminum powder and cast iron as a base material were alloyed by TIG arc. At this time, the alloying treatment by TIC arc was performed using a 3.2 mm diameter tungsten electrode rod while supplying argon gas as a shielding gas to the treatment section at a rate of 151/min. The processing conditions were a peak current of 220 A, a base current of 190 A, a pulse time of 0.5 seconds, and an arc length of 2.

そして、TIGI−−チ速度を1.5酊/秒とし、TI
 G l−−チをその移動方向と垂直な方向に51m幅
のウィービングを行いつつ処理を行った。この結果、第
2図(C)に示すように、弁間部5は表面から平均3N
の深さまで溶融され、合金化層10が形成された。
Then, the TIGI speed is set to 1.5/sec, and the TIGI
The treatment was carried out while weaving the Gl--chi to a width of 51 m in a direction perpendicular to its moving direction. As a result, as shown in FIG. 2(C), the valve gap 5 is 3N on average from the surface
The alloyed layer 10 was formed by melting to a depth of .

その後、第2図(d)に示すように、機械加工により仕
上げを行い、最終製品としてのシリンダへソドAを得た
Thereafter, as shown in FIG. 2(d), finishing was performed by machining to obtain a cylinder A as a final product.

なお、第3図は本実施例で得られたシリンダヘッドにお
ける耐久試験後の弁間部5の合金化層10の金属組織を
示す顕微鏡写真である。この第3図において、黒い部分
が黒鉛であり、地はフェライトである。また、合金化層
10のEPMΔ分析を行ったところ、アルミニウムン;
度は2.8%であった。
In addition, FIG. 3 is a micrograph showing the metal structure of the alloyed layer 10 of the intervalve part 5 after the durability test in the cylinder head obtained in this example. In this Figure 3, the black part is graphite and the base is ferrite. Further, when EPMΔ analysis of the alloyed layer 10 was performed, aluminum;
The degree was 2.8%.

(第2実施例) 第2実施例として合金化層の添加元素にシリコンを用い
た例を示す。
(Second Example) As a second example, an example will be shown in which silicon is used as an additive element in the alloyed layer.

第1実施例において、合金化層の添加元素としてアルミ
ニウムの代わりにシリコンを用いたことを除き、他は実
質的に第1実施例と同様にしてシリンダヘッドBを製造
した。
In the first example, a cylinder head B was manufactured in substantially the same manner as in the first example except that silicon was used instead of aluminum as an additive element of the alloyed layer.

このシリンダヘッドBの合金化層のEPMA分析を行っ
たところ、シリコン濃度は2.4%であった。
EPMA analysis of the alloyed layer of this cylinder head B revealed that the silicon concentration was 2.4%.

(第3実施例) 第3実施例として合金化層の添加元素にアルミニウムと
シリコンを用いた例を示す。
(Third Example) As a third example, an example will be shown in which aluminum and silicon are used as additive elements of the alloyed layer.

第1実施例において、合金化層の添加元素としてアルミ
ニウムの代わりにアルミニウムとシリコンの混合粉末を
用いたことを除き、他は実質的に第1実施例と同様にし
てシリンダヘッドCを製造した。
In the first example, a cylinder head C was manufactured in substantially the same manner as in the first example except that a mixed powder of aluminum and silicon was used instead of aluminum as an additive element in the alloyed layer.

このシリンダヘッドCの合金化層のEPMA分折を行っ
たところ、アルミニウム濃度は1.1%、シリコン濃度
は1.4%であった。
EPMA analysis of the alloyed layer of this cylinder head C revealed that the aluminum concentration was 1.1% and the silicon concentration was 1.4%.

(第1比較例) 第1実施例において、シリンダヘッド粗形材1の弁間部
5および弁−チャンバ間部6.7に合金化処理を行うこ
となく、そのまま機械加工により最終製品に仕上げたこ
と以外、他は実質的に第1実施例と同様にしてシリンダ
へラドDを製造した。
(First Comparative Example) In the first example, the valve-to-valve portion 5 and the valve-chamber portion 6.7 of the cylinder head rough profile 1 were not subjected to alloying treatment, and were machined into the final product as they were. Other than this, Cylinder Rad D was manufactured in substantially the same manner as in the first example.

(第2比較例) 第1実施例と同様にしてディーゼルエンジン用シリンダ
ヘッド粗形材1を鋳造した。得られたシリンダへラド粗
形材1の弁間部5と弁−チャンバ間部6.7に幅10w
j、深さ4nの溝を加工し、亀裂防止と肉盛性の改善の
ためシリンダヘッド粗形材1を450℃に予熱した後、
鉄−ニッケル合金棒(Fe−50%Ni合金)を用いて
、酸素−アセチレン炎で溝を埋めるように肉盛を行った
(Second Comparative Example) A cylinder head rough profile 1 for a diesel engine was cast in the same manner as in the first example. A width of 10 w is provided between the valve part 5 and the valve-chamber part 6.7 of the obtained cylinder rough profile 1.
j. After machining a groove with a depth of 4n and preheating the cylinder head rough profile 1 to 450°C to prevent cracking and improve build-up properties,
Using an iron-nickel alloy rod (Fe-50%Ni alloy), welding was performed so as to fill the groove with oxygen-acetylene flame.

次いで、600℃で3時間保持して歪取りのための焼鈍
を行い、その後、肉盛部の厚さが2nとなるように機械
加工してシリンダヘッドEを得た。
Next, it was held at 600° C. for 3 hours to perform annealing to remove strain, and then was machined so that the thickness of the built-up portion was 2n to obtain a cylinder head E.

(評価) 上記実施例および比較例で得られたシリンダヘッドA−
Eを、それぞれエンジンに組み付けて耐久試験を行った
。耐久試験は実機運転時における全負荷状態で4900
rpmおよび無負荷状態で1)00Orpという条件で
行った。
(Evaluation) Cylinder head A- obtained in the above examples and comparative examples
E was assembled into an engine and a durability test was conducted. Durability test is 4900 at full load during actual machine operation.
The test was carried out under the conditions of 1) 00 Orp at rpm and no load.

この結果、第1比較例で得られたシリンダヘッドDは、
300時間以内で弁間部および弁−チャンバ間部に亀裂
が発生するのが観察されたが、実施例と第2比較例で得
られたシリンダヘッドA、B、C,Eは、それぞれ50
0時間の連続運転を行っても弁間部等になんら異常は認
められなかった。
As a result, the cylinder head D obtained in the first comparative example was
It was observed that cracks were generated in the valve gap and the valve-chamber gap within 300 hours, but the cylinder heads A, B, C, and E obtained in the example and the second comparative example each
Even after 0 hours of continuous operation, no abnormality was observed in the valve gap, etc.

また、本実施例において、合金化層を形成する範囲は、
第2比較例のFe−Ni合金を肉盛する場合の約1/3
であった。
In addition, in this example, the range in which the alloyed layer is formed is as follows:
Approximately 1/3 of the case of overlaying the Fe-Ni alloy of the second comparative example
Met.

以上、本発明の特定の実施例について説明したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲内において種々の実施態様を包含するものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes various embodiments within the scope of the claims.

例えば、実施例ではディーゼルエンジン用シリンダヘッ
ドに本発明を適用した例を示したが、ガソリンエンジン
用シリンダヘッドにも同mに適用することができる。
For example, in the embodiment, an example was shown in which the present invention was applied to a cylinder head for a diesel engine, but it can also be applied to a cylinder head for a gasoline engine.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の鋳鉄製内燃機関用シリンダヘッドに
よれば、以下の効果を奏する。
As described above, the cast iron cylinder head for an internal combustion engine of the present invention provides the following effects.

(イ)シリンダヘッドの弁間部および弁−チャンバ間部
の表面のフェライト化が促進されるため、弁間部等にお
ける亀裂の発生が大幅に低減される。
(a) Since the surface of the valve gap and the valve-chamber gap of the cylinder head is promoted to become ferrite, the occurrence of cracks in the valve gap and the like is significantly reduced.

(ロ)従来のように、高価で粘いFe−Ni合金を大量
にかつ広範囲に使用することがないため、低コスト化が
図れると共に、合金化処理後の機械加工が容易となる。
(b) Unlike conventional methods, expensive and sticky Fe-Ni alloys are not used in large quantities and over a wide range, so costs can be reduced and machining after alloying treatment becomes easier.

(ハ)従来の肉盛のように、シリンダヘッドを予熱する
必要がないため、省エネが図れる。
(c) Unlike conventional overlays, there is no need to preheat the cylinder head, so energy can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る鋳鉄製内燃機関用シ
リンダヘッドの要部を示す概略構成図、第2図は本発明
の第1実施例に係る鋳鉄製内燃機関用シリンダヘッドの
弁間部の合金化処理工程を示す工程図、 第3図は本発明の第1実施例で得られた鋳鉄製内燃機関
用シリンダヘッドの弁間部の合金化層の金属組織を示す
顕微鏡写真(X 400倍)である。 ■・・−一−−−シリンダヘッド粗形材2・−・−・−
・インテークボート 3−−−−−−一エキシーストボート 4−・−・チャンバ穴 5−・・−・−・弁間部 6.7−・・・−弁−チャンバ間部 8・−・−溝 9−−−一・−アルミニウム粉末 10−・・−・・−合金化層 出願人  トヨタ自動車株式会社 第1図 第3図 (X400) 第2図
FIG. 1 is a schematic configuration diagram showing the main parts of a cast iron cylinder head for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing the main parts of a cast iron cylinder head for an internal combustion engine according to a first embodiment of the present invention. FIG. 3 is a process diagram showing the alloying treatment process of the valve gap. FIG. 3 is a micrograph showing the metal structure of the alloyed layer in the valve gap of the cast iron cylinder head for an internal combustion engine obtained in the first embodiment of the present invention. (X 400 times). ■・・−1−−−Cylinder head rough profile 2・−・−・−
・Intake boat 3---- Exhaust boat 4---Chamber hole 5------Valve space 6.7---Valve-chamber space 8------ Groove 9 --- Aluminum powder 10 --- Alloyed layer Applicant: Toyota Motor Corporation Figure 1 Figure 3 (X400) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)鋳鉄製シリンダヘッドの吸気弁と排気弁の間の弁
間部並びに吸気弁とチャンバ穴の間および排気弁とチャ
ンバ穴の間の弁−チャンバ間部に、表面から0.5mm
以上の深さにわたって、アルミニウム、シリコンのうち
少なくとも一方が合計で0.1重量%〜10重量%含有
された合金化層が形成されていることを特徴とする鋳鉄
製内燃機関用シリンダヘッド。
(1) 0.5 mm from the surface of the cast iron cylinder head between the valves between the intake valve and the exhaust valve, between the intake valve and the chamber hole, and between the exhaust valve and the chamber hole.
A cast iron cylinder head for an internal combustion engine, characterized in that an alloyed layer containing a total of 0.1% to 10% by weight of at least one of aluminum and silicon is formed over the above depth.
JP60228070A 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron Pending JPS6286179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228070A JPS6286179A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228070A JPS6286179A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron

Publications (1)

Publication Number Publication Date
JPS6286179A true JPS6286179A (en) 1987-04-20

Family

ID=16870720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228070A Pending JPS6286179A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron

Country Status (1)

Country Link
JP (1) JPS6286179A (en)

Similar Documents

Publication Publication Date Title
JPH0258444B2 (en)
US8241559B2 (en) Steel material having a high silicon content for producing piston rings and cylinder sleeves
US20090151163A1 (en) Method for Manufacturing Cast Iron Member, Cast Iron Member and Vehicular Engine
JPH0356832B2 (en)
JP2000511983A (en) Movable wall member in the form of an exhaust valve spindle or piston of an internal combustion engine
JPH08246821A (en) Valve seat
US4483286A (en) Piston
US20020026966A1 (en) Surface treating method, and treating member therefor
JP2006516313A (en) Valve seat and method for manufacturing the valve seat
CN113084457B (en) Metallographic strengthening manufacturing method of piston
US3170452A (en) Valve seat
US5507258A (en) Pistons for internal combustion engines
JPH03115587A (en) Production of remelted cam shaft
US5803037A (en) Joined type valve seat
JPS6286179A (en) Cylinder head for internal combustion engine made of cast iron
JPH0577042A (en) Method for reforming surface of cast iron parts
JP2920004B2 (en) Cast-in composite of ceramics and metal
EP0819836B1 (en) a cylinder head and a method for producing a valve seat
JPS6286178A (en) Cylinder head for internal combustion engine made of cast iron
JP3416829B2 (en) Cylinder head and method of manufacturing the same
JPS6287654A (en) Cast iron cylinder head for internal combustion engine and manufacture thereof
JPS6286177A (en) Cylinder head for internal combustion engine made of cast iron and its production
JP2940988B2 (en) Remelt treatment method for cylinder head
JPH051622A (en) Al alloy piston for internal combustion engine and its manufacture
JPH01177440A (en) Cylinder head of aluminum alloy make