JPH03115587A - Production of remelted cam shaft - Google Patents

Production of remelted cam shaft

Info

Publication number
JPH03115587A
JPH03115587A JP24910689A JP24910689A JPH03115587A JP H03115587 A JPH03115587 A JP H03115587A JP 24910689 A JP24910689 A JP 24910689A JP 24910689 A JP24910689 A JP 24910689A JP H03115587 A JPH03115587 A JP H03115587A
Authority
JP
Japan
Prior art keywords
cam
remelted
residual stress
shaft
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24910689A
Other languages
Japanese (ja)
Inventor
Katsuya Ouchi
大内 勝哉
Yoshifumi Yamamoto
義史 山本
Shigezo Osaki
茂三 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP24910689A priority Critical patent/JPH03115587A/en
Publication of JPH03115587A publication Critical patent/JPH03115587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the tensile residual stress in a remelted part and to form a remelted chilled layer excellent in wear resistance by forming plural grooves on the surface of a cam shaft, adding an alloying powder, as required, remelting the shaft with high heat energy and solidifying the shaft. CONSTITUTION:A groove 3 having 1mm width and depth, for example, is formed at intervals of 6mm from the cam nose 2a at the cam part 2 of the cast-iron cam shaft 1 to the ramp part 2b. A sheet 4 of the kneaded product of an acrylic resin diluted with acetone and the <=100-mesh powder of the alloy contg., by weight, 2.5-15.0% Mo, 0.5-3.0% P, <10% Cr, 1.5-5.0% C and the balance Fe is fixed on the surface. The sheet 4 is remelted by the arc from the electrode 6 of a TIG torch 5 in a gaseous N2 atmosphere to form a high-hardness chilled layer excellent in wear resistance on the cam part, and then the surface is ground into a smooth surface 14a. The tensile residual stress is interrupted by the groove 3 and minimized, and the service life of the cam shaft is not shortened even if the cam part 2 is abnormally consumed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は再溶融法により表面硬化させる再溶融カムシャ
フトの製造方法に関し、特に高出力エンジンに使用され
るカムシャフトの耐摩耗性、耐ピツチング性の向上を図
った再溶融カムシャフトの製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a remelted camshaft whose surface is hardened by a remelting method, and in particular to a method for manufacturing a remelted camshaft that hardens the surface by a remelting method, and in particular improves the wear resistance and pitting resistance of camshafts used in high-output engines. The present invention relates to a method of manufacturing a remelted camshaft with improved properties.

(従来の技術) 近年エンジンの出力は急速に高出力化しており、この高
出力化に伴い、カムシャフトのカム部には、より高い面
圧が加わるようになってきている。
(Prior Art) Engine output has been rapidly increasing in recent years, and with this increase in output, higher surface pressure is being applied to the cam portion of the camshaft.

このため、カム部の耐摩耗性、耐熱性、耐腐食性等の物
性を向上さ、せるべく、カムシャフトは従来、次のよう
な方法にて製造されていた。
For this reason, in order to improve the physical properties of the cam portion, such as wear resistance, heat resistance, and corrosion resistance, camshafts have conventionally been manufactured by the following method.

(1)カム部を形成する金属基材の表面層を、レーザビ
ーム、電子ビーム等のビーム熱エネルギやTIG溶接等
のアーク熱エネルギ等で再溶融して硬化させ、金属基材
表面に耐摩耗性合金チル層を形成する方法。
(1) The surface layer of the metal base material that forms the cam part is remelted and hardened using beam heat energy such as a laser beam or electron beam, or arc heat energy such as TIG welding, so that the surface of the metal base material has wear resistance. Method of forming a chilled alloy layer.

(2)カム部を形成する金属基材の表面に、高合金化用
の金属粉末を、粉末のまま供給したり、溶媒に分散させ
てコーティングしたりあるいはバインダーでシート化し
て貼付するかした後、これら高合金化用の金属粉末と共
に金属基材表面を、レーザビーム、電子ビーム等のビー
ム熱エネルギやTIG溶接等のアーク熱エネルギ等で再
溶融し、金属基材表面に耐摩耗性高合金チル層を形成す
る方法。
(2) After applying high-alloying metal powder to the surface of the metal base material that forms the cam part, by supplying it as a powder, dispersing it in a solvent and coating it, or forming it into a sheet with a binder and pasting it. The surface of the metal base material is remelted together with these metal powders for high alloying using beam heat energy such as a laser beam or electron beam, or arc heat energy such as TIG welding, and a wear-resistant high alloy is formed on the surface of the metal base material. How to form a chill layer.

以上のような再溶融法によって得られるチル層は微細な
組織であり、カムシャフトのカム部に優れた耐摩耗性、
耐熱性、耐腐食性等の物性を付与する。
The chilled layer obtained by the remelting method described above has a fine structure and provides excellent wear resistance and
Provides physical properties such as heat resistance and corrosion resistance.

尚、合金粉末シートによる再溶融チルの生成については
、特開昭60−230986号公報等に開示されている
Note that the generation of remelted chill using an alloy powder sheet is disclosed in Japanese Patent Application Laid-Open No. 60-230986 and the like.

(発明が解決しようとする課題) しかし、上述した(1)、(2)の方法は、いずれも金
属基材の表面層をビーム熱エネルギやアーク熱エネルギ
等で急激に加熱して再溶融するため、次のような問題が
ある。
(Problem to be Solved by the Invention) However, in both methods (1) and (2) described above, the surface layer of the metal base material is rapidly heated and remelted using beam thermal energy, arc thermal energy, etc. Therefore, the following problems arise.

すなわち、カムシャフトのカム部表面層に、再溶融時の
熱歪により引張残留応力が発生する。
That is, tensile residual stress is generated in the surface layer of the cam portion of the camshaft due to thermal strain during remelting.

しかも、このような熱エネルギに晒されるカム部表面層
の熱影響部がマルテンサイトに変態するため、カム部表
面層の引張残留応力が増加する。
Moreover, since the heat-affected zone of the cam surface layer exposed to such thermal energy transforms into martensite, the tensile residual stress of the cam surface layer increases.

また−数的には、再溶融処理の後にカム部の表面層に対
して仕上げ研削加工を施すが、この仕上げ研削加工によ
っても残留応力、が発生する。
Furthermore, numerically speaking, after the remelting process, the surface layer of the cam portion is subjected to finish grinding, but this finish grinding also generates residual stress.

従って、製品化されるカムシャフトには、上記の熱歪及
びマルテンサイト変態に基因する引張残留応力に、研削
加工による残留応力が加わり、大きな残留応力が存在す
ることとなる。
Therefore, the camshaft produced as a product has a large residual stress due to the addition of the residual stress due to the grinding process to the tensile residual stress caused by the thermal strain and martensitic transformation described above.

そしてこの大きな残留応ノコにより、エンジン運転中カ
ムシャフトのカムノーズ部にピッチングが発生し、その
剥離材が周辺部材に巻き込まれてしまうといった事故が
発生するおそれがあった。またこのようなピッチングに
より、カム部の接触長さが縮小化し、これに伴ってカム
部の面圧が増大し、結果的にカム部の異常摩耗を誘発す
る可能性もあった。
Due to this large residual saw, pitching may occur in the cam nose portion of the camshaft during engine operation, and there is a risk that an accident may occur in which the peeling material is caught in surrounding members. Moreover, due to such pitching, the contact length of the cam part is reduced, and the surface pressure of the cam part increases, which may result in abnormal wear of the cam part.

本発明は以上の諸点に鑑みてなされたものであって、そ
の目的とするところは、カム部表面に再溶融合金チル層
を形成して製造されるカムシャフトにピッチングが発生
するのを規制できる(すなわち、耐ピツチング性に優れ
る)と共に、耐摩耗性にも優れる再溶融カムシャフトの
製造方法を提案するにある。
The present invention has been made in view of the above points, and its purpose is to prevent pitching from occurring in camshafts manufactured by forming a chilled layer of remelted alloy on the surface of the cam portion. The purpose of the present invention is to propose a method for manufacturing a remelted camshaft that has excellent pitting resistance and wear resistance.

(課題を解決するための手段) 本発明に係る再溶融カムシャフトの製造方法は、上記目
的を達成するために、カム部表面を再溶融処理してカム
シャフトを製造する方法において、カム部表面に複数の
溝を形成し、溝形成面に再溶融処理を施すことを特徴と
する。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a remelted camshaft according to the present invention includes a method for manufacturing a camshaft by remelting the surface of a cam portion. The method is characterized in that a plurality of grooves are formed in the groove, and the groove-formed surface is subjected to remelting treatment.

(作 用) 本発明では先ず、再溶融処理するカム部表面に複数の溝
を形成しておく。
(Function) In the present invention, first, a plurality of grooves are formed on the surface of the cam portion to be remelted.

その後この溝形成面を、上述した方法(1)。Thereafter, this grooved surface is processed by the method (1) described above.

(2)と同様にして再溶融処理する。Remelting treatment is performed in the same manner as in (2).

この再溶融処理において、溶融池が形成されるカム部の
表面部分に前述の熱歪やマルテンサイト変態によって発
生する引張応力が、これら溝の部分で遮断される。
In this remelting process, the tensile stress generated in the surface portion of the cam portion where the molten pool is formed due to the aforementioned thermal strain and martensitic transformation is blocked by these groove portions.

従って引張応力は、溶融池が形成されるカム部の表面部
分にのみ止まり、溶融池が形成されない表面部分や既に
再溶融処理されて冷却硬化している部分には、波及しな
い。
Therefore, the tensile stress is limited only to the surface portion of the cam portion where the molten pool is formed, and does not spread to the surface portion where the molten pool is not formed or the portion that has already been remelted and cooled and hardened.

また溶融池が形成される表面部分に発生する引張応力は
、溶融池が大きい程大きくなるが、本発明では溶融池自
体が溝により遮断されるため、溶融池の大きさに制約が
加えられることになる。
Furthermore, the tensile stress generated in the surface area where the molten pool is formed increases as the molten pool becomes larger, but in the present invention, the molten pool itself is blocked by the groove, so there are restrictions on the size of the molten pool. become.

従って、上記の溶融池が形成されるカム部の表面部分に
発生する引張応力も極く僅かな無視し得る程度に過ぎず
、カム部全体としての引張残留応力は極く小さいものと
なる。
Therefore, the tensile stress generated in the surface portion of the cam portion where the above-mentioned molten pool is formed is only negligible, and the tensile residual stress of the cam portion as a whole is extremely small.

なお、再溶融処理により溝も溶融されて消失するため、
再溶融処理後のカム部表面は溝のない平坦なものとなる
In addition, as the grooves are also melted and disappear during the remelting process,
The surface of the cam portion after the remelting process becomes flat without grooves.

以上の結果本発明では、再溶融処理後のカム部表面には
極めて小さい引張残留応力しか発生しておらず、しかも
このカム部表面には微細組織の耐摩耗性(高)合金チル
層が形成され、カム部表面の耐摩耗特性、耐ピッチング
特性、耐熱性、耐腐食性等の物性が向上する。
As a result of the above, in the present invention, only an extremely small tensile residual stress is generated on the surface of the cam part after remelting treatment, and a chill layer of a wear-resistant (high) alloy with a microstructure is formed on the surface of the cam part. This improves the physical properties of the cam surface, such as wear resistance, pitting resistance, heat resistance, and corrosion resistance.

このような作用を発揮させるためには、溝の大きさ及び
設置間隔を、溶融池の大きさ(すなわち、レーザビーム
、電子ビーム、TIG溶接等の再溶融処理時に使用する
熱源の投射面積)によって種々設定する必要があるが、
溝間隔が狭すぎると巨視的には手用となって溝を形成す
る技術的意義がなくなり、逆にtR間隔が広すぎると引
張応力及び溶融池の遮断効果がなくなってしまう。
In order to achieve this effect, the size and spacing of the grooves must be determined depending on the size of the molten pool (i.e., the projected area of the heat source used during remelting processing such as laser beam, electron beam, and TIG welding). Various settings are required, but
If the groove spacing is too narrow, macroscopically it becomes a manual process, and there is no technical significance in forming the grooves.On the other hand, if the tR spacing is too wide, the effect of blocking tensile stress and the molten pool is lost.

TIG溶接を用いる場合について述べると、例えば幅0
. 5〜1.5111m、深さ0.5〜1.5msの溝
で、溝間隔4〜6龍が好ましい。
When using TIG welding, for example, the width is 0.
.. Preferably, the grooves are 5 to 1.5111 m long and 0.5 to 1.5 ms deep, with a groove spacing of 4 to 6 grooves.

また、溝の形状は特に特定されるものではなく、半矩形
、半円形、蟻溝等どのような形状であってもよく、また
溝の設置方向も特に限定されるものではなく、カムシャ
フトの軸方向、斜め方向、ジグザグ方向等各種の方向が
適用される。
Further, the shape of the groove is not particularly specified, and may be any shape such as semi-rectangular, semi-circular, dovetail groove, etc. Also, the installation direction of the groove is not particularly limited, and it can be Various directions such as axial direction, diagonal direction, and zigzag direction are applicable.

(実 施 例) 以下に、本発明の好適な実施例について詳述する。(Example) Below, preferred embodiments of the present invention will be described in detail.

実施例1 第1図(A)の斜視図と同図(B)の断面図に示すよう
に、鋳鉄製カムシャフト基材1のカム部2の表面を研削
して黒皮を除去した後、カムノーズ部2aからランプ部
2bにかけて、幅IIl■、深さ1龍の複数の溝3を間
隔61111で形成する(第2図、ステップ1参照)。
Example 1 As shown in the perspective view of FIG. 1 (A) and the cross-sectional view of FIG. From the cam nose part 2a to the ramp part 2b, a plurality of grooves 3 having a width of IIl and a depth of one inch are formed at intervals of 61111 (see Step 1 in FIG. 2).

この鋳鉄製カムシャフト基材1を第2図のステップに従
って処理し、カムシャフトを製造する。
This cast iron camshaft base material 1 is processed according to the steps shown in FIG. 2 to manufacture a camshaft.

第2図において、上述したステップ1の鋳鉄製カムシャ
フト基材1のカム部2の表面に、ステップ2にて、図示
しないアクリル系の接着テープで合金粉末シート4を接
着固定する。
In FIG. 2, in step 2, an alloy powder sheet 4 is adhesively fixed to the surface of the cam portion 2 of the cast iron camshaft base material 1 in step 1 using an acrylic adhesive tape (not shown).

この合金粉末シート4は、その組成がMo;2゜5〜1
5.Owt%r  P; 0.5〜3.Ovt%、Cr
;10wt%以下、 C; 1. 5〜5. Ovt%
、Fe;残で、粒度が100メツシユアンダーの合金粉
末とアセトンで希釈したアクリル樹脂とを混練後、厚さ
0.1〜1,0關でシート状に成形したものである。
This alloy powder sheet 4 has a composition of Mo; 2°5 to 1
5. Owt%rP; 0.5-3. Ovt%, Cr
; 10 wt% or less, C; 1. 5-5. Ovt%
, Fe: The remainder is obtained by kneading an alloy powder with a particle size of 100 mesh under and an acrylic resin diluted with acetone, and then molding it into a sheet with a thickness of 0.1 to 1.0 mm.

そしてこのシートを接着固定した後、カムシャフト基材
1を窒素ガスの雰囲気内で1時間、温度300℃で脱ろ
う処理し、アセトン、アクリル樹脂を除去する。
After this sheet is adhesively fixed, the camshaft base material 1 is subjected to dewaxing treatment at a temperature of 300° C. for one hour in a nitrogen gas atmosphere to remove acetone and acrylic resin.

この後ステップ3にて、表1の条件でTIGトーチ5先
端の電極6からのアーク熱にて高合金再溶融処理し、耐
摩耗性高合金チル層14を形成する。
Thereafter, in step 3, the high alloy is remelted using arc heat from the electrode 6 at the tip of the TIG torch 5 under the conditions shown in Table 1 to form a wear-resistant high alloy chilled layer 14.

表1 高合金再溶融処理のT ■ G条件 そして、ステップ4にて処理部分を研削加工し、耐摩耗
性高合金チル層14の表面を平滑面14.aとする。
Table 1 T ■ G conditions of high alloy remelting treatment Then, in step 4, the treated part is ground, and the surface of the wear-resistant high alloy chill layer 14 is smoothed to the smooth surface 14. Let it be a.

このようにして製造されたカムシャフトのカムノーズ部
2aにつき、ひずみゲージ法にて残留応力の測定を行っ
たところ、表2に示すように9kgr/−の引張残留応
力があり、後述する比較例の溝3を形成していないカム
シャフトのカムノーズ部に比べ、引張残留応力が40%
も減少した。
When the residual stress of the cam nose portion 2a of the camshaft manufactured in this way was measured using the strain gauge method, there was a tensile residual stress of 9 kgr/- as shown in Table 2, and it was found that there was a tensile residual stress of 9 kgr/- as shown in Table 2. Tensile residual stress is 40% compared to the cam nose of a camshaft that does not have groove 3.
It also decreased.

実施例2 溝3の間隔を4 +uとする以外は実施例1と全く同様
にしてカムシャフトを製造し、このカムシャフトのカム
ノーズ部2aにつき、同様のひずみゲージ法にて残留応
力の測定を行った。
Example 2 A camshaft was manufactured in exactly the same manner as in Example 1 except that the interval between the grooves 3 was set to 4 + u, and the residual stress was measured using the same strain gauge method on the cam nose portion 2a of this camshaft. Ta.

この結果を、表2に合わせて示す。The results are also shown in Table 2.

同表から明らかなように本例では10kgr/−の引張
残留応力があり、比較例の満3を形成していないカムシ
ャフトのカムノーズ部に比べ、引張残留応力が30%減
少した。
As is clear from the table, there was a tensile residual stress of 10 kgr/- in this example, and the tensile residual stress was reduced by 30% compared to the cam nose portion of the camshaft in the comparative example, which did not form a full 3.

比較例 溝3を形成しない以外は実施例1と全く同様にしてカム
シャフトを製造し、このカムシャフトのカムノーズ部に
つき、同様のひずみゲージ法にて残留応力の測定を行っ
た。
Comparative Example A camshaft was manufactured in exactly the same manner as in Example 1, except that the groove 3 was not formed, and the residual stress of the cam nose portion of this camshaft was measured using the same strain gauge method.

この結果を、表2に合わせて示す。The results are also shown in Table 2.

同表から明らかなように、溝3を形成しなかった場合1
5kgf/siもの引張残留応力が確認された。
As is clear from the table, if groove 3 is not formed, 1
A tensile residual stress of 5 kgf/si was confirmed.

表2 (発明の効果) 以上詳述した本発明によれば、再溶融処理するに先立っ
てカム部表面に形成する複数の溝が、再溶融処理の際に
再溶融処理部分、すなわち溶融池に発生する引張応力を
遮断するため、引張応力の増加を抑えることができる。
Table 2 (Effects of the Invention) According to the present invention described in detail above, the plurality of grooves formed on the surface of the cam portion prior to the remelting treatment are formed in the remelted portion, that is, the molten pool, during the remelting treatment. Since the generated tensile stress is blocked, an increase in the tensile stress can be suppressed.

この結果、製品化されるカムシャフトには大きな引張残
留応力が存在せず、ピッチングが発生するのを効果的に
抑制することができ、耐摩耗特性、耐ピツチング特性に
優れたカムシャフトを製造することができる。
As a result, there is no large tensile residual stress in the manufactured camshaft, and the occurrence of pitting can be effectively suppressed, making it possible to manufacture camshafts with excellent wear resistance and pitting resistance. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の実施例に係るカムシャフトのカ
ム部表面に形成した複数の溝の状態を示す斜視図、第1
図(B)は同図(A)のカム部の断面図、第2図は本発
明の実施例におけるカムシャフトの製造工程を示す工程
図である。 2・・・・・・カム部 3・・・・・・溝
FIG. 1(A) is a perspective view showing the state of a plurality of grooves formed on the surface of a cam portion of a camshaft according to an embodiment of the present invention;
Figure (B) is a sectional view of the cam portion in Figure (A), and Figure 2 is a process diagram showing the manufacturing process of a camshaft in an embodiment of the present invention. 2...Cam part 3...Groove

Claims (1)

【特許請求の範囲】[Claims] カム部表面を再溶融処理してカムシャフトを製造する方
法において、上記カム部表面に複数の溝を形成し、該溝
形成面に再溶融処理を施すことを特徴とする再溶融カム
シャフトの製造方法。
A method for manufacturing a camshaft by remelting the surface of a cam part, characterized in that a plurality of grooves are formed on the surface of the cam part, and the groove-formed surface is subjected to remelting treatment. Method.
JP24910689A 1989-09-27 1989-09-27 Production of remelted cam shaft Pending JPH03115587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24910689A JPH03115587A (en) 1989-09-27 1989-09-27 Production of remelted cam shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24910689A JPH03115587A (en) 1989-09-27 1989-09-27 Production of remelted cam shaft

Publications (1)

Publication Number Publication Date
JPH03115587A true JPH03115587A (en) 1991-05-16

Family

ID=17188045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24910689A Pending JPH03115587A (en) 1989-09-27 1989-09-27 Production of remelted cam shaft

Country Status (1)

Country Link
JP (1) JPH03115587A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026388A2 (en) * 1996-01-15 1997-07-24 The University Of Tennessee Research Corporation Laser induced surfaces
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
CN105624669A (en) * 2016-03-11 2016-06-01 大连理工大学 Sectioned laser cladding remanufacturing method with preheating and heat treatment for complex parts
CN106077985A (en) * 2016-07-04 2016-11-09 阳泉煤业集团华越机械有限公司 A kind of Laser Welding method of hydraulic jack post surface laser cladding corrosion resistant plate alive
CN113482738A (en) * 2021-07-26 2021-10-08 西安理工大学 Wear-resistant self-lubricating camshaft and production and manufacturing method thereof
CN114075642A (en) * 2021-11-18 2022-02-22 曲作鹏 Water-cooled wall induction fusion welding following type surface strengthening method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026388A2 (en) * 1996-01-15 1997-07-24 The University Of Tennessee Research Corporation Laser induced surfaces
WO1997026388A3 (en) * 1996-01-15 1998-10-01 Univ Tennessee Res Corp Laser induced surfaces
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
EA001503B1 (en) * 1996-01-15 2001-04-23 Дзе Юниверсити Оф Теннесси Рисерч Корпорейшн Method for improving surface by laser treatment
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
CN105624669A (en) * 2016-03-11 2016-06-01 大连理工大学 Sectioned laser cladding remanufacturing method with preheating and heat treatment for complex parts
CN106077985A (en) * 2016-07-04 2016-11-09 阳泉煤业集团华越机械有限公司 A kind of Laser Welding method of hydraulic jack post surface laser cladding corrosion resistant plate alive
CN113482738A (en) * 2021-07-26 2021-10-08 西安理工大学 Wear-resistant self-lubricating camshaft and production and manufacturing method thereof
CN114075642A (en) * 2021-11-18 2022-02-22 曲作鹏 Water-cooled wall induction fusion welding following type surface strengthening method

Similar Documents

Publication Publication Date Title
JPH03115587A (en) Production of remelted cam shaft
US10744600B2 (en) Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP2022104942A (en) Method of producing welded steel blank with provision of filler wire having defined carbon content, associated welded blank, and method of producing welded part with hot press-formed and cooled steel part and associated part
US20090293995A1 (en) Nobel metal alloy for spark plug and method for producing and processing the same
JPS61270335A (en) Build-up valve for internal combustion engine
JP2010201491A (en) Method for repairing heat-resistant steel casting by welding and heat resistant steel casting having part repaired by welding
JPH0423144B2 (en)
JP2907888B2 (en) Method for manufacturing re-melted camshaft
JPH0461057B2 (en)
JP2749903B2 (en) Method of manufacturing camshaft
JP2571820B2 (en) Method for manufacturing remelted chill camshaft
JPH03115557A (en) Manufacture of remelted camshaft
JPH03107424A (en) Production of camshaft
JP2856431B2 (en) Manufacturing method of re-melt hardened parts
JPH0215866A (en) Manufacture of cylinder head
JPH03165906A (en) Manufacture of roll for cold rolling
JPH11269540A (en) Suppression and prevention of carburizing and metal dusting
JP2849496B2 (en) Manufacturing method of high and low pressure integrated rotor
JPH03107413A (en) Production of wear resistant sliding member
JPS6333517A (en) Remelting chill-treating method for cast iron
JPS6287654A (en) Cast iron cylinder head for internal combustion engine and manufacture thereof
JPH0320478A (en) Production of high alloy remelted cam
JPH02197582A (en) Manufacture of cam shaft
JPH0726321A (en) Production of sliding member excellent in wear resistance
JPH03275285A (en) Manufacture of aluminum clad plate