JPS6286177A - Cylinder head for internal combustion engine made of cast iron and its production - Google Patents

Cylinder head for internal combustion engine made of cast iron and its production

Info

Publication number
JPS6286177A
JPS6286177A JP60228068A JP22806885A JPS6286177A JP S6286177 A JPS6286177 A JP S6286177A JP 60228068 A JP60228068 A JP 60228068A JP 22806885 A JP22806885 A JP 22806885A JP S6286177 A JPS6286177 A JP S6286177A
Authority
JP
Japan
Prior art keywords
valve
cylinder head
cast iron
chromium
alloyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228068A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Joji Miyake
譲治 三宅
Haratsugu Koyama
原嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60228068A priority Critical patent/JPS6286177A/en
Publication of JPS6286177A publication Critical patent/JPS6286177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To considerably decrease the cracks to be generated in the inter-valve parts between the intake valve and exhaust valve as well as between the intake and exhaust valves and chamber hole of a cylinder head by forming an alloyed layer contg. chromium and molybdenum in the above-mentioned inter-valve parts. CONSTITUTION:A thermally sprayed chromium layer 8 and an alloyed chill layer 9 are respectively formed on the surfaces between the inter-valve parts 5 and parts 6, 7 between the valve and chamber of the cylinder head 1 by using chromium powder or molybdenum powder and using plasma spraying and TIG arc. The alloyed chill layer is welded down to >=0.5mm depth from the surface and is incorporated therein with 0.3-2.0wt% chromium and molybdenum. The alloyed chill layer 9 is then heated for 1-10min at 950-1,050 deg.C and is then allowed to cool, by which the alloyed layer 10 is obtd. The cracks to be generated between the valves, etc. are considerably decreased and the cost is reduced by the above-mentioned operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳鉄製内燃機関用シリンダヘッド及びその製造
方法に関し、詳しくは鋳鉄製シリンダヘッドの吸気弁と
排気弁の間の弁間部並びに吸気弁とチャンバ穴の間およ
び排気弁とチャンバ穴の間の弁−チャンバ間部を改良し
た鋳鉄製内燃機関用シリンダヘッド及びその製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cast iron cylinder head for an internal combustion engine and a method for manufacturing the same, and more specifically, to a cast iron cylinder head for an internal combustion engine and a method for manufacturing the same. The present invention relates to a cast iron cylinder head for an internal combustion engine with improved valve-chamber portions between the valve and the chamber hole and between the exhaust valve and the chamber hole, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、自動車のエンジンに対する要求性能はますます高
度なものとなってきており、運転条件が過酷なものとな
っている。この結果、鋳鉄製シリンダヘッドにおいて、
他の部位より比較的肉薄とされている鋳鉄製シリンダヘ
ッドの吸気弁と排気弁の間の弁間部並びに吸気弁とチャ
ンバ穴の間および排気弁とチャンバ穴の間の弁−チャン
バ間部に、燃焼による熱応力に゛起因して亀裂が発生し
易いという問題があった。
In recent years, performance requirements for automobile engines have become increasingly sophisticated, and driving conditions have become harsher. As a result, in cast iron cylinder heads,
The valve area between the intake valve and exhaust valve of the cast iron cylinder head, which is relatively thinner than other parts, and the valve-chamber area between the intake valve and the chamber hole and between the exhaust valve and the chamber hole. However, there was a problem in that cracks were likely to occur due to thermal stress caused by combustion.

従来、かかる問題に対処するために亀裂の発生し易い部
位にFe−Ni合金等の延展性、耐熱性に優れた材料を
肉盛(溶接)、ろう付は等により形成し、この延展性、
耐熱性に優れた材料により熱応力を吸収して亀裂を防止
する方法が提案されている(例えば、特許第51682
9号(特公昭39−18230号)、特開昭58−62
344号、鋳物便覧等)。
Conventionally, in order to deal with this problem, materials with excellent ductility and heat resistance, such as Fe-Ni alloy, were formed by overlaying (welding), brazing, etc. in areas where cracks are likely to occur, and this ductility,
A method of preventing cracks by absorbing thermal stress using materials with excellent heat resistance has been proposed (for example, Japanese Patent No. 51682
No. 9 (Special Publication No. 39-18230), JP-A-58-62
No. 344, Foundry Handbook, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来技術では、使用するFe−Ni合金
のNif’11度が高いため高コストとなる。
By the way, in the above-described conventional technology, the cost is high because the Fe-Ni alloy used has a high Nif'11 degree.

また、Fe−Ni合金の肉盛を行う際に、弁間部、弁−
チャンバ間部のごく狭い範囲しか肉盛しない場合には、
母材である鋳鉄と肉盛合金であるF e −N i合金
の熱膨張率の違い等に起因して肉盛部と母材の境界部に
亀裂が発生する。このため、従来は弁間部、弁−チャン
バ間部を含む広い範囲を肉盛りすることにより、この問
題に対処している。従って、この場合にもコスト高とな
るという問題がある。
In addition, when overlaying Fe-Ni alloy, it is necessary to
If only a narrow area between the chambers is to be overlaid,
Cracks occur at the boundary between the build-up portion and the base metal due to the difference in thermal expansion coefficient between cast iron, which is the base material, and Fe-Ni alloy, which is the build-up alloy. Therefore, conventionally, this problem has been dealt with by building up a wide area including the valve gap and the valve-chamber gap. Therefore, in this case as well, there is a problem of high cost.

更に、シリンダヘッドを予熱しないと肉盛性が悪く、シ
リンダヘッドを予熱して肉盛した場合には、予熱工程を
余分に必要し、また場合により焼鈍を必要とするという
問題がある。
Furthermore, if the cylinder head is not preheated, build-up properties are poor, and if the cylinder head is preheated and built-up, an extra preheating step is required, and in some cases, annealing is required.

そこで、従来と同程度の亀裂防止効果を維持しつつ、製
造性が良く、かつ低コストにする工夫が望まれていた。
Therefore, it has been desired to develop a method that maintains the same level of crack prevention effect as conventional methods, has good manufacturability, and can be made at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題は、次に述べる本発明の鋳鉄製内燃機関用シリ
ンダヘッド及びその製造方法によって解決される。
The above problem is solved by the cast iron cylinder head for an internal combustion engine and the manufacturing method thereof according to the present invention, which will be described below.

即ち、本発明の鋳鉄製内燃機関用シリンダヘッドは、鋳
鉄製シリンダヘッドの吸気弁と排気弁の間の弁間部並び
に吸気弁とチャンバ穴の間および排気弁とチャンバ穴の
間の弁−チャンバ間部に、表面から0.5 mm以上の
深さにわたって、クロム、モリブデンのうち少なくとも
一方が合計で0.3重量%〜2.0重量%含有された、
基地Mi織がパーライトである合金化層が形成されてい
ることを特徴としている。・−・−第1の発明 また、本発明の鋳鉄製内燃機関用シリンダヘッドの製造
方法は、鋳鉄を原料としてシリンダヘッド粗形材を鋳造
後、鋳鉄製シリンダヘッドの吸気弁と排気弁の間の弁間
部並びに吸気弁とチャンバ穴の間および排気弁とチャン
バ穴の間の弁−チャンバ間部の各表面に、クロム、モリ
ブデンのうち少なくとも一方を載せ、高密度エネルギを
照射して合金化層を形成し、続いてこの合金化層を95
0℃〜1050℃で1〜10分間再加熱した後、空冷し
、次いで合金化層近傍を機械加工することにより仕上げ
を行うことを特徴としている。・・・・−第2の発明 以下に、本発明を更に具体的に説明する。
That is, the cast iron cylinder head for an internal combustion engine of the present invention has a valve gap between the intake valve and the exhaust valve of the cast iron cylinder head, and a valve-chamber area between the intake valve and the chamber hole and between the exhaust valve and the chamber hole. At least one of chromium and molybdenum is contained in a total of 0.3% to 2.0% by weight in the interspace to a depth of 0.5 mm or more from the surface.
It is characterized in that an alloyed layer is formed in which the base Mi weave is pearlite.・-・-First invention Furthermore, in the method of manufacturing a cast iron cylinder head for an internal combustion engine of the present invention, after casting a cylinder head rough shape using cast iron as a raw material, a cast iron cylinder head is formed between an intake valve and an exhaust valve of the cast iron cylinder head. At least one of chromium and molybdenum is placed on each surface of the valve-to-valve portion, between the intake valve and the chamber hole, and between the exhaust valve and the chamber hole, and is alloyed by irradiating high-density energy. layer and then this alloyed layer at 95%
It is characterized in that it is reheated at 0° C. to 1050° C. for 1 to 10 minutes, air cooled, and then finished by machining the vicinity of the alloyed layer. ...-Second invention The present invention will be explained in more detail below.

本発明において、シリンダヘッド材料としては鋳鉄を使
用する。かかる鋳鉄として、JIS  FC20、FC
25、FC30等を用いることができる。
In the present invention, cast iron is used as the cylinder head material. As such cast iron, JIS FC20, FC
25, FC30, etc. can be used.

シリンダヘッドの弁間部等には、合金化層が形成される
。この合金化層は0.5 tm以上設けないと十分な効
果が得られない。合金化層は、鋳鉄にクロム(Cr)、
モリブデン(Mo)のうち少なくとも一方を重量%(以
下、%はすべて重量%)で合計0.3%〜2.0%含有
させたものである。ここで、クロム、モリブデンを添加
するのは、パーライト中のセメンタイトを安定化させて
高温時におけるセメンタイトの分解を防ぐことにより亀
裂の発生を防止するためであり、その含有量を0.3%
〜2.0%としたのは、0.3%未満では十分にセメン
タイトを安定化できず所望の亀裂発生防止効果が得られ
ないためであり、2.0%を超えるとパーライト地にな
りにくいためである。
An alloyed layer is formed in the valve space of the cylinder head. A sufficient effect cannot be obtained unless this alloyed layer has a thickness of 0.5 tm or more. The alloyed layer is cast iron with chromium (Cr),
At least one of molybdenum (Mo) is contained in a total amount of 0.3% to 2.0% by weight (hereinafter, all percentages are weight%). The reason why chromium and molybdenum are added is to stabilize the cementite in pearlite and prevent the decomposition of cementite at high temperatures, thereby preventing the occurrence of cracks, and the content is 0.3%.
The reason why it is set at ~2.0% is that if it is less than 0.3%, cementite cannot be sufficiently stabilized and the desired crack prevention effect cannot be obtained, and if it exceeds 2.0%, it is difficult to form pearlite. It's for a reason.

合金化の手段としては、高密度エネルギ源を用いる。即
ち、シリンダヘッド上の合金化処理を施す弁間部等の部
分に、クロム、モリブデンを粉末、圧粉体、スラリー等
の適宜形状で塗布あるいは載置更には溝を加工してその
中に充填した後、当該個所に高密度エネルギを照射する
ことにより瞬時に鋳鉄とクロム、モリブデンの溶融、合
金チル化を行う。このとき、合金チル化層は、シリンダ
ヘッドの冷却能により瞬時に冷却され、特別な冷却手段
を用いることなく凝固しチル化する。なお、高密度エネ
ルギ源としては、レーザ、電子ビーム、プラズマアーク
、TIGアーク等を用いることができる。
A high density energy source is used as a means for alloying. In other words, chromium or molybdenum is applied or placed in an appropriate form such as powder, green compact, or slurry on the parts of the cylinder head that are to be alloyed, such as between the valves, and then grooves are formed and filled therein. After that, the cast iron, chromium, and molybdenum are instantly melted and the alloy is chilled by irradiating the area with high-density energy. At this time, the alloy chilled layer is instantaneously cooled by the cooling ability of the cylinder head, and is solidified and chilled without using any special cooling means. Note that a laser, an electron beam, a plasma arc, a TIG arc, etc. can be used as the high-density energy source.

合金チル化層は、950℃〜1050℃で1〜10分間
再加熱した後、空冷、放冷あるいは徐冷することにより
基地がパーライトとなって合金化層となる。このとき、
加熱温度が950℃と低い場合には加熱時間は10分間
と長めになり、1050℃と高い場合には加熱時間は1
分間程度と短めでよい。また、加熱手段としては高周波
加熱、火炎加熱等を用いることができるが、局部加熱が
できるという点から高周波加熱の方が望ましい。
The alloyed chilled layer is reheated at 950° C. to 1050° C. for 1 to 10 minutes, and then cooled in air, allowed to cool, or slowly cooled, so that the matrix becomes pearlite and becomes an alloyed layer. At this time,
If the heating temperature is as low as 950°C, the heating time will be longer at 10 minutes, and if the heating temperature is as high as 1050°C, the heating time will be 10 minutes.
It can be as short as about a minute. Further, as the heating means, high frequency heating, flame heating, etc. can be used, but high frequency heating is preferable because it allows local heating.

〔作用〕[Effect]

本発明の鋳鉄製内燃機関用シリンダヘッドによれば、従
来、熱応力等により亀裂等の不具合が発生し易かった弁
間部と弁−チャンバ間部の表面部が、クロム、モリブデ
ンを所定量添加して合金チル化層を形成した後、熱処理
することにより基地をパーライト化したため、パーライ
ト基地中のセメンタイトが安定化する。従来のように、
基地がパーライトの場合には、燃焼によりシリンダヘッ
ドの弁間部や弁−チャンバ間部が高温となることにより
、徐々にセメンタイトが黒鉛とフェライトに分解し、こ
のとき体積が膨張する。そして、かかる膨張が弁間部等
の熱応力を大きくし亀裂発生の原因をなすと考えられる
。しかるに、本発明の場合、クロム、モリブデンの添加
によりセメンタイトが安定化し、高温でも容易に分解し
ない。この結果、弁間部、弁−チャンバ間部の亀裂の発
生が大幅に低減される。
According to the cast iron cylinder head for an internal combustion engine of the present invention, a predetermined amount of chromium and molybdenum is added to the surface areas of the valve gap and the valve-chamber area, where defects such as cracks were conventionally prone to occur due to thermal stress. After forming a chilled alloy layer, the base was transformed into pearlite by heat treatment, which stabilized the cementite in the pearlite base. As before,
When the base is pearlite, the combustion causes the valve-to-valve part and the valve-chamber part to become high in temperature, so that the cementite gradually decomposes into graphite and ferrite, and the volume expands at this time. It is believed that such expansion increases thermal stress in the intervalve area and causes cracks to occur. However, in the case of the present invention, cementite is stabilized by the addition of chromium and molybdenum and does not easily decompose even at high temperatures. As a result, the occurrence of cracks between the valves and between the valve and the chamber is significantly reduced.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

(第1実施例) 第1実施例として、合金化層の添加元素にクロムを使用
した例を示す。
(First Example) As a first example, an example will be shown in which chromium is used as an additive element in the alloyed layer.

ここで、第1図は本発明の第1実施例に係る鋳鉄製内燃
機関用シリンダヘッドの要部を示す概略構成図、第2図
は本発明の第1実施例に係る鋳鉄製内燃機関用シリンダ
ヘッドの弁間部の合金化処理工程を示す工程図である。
Here, FIG. 1 is a schematic configuration diagram showing the main parts of a cylinder head for a cast iron internal combustion engine according to a first embodiment of the present invention, and FIG. FIG. 3 is a process diagram showing an alloying treatment process for the intervalve portion of the cylinder head.

シリンダヘッドの材料として、普通鋳鉄(JIS  F
e12)に脱酸剤としてセリウム(Ce)を0.02%
添加したものを溶解し、砂型鋳造法により第1図に要部
の概要を示すディーゼルエンジン用シリンダへラド粗形
材1を鋳造した。第1図において、2はインテークポー
ト(吸気口)、3はエキゾーストポート(排気口)、4
はチャンバ穴である。そして、インテークボート2とエ
キゾーストポート3の間のハツチングで示した部分が弁
間部5であり、インテークボート2とチャンバ穴4の間
およびエキゾーストポート3とチャンバ穴4の間のハツ
チングで示した部分が弁−チャンバ間部6.7である。
Ordinary cast iron (JIS F
e12) with 0.02% cerium (Ce) as a deoxidizing agent.
The added material was melted and RAD rough shaped material 1 was cast into a diesel engine cylinder whose main parts are schematically shown in FIG. 1 using a sand casting method. In Figure 1, 2 is the intake port, 3 is the exhaust port, and 4 is the exhaust port.
is the chamber hole. The hatched area between the intake boat 2 and the exhaust port 3 is the intervalve part 5, and the hatched area between the intake boat 2 and the chamber hole 4 and between the exhaust port 3 and the chamber hole 4 is the intervalve area 5. is the valve-chamber section 6.7.

この弁間部5と弁−チャンバ間部6.7に合金化処理を
施した。即ち、第2図(a)(第1図のA−A断面図に
相当)に示す状態から、弁間部5(説明の便宜上、弁間
部の合金化処理について説明するが、弁−チャンバ間部
も同様に合金化処理を行う)に、プラズマ溶射ガンを使
用して、第2図(b)に示すように、クロム粉末を0.
1鶴の厚さに溶射した。ここで、8はクロム?容射層で
ある。
Alloying treatment was performed on the inter-valve portion 5 and the valve-chamber portion 6.7. That is, from the state shown in FIG. 2(a) (corresponding to the A-A cross-sectional view in FIG. (The alloying treatment is also performed on the intermediate part in the same way.) Then, using a plasma spray gun, 0.0% chromium powder is applied as shown in Fig. 2(b).
It was sprayed to a thickness of one crane. Here, 8 is chrome? It is a radiation layer.

続いて、TIGアークによりクロム溶射層8と母材であ
る鋳鉄の合金化を行った。このとき、TIGアークによ
る合金化処理は、3.2fi径のタングステン電掻棒を
用い、シールドガスとしてアルゴンガスを処理部に15
1/分の割で供給しながら行った。処理条件としては、
ピーク電流を220A、ベース電流を190Aとし、パ
ルス時間を0.5秒とすると共に、アーク長を2鶴とし
た。そして、TIGトーチ速度を1.5mm/秒とし、
TIGトーチをその移動方向と垂直な方向に511幅の
ウィービングを行いつつ処理を行った。この結果、第2
図(C)に示すように、弁間部5は表面から平均3nの
深さまで溶融され、合金チル化層9が形成された。
Subsequently, the chromium sprayed layer 8 and the base material, cast iron, were alloyed by TIG arc. At this time, the alloying treatment by TIG arc uses a tungsten electric scraper with a diameter of 3.2 fi, and argon gas is supplied as a shield gas to the treatment section at 15 mm.
This was done while supplying at a rate of 1/min. The processing conditions are as follows:
The peak current was 220 A, the base current was 190 A, the pulse time was 0.5 seconds, and the arc length was 2. Then, the TIG torch speed was set to 1.5 mm/sec,
The process was performed while weaving with a width of 511 in a direction perpendicular to the direction of movement of the TIG torch. As a result, the second
As shown in Figure (C), the intervalve portion 5 was melted to an average depth of 3n from the surface, and a chilled alloy layer 9 was formed.

次いで、弁間部5の表面近傍に高周波加熱コイルを配設
し、合金チル化層8の中央が1000℃となるように2
分間加熱を行い、その後放冷した。
Next, a high-frequency heating coil is placed near the surface of the intervalve part 5, and the temperature of the alloy chilled layer 8 is 200°C at the center.
Heating was performed for a minute and then allowed to cool.

この結果、合金チル化層9の基地がパテライトとなった
合金化層10が得られた。
As a result, an alloyed layer 10 was obtained in which the base of the chilled alloy layer 9 was puterite.

続いて、第2図(d)に示すように、機械加工により仕
上げを行い、最終製品としてのシリンダヘッドAを得た
Subsequently, as shown in FIG. 2(d), finishing was performed by machining to obtain a cylinder head A as a final product.

この結果得られたシリンダヘッドAの合金化層10のE
PMA分析を行ったところ、クロム濃度は0.8%であ
った。
E of the alloyed layer 10 of the cylinder head A obtained as a result
PMA analysis revealed that the chromium concentration was 0.8%.

(第2実施例) 第2実施例として合金化層の添加元素にモリブデンを用
いた例を示す。
(Second Example) As a second example, an example will be shown in which molybdenum is used as an additive element in the alloyed layer.

第1実施例において、合金化層の添加元素としてクロム
の代わりにモリブデンを用いたことを除き、他は実質的
に第1実施例と同様にしてシリンダヘッドBを製造した
In the first example, a cylinder head B was manufactured in substantially the same manner as in the first example except that molybdenum was used instead of chromium as an additive element in the alloyed layer.

このシリンダヘッドBの合金化層のEPMA分析を行っ
たところ、モリブデン濃度は1.1%であった。
EPMA analysis of the alloyed layer of this cylinder head B revealed that the molybdenum concentration was 1.1%.

(第3実施例) 第3実施例として合金化石の添加元素にクロムとモリブ
デンを用いた例を示す。
(Third Example) As a third example, an example will be shown in which chromium and molybdenum are used as additive elements of the alloy fossil.

第1実施例において、合金化層の添加元素としてクロム
の代わりにクロムとモリブデンの混合粉末を用いた溶射
層を形成したことを除き、他は実質的に第1実施例と同
様にしてシリンダヘッドCを製造した。
In the first embodiment, the cylinder head was substantially the same as the first embodiment except that a sprayed layer was formed using a mixed powder of chromium and molybdenum instead of chromium as an additive element in the alloyed layer. C was produced.

このシリンダへラドCの合金化層のEPMA分析を行っ
たところ、クロム濃度は0.4%、モリブデン濃度は0
.5%であった。
EPMA analysis of the alloyed layer of Rad C in this cylinder revealed that the chromium concentration was 0.4% and the molybdenum concentration was 0.
.. It was 5%.

(第1比較例) 第1実施例において、シリンダヘッド粗形材1の弁間部
5および弁−チャンバ間部6.7に合金化処理を行うこ
となく、そのまま機械加工により最終製品に仕上げたこ
と以外、他は実質的に第1実施例と同様にしてシリンダ
ヘッドDを製造した。
(First Comparative Example) In the first example, the valve-to-valve portion 5 and the valve-chamber portion 6.7 of the cylinder head rough profile 1 were not subjected to alloying treatment, and were machined into the final product as they were. Other than this, the cylinder head D was manufactured in substantially the same manner as in the first embodiment.

(第2比較例) 第1実施例と同様にしてディーゼルエンジン用シリンダ
へラド粗形材1を鋳造した。得られたシリンダヘッド粗
形材1の弁間部5と弁−チャンバ間部6.7に幅10鶴
、深さ4鶴の溝を加工し、亀裂防止と肉盛性の改善のた
めシリンダヘッド粗形材1を450℃に予熱した後、鉄
−ニッケル合金棒(Fe−50%Ni合金)を用いて、
酸素−アセチレン炎で溝を埋めるように肉盛を行った。
(Second Comparative Example) A RAD rough profile 1 was cast into a cylinder for a diesel engine in the same manner as in the first example. Grooves with a width of 10 mm and a depth of 4 mm were machined in the valve space 5 and the valve-chamber space 6.7 of the obtained cylinder head rough profile 1 to prevent cracks and improve build-up properties of the cylinder head. After preheating the rough profile 1 to 450°C, using an iron-nickel alloy rod (Fe-50% Ni alloy),
Overlay was carried out to fill the groove with oxygen-acetylene flame.

次いで、600℃で3時間保持して歪取りのための焼鈍
を行い、その後、肉盛部の厚さが2鶴となるように機械
加工してシリンダヘッドEを得た。
Next, it was held at 600° C. for 3 hours to perform annealing to remove distortion, and then was machined so that the thickness of the built-up portion was 2 mm to obtain a cylinder head E.

(評価) 上記実施例および比較例で得られたシリンダヘッドA−
Eを、それぞれエンジンに組み付けて耐久試験を行った
。耐久試験は実機運転時における全負荷状態で490O
rpm+および無負荷状態で1100Orpという条件
で行った。
(Evaluation) Cylinder head A- obtained in the above examples and comparative examples
E was assembled into an engine and a durability test was conducted. Durability test was conducted at 490O under full load during actual machine operation.
The test was carried out under the conditions of 1100 Orp at rpm+ and no load.

この結果、第1比較例で得られたシリンダヘッドDは、
300時間以内で弁間部および弁−チャンバ間部に亀裂
が発生するのが観察されたが、実施例と第2比較例で得
られたシリンダヘッドA。
As a result, the cylinder head D obtained in the first comparative example was
Cylinder head A obtained in the example and the second comparative example, although cracks were observed to occur in the valve gap and the valve-chamber gap within 300 hours.

BSC,Eは、それぞれ500時間の連続運転を行って
も弁間部等になんら異常は認められなかった。
BSC and E did not show any abnormality in the valve space etc. even after 500 hours of continuous operation.

また、本実施例において、合金化層を形成する範囲は、
第2比較例のFe−Ni合金を肉盛する場合の約1/3
であった。
In addition, in this example, the range in which the alloyed layer is formed is as follows:
Approximately 1/3 of the case of overlaying the Fe-Ni alloy of the second comparative example
Met.

以上、本発明の特定の実施例について説明したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲内において種々の実施態様を包含するものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes various embodiments within the scope of the claims.

例えば、実施例ではディーゼルエンジン用シリンダヘッ
ドに本発明を適用した例を示したが、ガソリンエンジン
用シリンダヘッドにも同様に適用することができる。
For example, in the embodiment, an example was shown in which the present invention was applied to a cylinder head for a diesel engine, but it can be similarly applied to a cylinder head for a gasoline engine.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の鋳鉄製内燃機関用シリンダヘッド及
びその製造方法によれば、以下の効果を奏する。
As described above, according to the cast iron cylinder head for an internal combustion engine and the manufacturing method thereof of the present invention, the following effects are achieved.

(イ)シリンダヘッドの弁間部および弁−チャンバ間部
の表面におけるパーライト中のセメンタイトの分解が抑
制されるため、弁間部等における亀裂の発生が大幅に低
減される。
(a) Since the decomposition of cementite in pearlite on the surface of the valve gap and the valve-chamber gap of the cylinder head is suppressed, the occurrence of cracks in the valve gap and the like is significantly reduced.

(ロ)従来のように、高価なFe−Ni合金を大量にか
つ広範囲に使用することがないため、低コスト化が図れ
る。
(b) Costs can be reduced because expensive Fe-Ni alloys are not used in large quantities and over a wide range as in the past.

(ハ)従来の肉盛のように、シリンダヘッドを予熱する
必要がないため、省エネが図れる。
(c) Unlike conventional overlays, there is no need to preheat the cylinder head, so energy can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る鋳鉄製内燃機関用シ
リンダヘッドの要部を示す概略構成図、第2図は本発明
の第1実施例に係る鋳鉄製内燃機関用シリンダヘッドの
弁間部の合金化処理工程を示す工程図である。 1・−・−・シリンダヘッド粗形材 2−・−−−−−インテークボート 3−・−・エキゾーストボート 4−・−・チャンバ穴 5・−・・・・−弁間部 6.7・・・−−−−一弁−チャンバ間部8−〜−−−
一−−クロム溶射層 9−−−−−−−・合金チル化層 10・−・・・・−合金化層 出願人  トヨタ自動車株式会社 第2図
FIG. 1 is a schematic configuration diagram showing the main parts of a cast iron cylinder head for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing the main parts of a cast iron cylinder head for an internal combustion engine according to a first embodiment of the present invention. It is a process diagram showing the alloying treatment process of the intervalve part. 1.--Cylinder head rough profile 2.--Intake boat 3.--Exhaust boat 4.--Chamber hole 5.--Valve space 6.7. ...---One valve-chamber section 8-----
- Chromium sprayed layer 9 - Alloy chilled layer 10 - Alloyed layer Applicant Toyota Motor Corporation Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)鋳鉄製シリンダヘッドの吸気弁と排気弁の間の弁
間部並びに吸気弁とチャンバ穴の間および排気弁とチャ
ンバ穴の間の弁−チャンバ間部に、表面から0.5mm
以上の深さにわたって、クロム、モリブデンのうち少な
くとも一方が合計で0.3重量%〜2.0重量%含有さ
れた、基地組織がパーライトである合金化層が形成され
ていることを特徴とする鋳鉄製内燃機関用シリンダヘッ
ド。
(1) 0.5 mm from the surface of the cast iron cylinder head between the valves between the intake valve and the exhaust valve, between the intake valve and the chamber hole, and between the exhaust valve and the chamber hole.
An alloyed layer containing a total of 0.3% to 2.0% by weight of at least one of chromium and molybdenum and whose matrix structure is pearlite is formed over the above depth. Cast iron cylinder head for internal combustion engines.
(2)鋳鉄を原料としてシリンダヘッド粗形材を鋳造後
、鋳鉄製シリンダヘッドの吸気弁と排気弁の間の弁間部
並びに吸気弁とチャンバ穴の間および排気弁とチャンバ
穴の間の弁−チャンバ間部の各表面に、クロム、モリブ
デンのうち少なくとも一方を載せ、高密度エネルギを照
射して合金化層を形成し、続いてこの合金化層を950
℃〜1050℃で1〜10分間再加熱した後、空冷し、
次いで合金化層近傍を機械加工することにより仕上げを
行うことを特徴とする鋳鉄製内燃機関用シリンダヘッド
の製造方法。
(2) After casting a cylinder head rough shape using cast iron as a raw material, the valve gap between the intake valve and exhaust valve of the cast iron cylinder head, the valve between the intake valve and the chamber hole, and the valve between the exhaust valve and the chamber hole - Place at least one of chromium and molybdenum on each surface of the interchamber area, irradiate with high-density energy to form an alloyed layer, and then apply the alloyed layer to 950%
After reheating at ℃~1050℃ for 1~10 minutes, air cooling,
A method for manufacturing a cylinder head for an internal combustion engine made of cast iron, characterized in that finishing is then performed by machining the vicinity of the alloyed layer.
JP60228068A 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron and its production Pending JPS6286177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228068A JPS6286177A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228068A JPS6286177A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron and its production

Publications (1)

Publication Number Publication Date
JPS6286177A true JPS6286177A (en) 1987-04-20

Family

ID=16870688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228068A Pending JPS6286177A (en) 1985-10-14 1985-10-14 Cylinder head for internal combustion engine made of cast iron and its production

Country Status (1)

Country Link
JP (1) JPS6286177A (en)

Similar Documents

Publication Publication Date Title
US8241559B2 (en) Steel material having a high silicon content for producing piston rings and cylinder sleeves
JPH0258444B2 (en)
EP2036655B1 (en) Method for manufacturing cast iron member, cast iron member, and engine for vehicle
US4905538A (en) Camshaft
JP3835694B2 (en) Manufacturing method of valve seat
JPS5951668B2 (en) cylinder liner
JPH0343327B2 (en)
JPH03115587A (en) Production of remelted cam shaft
US5671710A (en) Pistons for internal combustion engines and method of manufacturing same
JPS6286177A (en) Cylinder head for internal combustion engine made of cast iron and its production
JP2004518025A (en) Method for pre-treating a ring support prior to alffination
JPS6287654A (en) Cast iron cylinder head for internal combustion engine and manufacture thereof
JPH0762519A (en) Production of cylinder block
JPS6286178A (en) Cylinder head for internal combustion engine made of cast iron
JPS6286179A (en) Cylinder head for internal combustion engine made of cast iron
JP3416829B2 (en) Cylinder head and method of manufacturing the same
JPS6393876A (en) Cylinder head for internal-combustion engine made of cast iron
JPH0480988B2 (en)
JPH01104906A (en) Cylinder for cast-iron internal combustion engine and manufacture thereof
JPS62170488A (en) Cast iron piston internal combustion engine and its production
JPS62279255A (en) Cast iron cylinder block and its manufacture
JPS63239342A (en) Cylinder head for cast iron internal combustion engine and manufacture thereof
JPS62167846A (en) Piston for internal combustion engine made of cast iron and its production
JPS62144866A (en) Production of cylinder head for internal-combustion engine
JPS62144867A (en) Production of cylinder head for internal-combustion engine